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Abstract

A highly conserved RNA-motif of yet unknown function, called stem-loop-2-like motif (s2m), has been identified in the 39
end of the genomes of viruses belonging to different RNA virus families which infect a broad range of mammal and bird
species, including Astroviridae, Picornaviridae, Coronaviridae and Caliciviridae. Since s2m is such an extremely conserved
motif, it is an ideal target for screening for viruses harbouring it. In this study, we have detected and characterized novel
viruses harbouring this motif in pigeons by using a s2m-specific amplification. 84% and 67% of the samples from feral
pigeons and wood pigeons, respectively, were found to contain a virus harbouring s2m. Four novel viruses were identified
and characterized. Two of the new viruses belong to the genus Avastrovirus in the Astroviridae family. We propose two novel
species to be included in this genus, Feral pigeon astrovirus and Wood pigeon astrovirus. Two other novel viruses, Pigeon
picornavirus A and Pigeon picornavirus B, belong to the Picornaviridae family, presumably to the genus Sapelovirus. Both of
the novel picornaviruses harboured two adjacent s2m, called (s2m)2, suggesting a possible increased functional effect of
s2m when present in two copies.
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Introduction

An RNA motif, called stem-loop-2-like motif (s2m), has been

identified in the 39 end of the genomes of viruses belonging to

different RNA virus families which infect a broad range of

mammal and bird species [1]. So far, s2m has been found in

species of the following virus families; Astroviridae, Picornaviridae,

Coronaviridae, and Caliciviridae. All avastroviruses identified to date,

except Turkey astrovirus 2 (TAstV-2) harbour s2m. In addition,

several species among mamastroviruses, with the exception of

Bottlenose dolphin astrovirus 1, and the branch comprising, among

others, Human astrovirus MLB1, rat astroviruses and a few bat

astroviruses [2–6], harbour this motif.On the other hand, only few

picornaviruses have been identified to date harbouring s2m;

viruses in the genus Erbovirus (Equine rhinitis B virus 1 and 2) causing

a mild respiratory infection in horses [7], and more recently in

viruses in the genus Paraturdivirus, which is proposed as a novel

genus in the Picornaviridae family [8]. The viruses in this genus

(Turdivirus 2 and 3) are found to infect wild birds in Hong Kong. In

the Coronaviridae family, s2m has been found in all members of the

genus Gammacoronavirus, that all infect birds, [9], and in the severe

acute respiratory syndrome (SARS)-related coronavirus that consist of

SARS coronaviruses from the human outbreak of 2003, and from

bats, within the Betacoronavirus genus [10]. In addition, s2m has also

been found in Canine norovirus, in two isolates from Italy [11] and

one from Portugal [12]. The two noroviruses from Italy are

assigned to genogroup IV, subtype 2, while the norovirus from

Portugal are still unassigned. Noroviruses belong to the family

Caliciviridae, which has a genome organization similar to astrovirus,

and are regarded as a major cause of epidemic, nonbacterial

gastroenteritis worldwide in humans at all ages [13–15].

In these very different viruses, the RNA-motif is highly con-

served. The primary structure of s2m consists of 43 nucleotides,

and the secondary structure is predicted to form a basal stem of

6–8 base pairs and a 31 nucleotide loop region http://rfam.sanger.

ac.uk/family?entry = RF00164#tabview = tab0. About 75% of the

s2m sequence is absolutely invariant between viral species. The

nucleotides in the loop region show less variation than the

nucleotides in the basal stem, but stem nucleotide differences are

almost always compensated by covariations to maintain base

pairing [16]. Because RNA viruses have a high mutation rate, this

suggests that s2m has a very important function in the viruses

carrying it.

X-ray crystallography of SARS coronavirus s2m RNA has

shown that it has a unique secondary and tertiary structure with a

sharp 90u kink of the RNA helix axis perpendicular to the main

helix axis [17]. Comparison of the global fold of the SARS s2m

RNA to known RNA tertiary structures revealed that the

backbone fold of the s2m RNA has a structure corresponding to

the 530 loop of 16S rRNA. This loop in 16S rRNA, and proteins

that bind to it, are known to be involved in translation initiation. It

has been proposed that s2m might bind to one or more factors in

the host’s translational machinery, which is necessary for initiation

of the protein synthesis, even if the structure homology is identified

PLoS ONE | www.plosone.org 1 October 2011 | Volume 6 | Issue 10 | e25964



towards prokaryotic rather than eukaryotic rRNA. The virus could

thus hijack this machinery for its own purpose. In addition it is

possible that the Nsp9 protein in SARS coronavirus can bind to

s2m, and thereby facilitate viral polymerase RNA transcription,

translation or replication. Hence, s2m can be important for both

the protein synthesis and the replication.

The high degree of similarity between s2m from non-related

virus families indicates that s2m has a common origin. It is unlikely

that s2m has coevolved with the rest of the genome of a single

common ancestor virus, because this motif is present only in a

limited number of viral species within the viral families where it

has been found and because of the large evolutionary distance

between them. This suggests that s2m has been transferred

between different RNA virus by non-homologous recombination.

A relatively high frequency of recombination is observed within

species of coronavirus and picornavirus [18–21], both in cell

culture and in nature. Recombination has also been demonstrated

to occur within astroviruses [3,22–24]. RNA recombination

enables the exchange of genetic material not only between the

same or similar viruses, but also between distinctly different

viruses. However, this seems very rare as it depends on coinfection

of a single cell by two non-related viruses, and in contrast to

recombination within viral species, transfer from one virus family

to another cannot involve a homologous recombination mecha-

nism [18,25,26].

In the subgroups/species of the Picornaviridae, Coronaviridae and

Caliciviridae families where s2m is found, either every virus strain

harbour s2m or none. Thus s2m must have conferred some

immediate advantage to the virus upon acquisition, thus spreading

faster than viruses not harbouring the motif. In the Astroviridae

family, however, it seems that the motif has been lost in TAstV-2,

since this is the only species among avastroviruses not harbouring

s2m. The presence of s2m in several, but not all, branches of

mamastrovirus could either be due to the motif being lost in

several branches, or to be acquired independently in different lines

of mamastroviruses.

Viral families where s2m has been found, are all positive-sense

single-stranded RNA viruses, with a poly(A) tail in the 39 end of

their genome. S2m is located 40–200 nucleotides upstream of the

poly(A) tail, either completely or partially in their untranslated

region. Since s2m is such an extremely conserved motif, it is an

ideal target for identification of the viruses harbouring it. We have

earlier described a reverse transcription (RT) polymerase chain

reaction (PCR) analysis which should be able to detect all viruses

with poly(A)-tailed, positive-sense single-stranded RNA genome

that contains s2m [9]. As s2m seems to be functional in many

different viruses, it is plausible that there exist more viruses that

contain s2m than those that have been found so far, and the aim of

this study was to identify and characterize s2m harbouring viruses

in a bird population.

Samples from feral pigeons were collected in 2003, as part of a

surveillance project for zoonotic diseases in wild birds, such as

influenza A virus and Newcastle disease virus, at the National

Veterinary Institute, Oslo, Norway [27]. The samples were also

investigated for coronavirus [9]. In this study these samples, and in

addition a few samples from wood pigeons, were screened for the

presence of s2m. In this paper we also report characterization and

prevalence of novel viruses infecting feral and wood pigeons.

Materials and Methods

Ethics statement
Permission to capture and euthanize pigeons for sampling was

given by the Norwegian Directorate for Nature Management (ref:

2003/3992 ARTS-VI-ID). In addition, cloacal and tracheal swabs

were sampled by a hunter from 9 wood pigeons shot during

hunting season in Akershus, in August 2005.

Sampling
107 feral pigeons were caught in Oslo between June and

September 2003 as previously described [9]. Cloacal and tracheal

swabs were taken post-mortem from each bird, and kept at 270uC
until analysis. Body weight was measured and routine necropsy

carried out by the Section for Wildlife Diseases at the National

Veterinary Institute, Oslo, Norway.

The cloacal and tracheal swabs from the 9 wood pigeons were

placed in tubes containing virus transport medium, and kept at

220uC until analysis.

RNA isolation and RT-PCR for s2m screening
RNA was isolated from swabs with QIAampH Viral RNA mini

kit (QIAGEN, Hamburg, Germany) or with NucliSensH easy-

MAGTM (bioMérieux, Marcy l’Etoile, France) according to the

manufacturers’ instructions.

To screen for s2m, 41 feral pigeon samples were randomly

selected, and RT-PCR was performed using a primer (s2m-p)

located in the most conserved core of s2m toward a generic primer

for poly(A)-tailed RNA (Oligo(dT)20), which will amplify 40–200

nucleotides [28,29]. The primers used in this study are listed in

Table 1. The cloacal and tracheal swabs were pooled together,

and analysed with a two-step RT-PCR. cDNA synthesis was

performed using SuperScriptTM III Reverse Transcriptase (In-

vitrogen, Carlsbad, CA, USA), with 2.5 mM Oligo(dT)20 (or

Anchored Oligo(dT)20) primer according to the manufacturer’s

protocol. The RT reaction was performed in a thermocycler at

50uC for 30 min, followed by an inactivation step at 70uC for

15 min.

Five ml cDNA were amplified using HotStarTaq DNA

Polymerase Kit (QIAGEN, Hamburg, Germany) in a 50 ml

PCR. The primers used were s2m-p (0.5 mM) and Blend

(0.25 mM). The concentration of Mg2+ in the reaction was

1.5 mM.

Table 1. Sequence of primers used in this study.

Target Name Sequence (59R39) Orientation

(s2m) S2m-p CCGAGTASGATCGAGGG* Forward

(s2m) AV12 TTTTTTTTTTTTTTTTTTGC Reverse

(s2m) Blend TTTTTTTTTTTTTTTTTTVN Reverse

Picornavirus AV12B TTTTTTTTTTTGCAATGCCC Reverse

Picornavirus 555F400 GATAACACCAGCTGATAAGGG Forward

Picornavirus PIC3300FX GTTGYRRTHATGGAYGA Forward

Picornavirus 603-7F2600 AAGCTGGATGTTGACAAGG Forward

Picornavirus PicB-59UTR CGTGTGGTATAGTCCGCTG Forward

Astrovirus ANV-R1 AATGAAAAGCCCACTTTCG Reverse

Astrovirus ANV-F210 GAGTAGCATCGAGGGTACAG Forward

Astrovirus Astro-YGDD TTATGGAGATGAYMGGCT Forward

Astrovirus 594-9F2400 CCCGACTTCTACAGGAAAAT Forward

Astrovirus AstroDueR2400 ATTTTCCTGTAGAAGTCGGG Reverse

Astrovirus TAPG-L1 TGGTGGTGYTTYCTCAARA** Forward

*From Jonassen et al. 2005 [9].
**From Tang et al. 2005 [31].
doi:10.1371/journal.pone.0025964.t001

Novel Astroviruses and Picornaviruses in Pigeons
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The amplification programme consisted of an initial 15 min

step at 95uC, followed by 40 cycles with 94uC for 40 s, 55uC for

20 s and 72uC for 40 s. A final elongation step at 72uC for 5 min

was performed, followed by chilling to 8uC.

Human astrovirus serotype 8, an s2m harbouring virus, was

propagated in Caco-2 cells, and RNA isolated from the cell

supernatant was used as a positive control in all RT-PCR set-ups.

Negative controls consisted of RNase/DNase-free water.

Sequencing and sequence analysis of the s2m PCR
products

All PCR-products were purified by using QIAquick PCR

Purification Kit (QIAGEN, Hamburg, Germany) according to the

manufacturer’s instruction, with a final elution volume of 30 ml

MilliQ-water (Millipore, Billerica, MA, USA). The sequencing

reaction was performed by using the ABI PRISM BigDye

Terminator Cycle Sequencing Ready Reaction kit v1.1 (Applied

Biosystems, Carlsbad, CA, USA) according to manufacturer’s

instructions, and the samples were analysed on an ABI PRISMH
3130xl Genetic Analyzer (Applied Biosystems, Carlsbad, CA,

USA).

Software used for sequence analysis was Sequencher version

4.1.4 (Gene Codes Corporation; http://www.genecodes.com), and

FASTA similarity search.

Rapid amplification of cDNA ends and primer walking
The sequence information obtained between s2m and the

poly(A) tail allowed for designing of two partly overlapping specific

reverse primers for the newly identified viruses, and further

sequence information was obtained using a Rapid Amplification of

cDNA Ends (59 RACE) and primer walking strategy. The PCR

products were sequenced using the ABI PRISM BigDye

Terminator Cycle Sequencing Ready Reaction kit v3.1. [1,28,29].

Virus-specific RT-PCR for further sequencing
Once sufficient sequence information was obtained to assign the

novel viruses to a specific family, an alternative strategy to 59

RACE and primer walking was used for further viral sequence

characterization, consisting of amplifying directly a long PCR

product using upstream primers in conserved family-specific

motifs, e.g. in the RNA dependent RNA polymerase (RdRp) gene.

A consensus primer (Astro-YGDD) was designed in the YGDD

amino acid motif of astrovirus RdRp. This primer was used

together with the primer ANV-R1, and the PCR was performed

using the BD AdvantageTM 2 PCR System (Clontech, Mountain

View, CA, USA). The amplification product provided limited

sequence information, allowing for the design of two specific

primers, 594-9F2400 and AstroDueR2400, that could be used for

sequence characterization of the astrovirus capsid gene. In order

to obtain the complete capsid sequence, and some of the

polymerase gene, TAPG-L1, a primer previously reported by

Tang et al. [30], was used together with AstroDueR2400 as well.

A similar approach was used to obtain more of the 59 end of the

nonstructural genes of picornavirus. All PCR products were

sequenced using the ABI PRISM BigDye Terminator Cycle

Sequencing Ready Reaction kit v3.1.

Sequence analyses
Softwares used for sequence analysis and phylogeny, in addition

to Sequencher and FASTA similarity search, were CLUSTALW

Multiple Sequence Alignment Program (http://www.ebi.ac.uk),

and MEGA version 4 (Tamura, Dudley, Nei and Kumar 2007:

http://megasoftware.net). Pairwise percent identity between

nucleotide or amino acid sequences was calculated by BioEdit

version 5.0.9 (http://jsbrown.mbio.ncsu.edu/BioEdit/bioedit.

html). Hypothetical polyprotein cleavage sites in the picornavirus-

es were determined by the NetPicoRNA server version 1.0

(http://www.cbs.dtu.dk/services/NetPicoRNA). Prediction of

RNA secondary structure was carried out using Mfold version

4.6 [31]: http://mfold.bioinfo.rpi.edu).

RT-PCR for astrovirus and picornavirus screening
When sequence information of the newly identified viruses was

sufficient to assign the viruses to known virus families, generic

primers were designed in conserved areas of genes and used to

amplify and sequence larger fragments (200–500 nucleotides) of

the viral genomes. All the 116 pigeon RNA samples were then

screened specifically for the presence of the novel viruses with the

primers, and all PCR products were then sequenced for further

subgrouping.

Picornavirus RT-PCR. The samples were analysed with a

two-step RT-PCR. cDNA synthesis was performed using

SuperScriptTM III Reverse Transcriptase (Invitrogen, Carlsbad,

CA, USA) according to the manufacturer’s protocol, with

0.125 mM AV12 primer. The RT reaction was performed in a

thermocycler at 50uC for 45 min, followed by an inactivation step

at 70uC for 15 min.

The PCR was performed with 555F400 as sense primer and

AV12B as antisense primer. These primers were designed to

amplify 493 bp in the 39 end of picornavirus RNA in pigeons.

2.5 ml cDNA was added to a 25 ml PCR and amplified by using

HotStarTaq DNA Polymerase Kit (QIAGEN, Hamburg, Ger-

many). The concentrations of primers in the reaction were

0.5 mM, and the concentration of Mg2+ was 1.5 mM. The

amplification programme consisted of an initial 15 min step at

95uC, followed by 40 cycles with 94uC for 40 s, 55uC for 20 s and

72uC for 60 s. A final elongation step at 72uC for 5 min was

performed, followed by chilling to 8uC.

Astrovirus RT-PCR. The samples were analysed with a two-

step RT-PCR as described above. ANV-R1 was used as primer in

the RT reaction and as antisense primer in the PCR. ANV-F210

was used as sense primer in the PCR. These primers were

designed to amplify 210 bp in the 39 end of astrovirus in pigeons.

The same amplification programme as above was used, but with

35 cycles instead of 40.

Results

Screening for s2m harbouring viruses
S2m positive samples identified from the initial screening,

showed similarity to two distinct virus families, picornaviruses and

astroviruses.

Of the 107 samples from feral pigeons analysed for picornavi-

rus, 32 samples were found to be positive for picornavirus. The

samples from wood pigeons were all negative. Cloacal and

tracheal swabs were pooled together when the samples were

tested. When swabs from 26 positive feral pigeons were tested

separately, picornavirus was present in both the cloacal swabs and

tracheal swabs in three of the birds, whereas picornavirus only was

found in the cloacal swabs in the rest of the birds.

All the positive samples were confirmed by sequencing of PCR

products. The alignment of sequences showed that the present

pigeon picornaviruses cluster into two groups, called Pigeon

picornavirus A (PiPV-A) and Pigeon picornavirus B (PiPV-B). At the

nucleotide level, the distance between PiPV-A and PiPV-B was

about 40% in this region (493 nucleotides). 10 samples clusters in

group PiPV-A, and 21 samples clusters in group PiPV-B. In one of

Novel Astroviruses and Picornaviruses in Pigeons
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the pigeons we found both groups, PiPV-A in the tracheal swab

and PiPV-B in the cloacal swab.

Of the 107 pooled tracheal and cloacal swabs from feral

pigeons, 85 were found to be positive for astrovirus, and of the 9

samples from wood pigeons, 6 were positive. All the positive

samples were confirmed by sequencing of the astrovirus screening

PCR products. Cloacal and tracheal swabs from 8 of the positive

feral pigeons and the 6 positive wood pigeons were tested

separately. Astrovirus was present in all tested cloacal swabs; in

addition astrovirus were present in tracheal swabs from 6 of the

birds (2 wood pigeons and 4 feral pigeons).

27 feral pigeons were shown to be infected with both

picornavirus and astrovirus. Earlier, the samples from feral

pigeons have been tested by RT-PCR for coronavirus [9], and

two of these samples were found to be positive for coronavirus.

One of these was also positive for both picornavirus (PiPV-B) and

astrovirus.

Taken together, 84% and 67% of the samples from the feral

pigeons and the wood pigeons, respectively, were found to contain

a virus with s2m, as summarized in Table 2.

Body weight and results from the necropsy were compared to

the findings of different viruses. Most birds appeared healthy, and

it was not possible to correlate the presence of a virus to any illness

in the birds.

A few samples from each virus family were chosen for further

characterization by a 59 RACE and primer walking strategy, or

long-range PCR using conserved motifs of virus families.

Characterization of novel pigeon picornavirus
We were able to sequence nearly the complete genome from

one pigeon picornavirus, PiPV-B, except for the very 59-end of the

59UTR. From PiPV-A, 2804 nucleotides were obtained, which

covers the complete P3 region and the 39 UTR. The sequences

have been deposited in the GenBank database (http://www.ncbi.

nlm.nih.gov/entrez) with accession numbers from FR727144 to

FR727145.

The sequences were compared to selected picornaviral

sequences present in the nucleotide sequence databases. The

picornavirus strains that were included in the analysis are listed in

Table 3. Phylogenetic trees for picornaviruses were constructed

based on the alignment of the putative polymerase protein (3D)

and the P1 capsid region (Figure 1). Both phylogenetic analyses

show that the new pigeon picornaviruses cluster within the genus

Sapelovirus.

The overall genomic organization of the PiPV-B was similar to

other picornaviruses. The 7804 nucleotide long genome, excluding

the poly(A) tail, was predicted to contain a 618 nucleotide long 59

UTR (lacking the 59 terminus), followed by a single long open

reading frame, which encodes a 2344 amino acid (aa) polyprotein,

and a short 39 UTR of 160 nucleotides followed by a poly(A) tail.

The coding region consists of a leader protein (L), a structural

region P1, and the non-structural regions P2 and P3.

Hypothetical polyprotein cleavage sites were determined by the

NetPicoRNA server version 1.0 and by alignment of the deduced

amino acid sequence with those of sapelo- and enteroviruses.

Roughly, cleavage sites should be conserved within a genus. The

cleavage sites for PiPV-B are similar to the sapeloviruses. The

cleavage sites are all Q/G, except VP4/VP2 which probably is

E/G.

Coding region. Pairwise percent amino acid identity

between PiPV-B and different sapeloviruses and enteroviruses

were calculated, and is presented in Table 4, together with the

length of each polypeptide/region for PiPV-B and PiPV-A. From

the table, it is clear that the new virus sequences are highly

divergent from all previously described sapelo- and enteroviruses.

The VP2, VP3, VP4, 2C, 3B, 3C and 3D polypeptides of PiPV-B

are related most closely to those of sapelovirus, while the other

regions differ considerably from those of all known picornaviruses.

All sapeloviruses have a leader (L) protein sequence prior to

their capsid protein regions. This leader protein is lacking in

enteroviruses. In sapelovirus, the leader protein varies in length

from 84 amino acids in Porcine enterovirus A (PEV-A) [32] to 451

amino acids in Duck picornavirus (DPV) [33]. In PiPV-B the leader

protein is 112 amino acids. There was little sequence similarity

among picornaviral L proteins, and it was not possible to achieve a

significant alignment of the PiPV-B L protein with those of other

picornaviruses.

Within the sapelovirus genus the 2A polypeptide also varied

much in length, from 12 amino acids in DPV to 302 amino acids

in Simian picornavirus 1 (SPV-1) [34]. For PiPV-B the 2A was 191

amino acids, and it shared no similarity with either sapelovirus or

enterovirus.

The genomes of most picornaviruses encode two different

proteases. Enterovirus encodes two proteases, 2A and 3C, while in

Table 2. Results of testing for picornavirus (PiPV-A/PiPV-B), astrovirus (AstV) and coronavirus (CoV) by RT-PCR on samples from
feral pigeons (Oslo 2003) and wood pigeons (Akershus 2005).

Number of positive samples

Population PiPV-A PiPV-B AstV CoV* PiPV-A + PiPV-B PiPV-A + AstV PiPV-B + AstV PiPV + CoV + AstV

Feral pigeons

Juvenile (n = 56) 8 13 53 0 1 8 13 0

Adult (n = 50) 3 9 31 2 0 2 5 1

Unknown (n = 1) 0 0 1 0 0 0 0 0

Virus detection rates 10.3% 20.6% 79.4% 1.9% 0.9% 9.3% 16.8% 0.9%

Wood pigeons

Juvenile (n = 1) 0 0 1 0 0 0 0

Adult (n = 8) 0 0 5 0 0 0 0

Virus detection rates 0.0% 0.0% 66.7% 0.0% 0.0% 0.0% 0.0%

*The CoV results from feral pigeons are taken from an earlier study by Jonassen et al., 2005 [9].
doi:10.1371/journal.pone.0025964.t002
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Table 3. Virus strains included in the analyses.

Family/Genus Species (strain) Abbreviation Accession no.

Picornaviridae

Enterovirus Human enterovirus A HEV-A NC_001612

Human enterovirus B HEV-B NC_001472

Human coxsackievirus A1 (Tompkins) HCV AF499635

Human enterovirus D (70) HEV-D NC_001430

Porcine enterovirus B (UKG/410/73) PEV-B NC_004441

Human poliovirus 1 (Mahoney) HPV NC_002058

Human rhinovirus A (89) HRV-A NC_001617

Human rhinovirus B (70) HRV-B DQ473489

Human rhinovirus C (024) HRV-C EF582385

Sapelovirus Pigeon picornavirus B (03/641)** PiPV-B FR727144*

Pigeon picornavirus A (03/603-7)** PiPV-A FR727145*

Duck picornavirus TW90A DPV AY563023

Simian picornavirus 1 (2383) SPV-1 NC_004451

Porcine enterovirus A (V13) PEV-A NC_003987

Kobuvirus Aichi virus (A846/88) AiV NC_001918

Bovine kobuvirus (U-1) BKV NC_004421

Teschovirus Porcine teschovirus 1 (F65) PTV-1 NC_003985

Erbovirus Equine rhinitis B virus 1 (P1436/71) ERBV-1 NC_003983*

Equine rhinitis B virus 2 (P313/75) ERBV-2 NC_003077*

Cardiovirus Encephalomyocarditis virus EMCV NC_001479

Theilovirus (GDVII) TMEV NC_001366

Aphtovirus Foot-and-mouth disease virus C FMDV-C NC_002554

Foot-and-mouth disease virus O FMDV-O NC_004004

Hepatovirus Hepatitis A virus HAV NC_001489

Tremovirus Avian encephalomyelitis virus (Calnek) AEV NC_003990

Avihepatovirus Duck hepatitis virus type 1 (DRL-62) DHV-1 DQ219396

Duch hepatitis virus AP (03337) DHV-AP DQ256132

Parechovirus Human parechovirus 2 (Gregory) HPeV-2 NC_001897

Human parechovirus 3 (A308/99) HPeV-3 AB084913

Ljungan virus (174F) LV-174F AF327921

Ljungan virus (M1146) LV-M1146 AF538689

Senecavirus Seneca valley virus (SVV-001) SVV DQ641257

Unassigned Seal picorna virus type 1 (HO.02.21) SePV-1 EU142040

Human cosavirus A1 (0553) HCoSV-A1 NC_012800

Human klassevirus 1 (02394-01) HKV GQ184145

Salivirus NG-J1 SaV GQ179640

Turdivirus 1 (00805) TV1 GU182407

Turdivirus 2 (007167) TV2 GU182409*

Turdivirus 3 (10878) TV3 GU182411*

Astroviridae

Mamastrovirus Human astrovirus 2 (Oxford) HAstV-2 L13745*

Human astrovirus 3 (Berlin) HAstV-3 AF141381*

Human astrovirus 4 (Guangzhou) HAstV-4 DQ344027*

Human astrovirus 8 (Yuk-8) HAstV-8 AF260508*

Human astrovirus MLB1 (WD0016) HAstV-MLB1 FJ402983

HMO Astrovirus-A (NI-295) HMOAstV-A NC_013443*

HMO Astrovirus-B (NI-196) HMOAstV-B GQ415661*

HMO Astrovirus-C (NI-295) HMOAstV-C GQ415662*

Porcine astrovirus (Tokushima83-74)*** PAstV AB037272*

Novel Astroviruses and Picornaviruses in Pigeons
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aphthovirus, protein L and 3C are proteases. The 2A protein in

enterovirus is a trypsin-like protease. It has been shown that the 2A

and 3C proteins of PEV-A and SPV-1 both have a GxCG motif,

which is the active site of trypsin-like proteases. In DPV, the

GxCG motif is located in the L and 3C, but not in the 2A protein

[33]. In PiPV-B, the motif is found only in 3C.

The 3D protein is a RNA-dependent RNA polymerase, which is

the most conserved picornavirus protein, and it is used to infer

phylogenetic relationships among members of the Picornaviridae

family [35]. This protein in PiPV-B showed 52% amino acid

identity to its closest relative, Duck picornavirus. Sequences from the

two different pigeon picornaviruses, PiPV-A and PiPV-B, showed

only 77% amino acid sequence similarity in this region.

Noncoding region. The 59 UTR of PiPV-B consisted of at

least 618 nucleotides, but sequence information was incomplete in

the 59 end. Sequence comparisons showed that the 59 UTR of

PiPV-B was most similar to DPV, but only in a short range of the

59 UTR that corresponds to a part of the internal ribosome entry

site (IRES) element (domain IIId to IIIf) (68.9% identity in 106

nucleotides). There were no similarities found outside the IRES

element.

Analysis of RNA secondary structure by the Mfold program

showed that the IRES structure of PiPV-B was most similar to type

IV IRES elements (Figure 2). The IRES of PiPV-B lacked the

polypyrimidine tract located 25 nucleotides upstream of the AUG

start codon in picornavirus IRES types I-III, and harboured the

other IRES type IV signature elements, i.e. a shorter length and

the presence of two domains, termed domain II and III, where

domain III includes a number of distinct stem-loops, e.g. IIId

(consisting of 20–28 nucleotides and containing a strictly

Family/Genus Species (strain) Abbreviation Accession no.

Ovine astrovirus OAstV NC_002469*

Mink astrovirus MAstV AY179509*

Canine astrovirus (3/05)*** CaAstV FM213330*

Feline astrovirus (Bristol)*** FAstV AF056197*

Bat astrovirus Tm/Guangxi/LD77/2007 BatAstV-LD77 FJ571066*

Bat astrovirus Tm/Guangxi/LD71/2007 BatAstV-LD71 FJ571067*

Bat astrovirus Ha/Guangxi/LS11/2007 BatAstV-LS11 FJ571068

Rat Astrovirus/RS118/HKG/2007 RatAstv-RS118 HM450381

Bottlenose dolphin astrovirus 1 (Bd1) BDAstV-1 FJ890355

California sea lion astrovirus 1 (CSL1) CslAstV-1 FJ890351*

California sea lion astrovirus 2 (CSL2) CslAstV-2 FJ890352*

Avastrovirus Avian nephritis virus 1 (G-4260) ANV-1 AB033998*

Avian nephritis virus 2*** ANV-2 AB046864*

Turkey astrovirus 1 TAstV-1 Y15936*

Turkey astrovirus 2 TAstV-2 AF206663

Duck astrovirus (C-NGB) DAstV NC_012437*

Feral pigeon astrovirus (03/594-6) FPiAstV-03/594-6 FR727146*

Feral pigeon astrovirus (03/594-9) FPiAstV-03/594-9 FR727147*

Feral pigeon astrovirus (03/603-5) FPiAstV-03/603-5 FR727148*

Wood pigeon astrovirus (06/15660-1) WPiAstV-06/15660-1 FR727149*

Coronaviridae

Gamma-coronavirus Avian infectious bronchitis virus (Beaudette CK) IBV AJ311317*

Turkey coronavirus (TX-1038/98) TCoV GQ427176*

Duck coronavirus (03/1094) DCoV AJ871024*

Bulbul coronavirus (HKU11-796) BuCoV FJ376620*

Goose coronavirus (03/586-50) GCoV AJ871017*

Betacoronavirus Human SARS coronavirus (Tor2) SARS CoV AY274119*

Bat SARS coronavirus (HKU3-1) Bat SARS CoV NC_009694*

Zaria bat coronavirus (ZBCoV) ZBCoV HQ166910*

Caliciviridae

Norovirus Norovirus dog (Bari/91/07/ITA) NoV Bari/91 FJ875027*

Norovirus dog (170/07/ITA) NoV 170 EU224456*

Norovirus dog (C33/Viseu/2007/PRT) NoV C33/Viseu GQ443611*

*Viruses harbouring s2m.
**Genus assignment suggested in this paper.
***The ORF1b sequence was not available.
doi:10.1371/journal.pone.0025964.t003

Table 3. Cont.
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conserved GGG motif within the terminal loop), IIIe (highly

conserved and consisting of 12 nucleotides) and a pseudoknot, IIIf.

Domain II in PiPV-B consisted of 62 nucleotides, and lacked the

GAA and AGUA motifs present in almost all IRES type IV

elements, except for PEV A, while domain III consisted of about

275 nucleotides [36–38].

The 39 UTRs of picornaviruses are generally quite short,

ranging from 34 nucleotides in Seal picornavirus type 1 [39] to 314

nucleotides in Duck hepatitis virus type 1 [33]. The 39 UTR was 152

nucleotides long in PiPV-A, and 160 nucleotides long in PiPV-B.

They shared 70% identity at the nucleotide level, but they had no

significant similarity with any other picornaviruses, except for s2m

in the equine rhinitis B viruses. Both PiPV-A and PiPV-B

harboured two adjacent s2m, called (s2m)2, in their 39 UTR.

Respectively, there were 2 and 24 nucleotides between the two

adjacent s2m, in PiPV-A and PiPV-B (Figure 3).

Characterization of astrovirus
Three astroviruses from feral pigeon and one from wood pigeon

were selected for further characterization. From each genomic

RNA about 3200 nucleotides, which partially covers the

polymerase gene (about 300 amino acids in the C terminal part

of ORF1b), the complete capsid gene (ORF2) and the 39 UTR,

were obtained. The sequences have been deposited in the

GenBank database (http://www.ncbi.nlm.nih.gov/entrez) with

accession numbers from FR727146 to FR727149.

The sequences were compared to selected astrovirus sequences

present in the nucleotide sequence databases, shown in Table 3.

Pairwise comparisons based on amino acid sequences of the partial

ORF1b and the complete ORF2 were performed to determine the

relationship of the feral and wood pigeon astroviruses with other

astroviruses. The astrovirus isolates from feral pigeon shared 70–

71% amino acid identity in ORF2 with each other, whereas the

Figure 1. Phylogenetic analysis of A) the complete polymerase protein (3D) and B) the complete P1 capsid region of the
picornavirus family. The trees were constructed by the neighbour-joining method using the Jones-Taylor-Thornton matrix-based model of amino
acid substitution. Bootstrap values (.70%) from 1000 replicates are shown. Both trees are plotted to the same scale. The novel isolates are indicated
by bold lettering. The viruses marked with m harbour s2m.
doi:10.1371/journal.pone.0025964.g001
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amino acid identity between feral pigeon and the wood pigeon

astrovirus was of 54–56%. Higher identity was detected for the

partial sequence related to ORF1b, being of 97–98% among feral

pigeon astrovirus and 96% between feral pigeon and wood pigeon

astrovirus. We found that both feral pigeon astroviruses and wood

pigeon astrovirus were more closely related to the avian nephritis

viruses (ANV) than to other astroviruses (86–87% amino acid

identity in ORF1b).

To gain further insight into the relationship of the pigeon

astroviruses with other astroviruses, phylogenetic trees for astro-

virus were constructed based on the alignment of the putative

amino acid sequences encoded by ORF1b and ORF2 (Figure 4).

The phylogenetic analyses of ORF2 (Figure 4A) show that the

isolates from feral pigeons cluster together to form a new group of

viruses within the avian genogroup. The isolate from wood pigeon

grouped separately from the feral pigeon group. The novel

astroviruses were most closely related to ANV, although they were

highly divergent from them (42–49% identity at the amino acid

level). Similar tree topology was observed when ORF1b was

analysed (Figure 4B). Sequence information in that part of the

genome was not available for porcine astrovirus, canine astrovirus,

feline astrovirus or ANV-2.

Both feral and wood pigeon astroviruses have the same genomic

organization as the turkey astroviruses, with ORF1b and ORF2 in

the same reading frame, as shown in Figure 5. In contrast, the

ORF2 of ANV-1, Duck astrovirus and most mammalian astroviruses

(except Mink astrovirus) are not in the same reading frame as

ORF1b [2,40–43].

The predicted capsid protein of pigeon astrovirus encoded by

ORF2 has a length of 667–676 amino acids, which is among the

smallest astrovirus capsid protein known. Capsid proteins of

astrovirus infecting different hosts are highly divergent [44]. The

N-terminal half of the ORF2 protein, which is more conserved

than the C-terminal half and proposed to constitute the assembly

domain of the viral capsid [44–46], was also found to be relatively

conserved in the pigeon astroviruses.

In astrovirus, the 39 UTR range from 58 nucleotides in Human

astrovirus MLB1 to 305 nucleotides in ANV-1. The pigeon

astroviruses contains a 39 UTR of 255–287 nucleotides, where

the s2m motif is found, followed by a poly(A) tail.

Discussion

In this paper we report the discovery of novel picornaviruses

and astroviruses in feral and wood pigeons, and identified viruses

in yet another family with a tandem copy of the s2m mobile motif.

The novel pigeon picornaviruses (PiPV) were found in 30% of

the pigeons tested, suggesting that these viruses are relatively

common among pigeons.

The almost complete genome sequence of PiPV-B was shown to

have a genome organization and several features typical of

sapeloviruses, including a putative leader protein encoded

upstream of the structural proteins (in the polyprotein N-terminal)

and an IRES element that is highly related to the IRES type IV in

sequence and overall secondary structure [36]. Even if there is a

relatively low sequence conservation within the pseudoknot (IIIf)

Table 4. Pairwise percent amino acid identities between the predicted pigeon picornavirus (PiPV-A/PiPV-B) proteins and the
corresponding proteins in different sapeloviruses and enteroviruses.

PiPV-B versus: L P1 VP1 VP2 VP3 VP4 P2 2A

DPV NS 36 27 41 40 42 28 NS

SPV-1 NS 37 30 49 43 41 24 NS

PEV-A NS 39 31 48 44 39 28 NS

HEV-A NS 33 27 39 34 36 29 NS

HRV-A NS 30 21 33 36 35 28 NS

Length of PiPV-B 112 840 306 193 227 114 636 191

PiPV-B versus: 2B 2C P3 3A 3B 3C 3D

DPV 30 43 46 17 45 46 52

SPV-1 22 41 43 22 45 40 49

PEV-A 16 41 42 16 45 40 48

HEV-A 23 39 41 24 41 37 42

HRV-A 17 41 39 20 36 35 47

Length of PiPV-B 115 330 755 92 22 184 457

PiPV-A versus: P3 3A 3B 3C 3D

PiPV-B 76 63 95 79 77

DPV 46 22 45 45 52

SPV-1 46 23 41 39 53

PEV-A 44 22 45 41 50

HEV-A 41 18 41 37 46

HRV-A 40 15 36 34 49

Length of PiPV-A 754 92 22 184 456

Accession numbers of the sequences used for the alignment and calculation of amino acid identities are listed in Table 3. Lengths of proteins as number of amino acids
are noted for PiPV-B (and PiPV-A). NS = no significant alignment.
doi:10.1371/journal.pone.0025964.t004
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Figure 2. Model of the predicted secondary structure of PiPV-B IRES. Domains are labelled II and III, stem-loops are labelled IIId, IIIe etc. Stem
1 and stem 2 are elements of the pseudoknot. The underlined AUG triplet in position 429 is the first AUG codon after the pseudoknot. Shaded
rectangles indicate bases in domain III that are conserved in the IRES type IV elements. The predicted secondary structure upstream of stem-loop IIId
(the sequence between nucleotide 125 and 329) is not shown. The structure was predicted using Mfold.
doi:10.1371/journal.pone.0025964.g002

Figure 3. Alignment of the genomic 39 –end of the two subtypes of the novel pigeon picornavirus, the astrovirus BatAstV-LD77 and
the coronavirus ZBCoV. The two adjacent s2m are shown in red. Stop codon of the polyprotein is underlined (part of the first s2m for PiPV-B). Dots
indicate nucleotides identical to the PiPV-A, gaps are shown as dashes.
doi:10.1371/journal.pone.0025964.g003
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between the IRES type IV elements, the pseudoknot has a highly

conserved structure [47,48]. Due to a relatively long domain III,

the IRES element of PiPV-B was considerably larger (about 400

nucleotides) than the other IRES group IV elements, except for

the IRES element of SPV-1 which is approximately 440

nucleotides [47].

IRES type IV elements have been subdivided into three groups

on the basis of length and sequence covariation of the pseudoknot

and adjacent elements. Sapeloviruses belong to group B, together

with Porcine teschovirus 1 and Duck hepatitis virus type 1 [37].

Sequence comparisons between PiPV-B and the viruses in group

B, showed that PiPV-B also belong to this group.

For PiPV-B, it could seem that the first AUG codon

downstream of the pseudoknot was silent, if the start of its

polyprotein was homologous to the start of sapelovirus poly-

proteins, and that the functional initiation codon thus was located

187 nucleotides downstream of this pseudoknot, with four AUG

codons in between. This is quite common for IRES elements, but

further analysis should be performed to confirm the N terminal

part of the polyprotein.

In addition, phylogeny and comparisons with other picornavi-

ruses showed that overall the PiPV-B polypeptides were most

closely related to those of the sapeloviruses, sharing 52% amino

acid sequence identity with Duck picornavirus in the 3D region.

The novel pigeon picornaviruses did not seem to be associated

with any disease or growth inhibition in the pigeons, which is a

property shared with all the sapeloviruses identified so far, none of

which being particularly pathogenic for their hosts [33].

Although PiPV-B is most closely related to members of the

genus Sapelovirus, PiPV-B are clearly distinct from DPV, SPV-1

and PEV-A. According to the International Committee on

Taxonomy of Viruses (ICTV) Picornaviridae Study Group

(PSG) (www.picornastudygroup.com), the Leader, 2A, 2B and

3A polypeptides would normally be expected to be homologous

between members of a genus. The amino acid sequences of these

polypeptides in PiPV-B share none or very little sequence

similarity with the corresponding polypeptides in sapeloviruses.

DPV, PEV-A and SPV-1 also have very divergent 2A, 2B and 3A

polypeptides. In FMDV and human rhinoviruses, the 2B and 3A

proteins have been shown to be involved in host-cell tropism and

virulence [49,50]. The broad range of hosts infected by the

sapelovirus genus could be an explanation for why these proteins

differ so much.

Also according to the PSG, members of a genus should

normally share .40%, .40% and .50% amino acid identity in

P1, P2 and P3 genome regions respectively. PiPV-B shared only

39% amino acid identity in the P1 region, 28% amino acid

identity in the P2 region and 46% amino acid identity in the P3

region with its closest relative in the sapelovirus genus, and the

classification of the pigeon picornaviruses is therefore currently

uncertain.

PiPV-A shared only 77% amino acid identity with PiPV-B in

the 3D region, suggesting that PiPV-A and PiPV-B should be

classified as two different species. However, more sequence

information from PiPV-A is needed to draw any conclusions

about this.

A very high prevalence of astrovirus was found among feral

pigeons and wood pigeons in the present study. Astrovirus was

detected in almost all juvenile birds, while the detection rate

among the adults was 62%. Recently, astrovirus detection rates up

to 100% have been reported in insectivorous bats in Hong Kong

[41]. Both ANV and TAstV have also been shown to be widely

Figure 5. Diagram of the organization of the 39 part of the avastrovirus genomes. The nucleotide positions of the start and stop of each
open reading frame are shown relative to the beginning of the genome for TAstV-1 and ANV-1. Feral pigeon AstV (594, 6/594, 9) represent two
different virus strains.
doi:10.1371/journal.pone.0025964.g005

Figure 4. Phylogenetic analysis of A) the complete capsid protein (ORF2) and B) part of the polymerase protein (about 300 amino
acids in the C-terminal part of ORF1b) of the astrovirus family. The trees were constructed by the neighbour-joining method using the
Jones-Taylor-Thornton matrix-based model of amino acid substitution. Bootstrap values (.70%) from 1000 replicates are shown. Both trees are
plotted to the same scale. The novel isolates are indicated by bold lettering. The viruses marked with . do not harbour s2m.
doi:10.1371/journal.pone.0025964.g004
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distributed [40,51]. In contrast, in other species such as dogs or

cats, the detection of astrovirus appears very sporadic [52], but

astrovirus is often isolated together with other enteric pathogens,

both in animals and in humans [53]. In mammals, astrovirus

causes gastroenteritis, while in birds, astroviruses are associated

with a broader spectrum of diseases, such as enteritis, hepatitis and

nephritis. We were not able to detect any correlation between the

presence of astrovirus and illness in the birds.

The findings show that the identified feral pigeon astrovirus is a

novel avastrovirus clearly distinct from other astroviruses. It has

,87% and ,44% amino acid identity to other known astroviruses

in the ORF1b and ORF2 regions, respectively. Its closest relative

Figure 6. Nucleotide alignment of s2m from various astroviruses (AstV), picornaviruses (PV), coronaviruses (CoV) and noroviruses
(NoV) species. The 24 nucleotides that are absolutely invariant, are marked by asterisks above the sequences.
doi:10.1371/journal.pone.0025964.g006
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is ANV-1. Phylogenetic analyses of ORF2 show that the wood

pigeon astrovirus grouped separately from the feral pigeon

astroviruses (54–56% identity at the amino acid level), but in

ORF1b they grouped together.

According to ICTVdB - The Universal Virus Database, version

4 (http://www.ncbi.nlm.nih.gov/ICTVdb/ICTVdB/), species

are defined on the basis of host of origin; we therefore suggest

two novel species of astrovirus, Feral pigeon astrovirus and Wood pigeon

astrovirus, to be included in the genus Avastrovirus.

The three astrovirus isolates from feral pigeon which were

characterized were genetically diverse, although the host pigeons

were captured in the same area on two subsequent days. It has

previously been reported that the amino acid sequence identities of

the RdRp gene between four groups of avastrovirus, i.e. TAstV-1,

TAstV-2, ANV and chicken-origin astroviruses, detected in

different regions also were highly diverse, ranging from 50,3%

to 73,8% identity. There were also multiple phylogenetic

subgroups within each group. Phylogenetic analysis revealed no

clear assortment by geographic region or isolation date [51,54].

The distances between both the polymerase and the capsid

sequences of the feral pigeons were comparable to the distances

between the HAstV-1 to HAstV-8 types. The sequence identity of

the entire capsid protein precursors between different serotypes of

HAstVs was 66–76% at the nucleotide level [46], while the

sequence identity between the feral pigeons at the nucleotide level

was 66–68% in the same region, suggesting a variety of astrovirus

genogroups within feral pigeons, analogous to HAstV genogroups.

By using s2m-specific amplification, we could identify both a

novel picornavirus and a novel astrovirus. In addition, a novel

coronavirus had earlier been identified and characterized with this

method in the same bird species [9], and it is likely that other

animal species, including humans, may carry not yet identified

s2m harbouring viruses. Several of the viruses carrying s2m are

important animal pathogens, and the conserved nature of the

motif might make it an adequate target for antivirals.

s2m has so far only been identified in viruses with a poly(A)-

tailed genome, and always located within 200 nucleotides from the

poly(A) tail. In the novel pigeon astroviruses, s2m was located

entirely within the 39 UTR (Figure 5), similarly to the location of

s2m in all avastroviruses, except for Duck astrovirus (DAstV), where

s2m is partially located in the capsid region and partially in the 39

UTR, as in mamastrorviruses. S2m in picorna- and coronaviruses

is located entirely within the 39 UTR, while s2m in norovirus is

located partially in the minor capsid complex (ORF3) and partially

in the 39 UTR. The invariant positioning of s2m close to the 39

end of the positive RNA strand may suggest that its function is

connected to the replication or the stability of the viral RNA

molecule. The wide range of viruses harbouring s2m suggests that

its function is not by interaction with virus proteins. Even

considering the wide range of host cell types, it might have a

function based on interaction with conserved cellular biomole-

cules. The viruses harbouring s2m have different strategies for

translation initiation, but a role of s2m in viral RNA translation

through binding to one or more proteins possessing an oligomer-

binding-like fold has been proposed based on tertiary structural

comparisons [17]. Three lines of evidence suggest that a

mechanism for facilitation of its horizontal transfer is imbedded

in the structure itself: 1) the relative high number of recombination

or excision events necessary to explain its distribution among virus

groups, 2) the wide range of RNA primary and secondary

structures surrounding the motif and 3) that the excision or

insertion of s2m seem to be restricted to the structure without

surrounding sequences.

The novel picornaviruses were most related to the genus

Sapelovirus, and not to the other s2m-harbouring picornaviruses;

the equine rhinitis B viruses and wild bird turdiviruses. This

suggests acquisition of s2m in these picornavirus groups in separate

recombination events, as proposed for the SARS coronavirus and

avian coronavirus [55]. The novel picornaviruses were all found in

the cloacal swabs of the sampled animals. The high prevalence of

viruses harbouring s2m and multiple RNA viruses in cloacal swabs

from pigeons suggested a favourable condition for recombination

between unrelated viruses, and one of the pigeons was actually

simultaneously shedding 3 different s2m-harbouring viruses

(corona-, picorna- and astrovirus).

Figure 6 shows the primary structure of s2m. 71% of the

sequence in the loop region (31 nucleotides) is invariable.

Differences in the stem are usually compensated by other

differences, to maintain complementarity. These compensating

substitutions indicate that the RNA secondary structure is

important for the function and that the stem is biologically

important.

There is little sequence similarity in the regions flanking s2m,

suggesting that only s2m has been transferred between the

different virus species. This implies that a replication-dependent

recombination must have involved two consecutive template

switches. This also implies that if replication-dependent recombi-

nations have taken place, the mechanisms were probably not

homologous recombination. While replication-dependent recom-

bination is the main mechanism of RNA recombination observed

in animal viruses, recombination by cleavage and ligation, which is

reported to occur in bacteriophage Qb, poliovirus and pestivirus

[56–58], can not be completely ruled out. It is possible that s2m

has been transferred via a replication independent mechanism [1].

Since both novel picornaviruses harboured two adjacent s2m,

called (s2m)2, this could suggest a possible increased functional

effect of this motif, when present in two copies. (s2m)2 has

previously been observed in one bat astrovirus, BatAstV-LD77,

and more recently in one bat coronavirus, ZBCoV [6,59]

(Figure 3), suggesting a selective advantage for tandem copy of

this mobile element in several virus species. S2m is apparently

easily transferred from one virus to another, and is so far the only

evidenced mobile element of RNA virus genomes, of yet not

ascertained function.

Acknowledgments

We would like to thank Helge Pedersen for providing the wood pigeon

samples, Erwin Duizer at the National Institute of Public Health and

Environment, Bilthoven, The Netherlands, for providing us with human

astrovirus as control for our s2m screening protocol, and Tom Øystein

Jonassen for constructive review of the manuscript.

Author Contributions

Conceived and designed the experiments: CMJ. Performed the experi-

ments: TK. Analyzed the data: TK. Wrote the paper: TJ CMJ.

References

1. Jonassen CM, Jonassen TO, Grinde B (1998) A common RNA motif in the 39

end of the genomes of astroviruses, avian infectious bronchitis virus and an

equine rhinovirus. J Gen Virol 79(Pt 4): 715–718.

2. Finkbeiner SR, Kirkwood CD, Wang D (2008) Complete genome sequence of a

highly divergent astrovirus isolated from a child with acute diarrhea. Virol J 5:

117.

Novel Astroviruses and Picornaviruses in Pigeons

PLoS ONE | www.plosone.org 13 October 2011 | Volume 6 | Issue 10 | e25964



3. Rivera R, Nollens HH, Venn-Watson S, Gulland FM, Wellehan JF, Jr. (2010)

Characterization of phylogenetically diverse astroviruses of marine mammals.
J Gen Virol 91: 166–173.

4. Koci MD, Seal BS, Schultz-Cherry S (2000) Molecular Characterization of an

Avian Astrovirus. J Virol 74: 6173–6177.
5. Chu DK, Chin AW, Smith GJ, Chan KH, Guan Y, et al. (2010) Detection of

novel astroviruses in urban brown rats and previously known astroviruses in
human. J Gen Virol 91(Pt 10): 2457–2462.

6. Zhu HC, Chu DK, Liu W, Dong BQ, Zhang SY, et al. (2009) Detection of

diverse astroviruses from bats in China. J Gen Virol 90(Pt 4): 883–887.
7. Wutz G, Auer H, Nowotny N, Grosse B, Skern T, et al. (1996) Equine

rhinovirus serotypes 1 and 2: relationship to each other and to aphthoviruses and
cardioviruses. J Gen Virol 77(Pt 8): 1719–1730.

8. Woo PC, Lau SK, Huang Y, Lam CS, Poon RW, et al. (2010) Comparative
analysis of six genome sequences of three novel picornaviruses, turdiviruses 1, 2

and 3, in dead wild birds, and proposal of two novel genera, Orthoturdivirus and

Paraturdivirus, in the family Picornaviridae. J Gen Virol 91: 2433–2448.
9. Jonassen CM, Kofstad T, Larsen IL, Lovland A, Handeland K, et al. (2005)

Molecular identification and characterization of novel coronaviruses infecting
graylag geese (Anser anser), feral pigeons (Columbia livia) and mallards (Anas

platyrhynchos). J Gen Virol 86: 1597–1607.

10. Woo PC, Lau SK, Huang Y, Yuen KY (2009) Coronavirus diversity, phylogeny
and interspecies jumping. Exp Biol Med (Maywood) 234: 1117–1127.

11. Martella V, Decaro N, Lorusso E, Radogna A, Moschidou P, et al. (2009)
Genetic heterogeneity and recombination in canine noroviruses. J Virol 83:

11391–11396.
12. Mesquita JR, Barclay L, Nascimento MS, Vinje J (2010) Novel norovirus in dogs

with diarrhea. Emerg Infect Dis 16: 980–982.

13. Martella V, Lorusso E, Decaro N, Elia G, Radogna A, et al. (2008) Detection
and molecular characterization of a canine norovirus. Emerg Infect Dis 14:

1306–1308.
14. Thiel HJ, Konig M (1999) Caliciviruses: an overview. Vet Microbiol 69: 55–62.

15. Clarke IN, Lambden PR (2000) Organization and expression of calicivirus

genes. J Infect Dis 181 Suppl 2: S309–S316.
16. Monceyron C, Grinde B, Jonassen TO (1997) Molecular characterisation of the

39-end of the astrovirus genome. Arch Virol 142: 699–706.
17. Robertson MP, Igel H, Baertsch R, Haussler D, Ares M, Jr., et al. (2005) The

structure of a rigorously conserved RNA element within the SARS virus
genome. PLoS Biol 3: e5.

18. Lai MM (1992) RNA recombination in animal and plant viruses. Microbiol Rev

56: 61–79.
19. Simmonds P (2006) Recombination and selection in the evolution of

picornaviruses and other Mammalian positive-stranded RNA viruses. J Virol
80: 11124–11140.

20. Simmonds P, Welch J (2006) Frequency and dynamics of recombination within

different species of human enteroviruses. J Virol 80: 483–493.
21. Tapparel C, Junier T, Gerlach D, Van-Belle S, Turin L, et al. (2009) New

respiratory enterovirus and recombinant rhinoviruses among circulating
picornaviruses. Emerg Infect Dis 15: 719–726.

22. Pantin-Jackwood MJ, Spackman E, Woolcock PR (2006) Phylogenetic analysis
of Turkey astroviruses reveals evidence of recombination. Virus Genes 32:

187–192.

23. Walter JE, Briggs J, Guerrero ML, Matson DO, Pickering LK, et al. (2001)
Molecular characterization of a novel recombinant strain of human astrovirus

associated with gastroenteritis in children. Arch Virol 146: 2357–2367.
24. Strain E, Kelley LA, Schultz-Cherry S, Muse SV, Koci MD (2008) Genomic

analysis of closely related astroviruses. J Virol 82: 5099–5103.

25. Koonin EV, Dolja VV (1993) Evolution and taxonomy of positive-strand RNA
viruses: implications of comparative analysis of amino acid sequences. Crit Rev

Biochem Mol Biol 28: 375–430.
26. Worobey M, Holmes EC (1999) Evolutionary aspects of recombination in RNA

viruses. J Gen Virol 80(Pt 10): 2535–2543.

27. Lillehaug A, Monceyron JC, Bergsjo B, Hofshagen M, Tharaldsen J, et al. (2005)
Screening of feral pigeon (Colomba livia), mallard (Anas platyrhynchos) and

graylag goose (Anser anser) populations for Campylobacter spp., Salmonella
spp., avian influenza virus and avian paramyxovirus. Acta Vet Scand 46:

193–202.
28. Jonassen CM (2008) Detection and sequence characterization of the 39-end of

coronavirus genomes harboring the highly conserved RNA motif s2m. Methods

Mol Biol 454: 27–34.
29. Jonassen CM, Jonassen TT, Sveen TM, Grinde B (2003) Complete genomic

sequences of astroviruses from sheep and turkey: comparison with related
viruses. Virus Res 91: 195–201.

30. Tang Y, Ismail MM, Saif YM (2005) Development of antigen-capture enzyme-

linked immunosorbent assay and RT-PCR for detection of turkey astroviruses.
Avian Dis 49: 182–188.

31. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization

prediction. Nucleic Acids Res 31: 3406–3415.
32. Kaku Y, Sarai A, Murakami Y (2001) Genetic reclassification of porcine

enteroviruses. J Gen Virol 82: 417–424.

33. Tseng CH, Tsai HJ (2007) Sequence analysis of a duck picornavirus isolate
indicates that it together with porcine enterovirus type 8 and simian picornavirus

type 2 should be assigned to a new picornavirus genus. Virus Res 129: 104–114.
34. Oberste MS, Maher K, Pallansch MA (2003) Genomic evidence that simian

virus 2 and six other simian picornaviruses represent a new genus in

Picornaviridae. Virology 314: 283–293.
35. Kamer G, Argos P (1984) Primary structural comparison of RNA-dependent

polymerases from plant, animal and bacterial viruses. Nucleic Acids Res 12:
7269–7282.

36. Krumbholz A, Dauber M, Henke A, Birch-Hirschfeld E, Knowles NJ, et al.
(2002) Sequencing of porcine enterovirus groups II and III reveals unique

features of both virus groups. J Virol 76: 5813–5821.

37. Hellen CU, de Breyne S (2007) A distinct group of hepacivirus/pestivirus-like
internal ribosomal entry sites in members of diverse picornavirus genera:

evidence for modular exchange of functional noncoding RNA elements by
recombination. J Virol 81: 5850–5863.

38. Fernandez-Miragall O, Lopez de QS, Martinez-Salas E (2009) Relevance of

RNA structure for the activity of picornavirus IRES elements. Virus Res 139:
172–182.

39. Kapoor A, Victoria J, Simmonds P, Wang C, Shafer RW, et al. (2008) A highly
divergent picornavirus in a marine mammal. J Virol 82: 311–320.

40. Koci MD, Schultz-Cherry S (2002) Avian astroviruses. Avian Pathol 31:
213–227.

41. Chu DK, Poon LL, Guan Y, Peiris JS (2008) Novel astroviruses in insectivorous

bats. J Virol 82: 9107–9114.
42. Mittelholzer C, Hedlund KO, Englund L, Dietz HH, Svensson L (2003)

Molecular characterization of a novel astrovirus associated with disease in mink.
J Gen Virol 84: 3087–3094.

43. Fu Y, Pan M, Wang X, Xu Y, Xie X, et al. (2009) Complete sequence of a duck

astrovirus associated with fatal hepatitis in ducklings. J Gen Virol 90:
1104–1108.

44. Jonassen CM, Jonassen TO, Saif YM, Snodgrass DR, Ushijima H, et al. (2001)
Comparison of capsid sequences from human and animal astroviruses. J Gen

Virol 82: 1061–1067.
45. Krishna NK (2005) Identification of structural domains involved in astrovirus

capsid biology. Viral Immunol 18: 17–26.

46. Wang QH, Kakizawa J, Wen LY, Shimizu M, Nishio O, et al. (2001) Genetic
analysis of the capsid region of astroviruses. J Med Virol 64: 245–255.

47. Belsham GJ (2009) Divergent picornavirus IRES elements. Virus Res 139:
183–192.

48. Chard LS, Kaku Y, Jones B, Nayak A, Belsham GJ (2006) Functional analyses of

RNA structures shared between the internal ribosome entry sites of hepatitis C
virus and the picornavirus porcine teschovirus 1 Talfan. J Virol 80: 1271–1279.

49. Harris JR, Racaniello VR (2005) Amino acid changes in proteins 2B and 3A
mediate rhinovirus type 39 growth in mouse cells. J Virol 79: 5363–5373.

50. Pacheco JM, Henry TM, O’Donnell VK, Gregory JB, Mason PW (2003) Role of
nonstructural proteins 3A and 3B in host range and pathogenicity of foot-and-

mouth disease virus. J Virol 77: 13017–13027.

51. Mandoki M, Bakonyi T, Ivanics E, Nemes C, Dobos-Kovacs M, et al. (2006)
Phylogenetic diversity of avian nephritis virus in Hungarian chicken flocks.

Avian Pathol 35: 224–229.
52. Toffan A, Jonassen CM, De BC, Schiavon E, Kofstad T, et al. (2009) Genetic

characterization of a new astrovirus detected in dogs suffering from diarrhoea.

Vet Microbiol 139: 147–152.
53. Moser LA, Schultz-Cherry S (2005) Pathogenesis of astrovirus infection. Viral

Immunol 18: 4–10.
54. Pantin-Jackwood MJ, Spackman E, Woolcock PR (2006) Molecular character-

ization and typing of chicken and turkey astroviruses circulating in the United

States: implications for diagnostics. Avian Dis 50: 397–404.
55. Monceyron JC (2006) SARS/avian coronaviruses. Dev Biol (Basel) 126:

161–169.
56. Chetverin AB, Chetverina HV, Demidenko AA, Ugarov VI (1997) Nonhomol-

ogous RNA recombination in a cell-free system: evidence for a transesterification
mechanism guided by secondary structure. Cell 88: 503–513.

57. Gmyl AP, Korshenko SA, Belousov EV, Khitrina EV, Agol VI (2003)

Nonreplicative homologous RNA recombination: promiscuous joining of RNA
pieces? RNA 9: 1221–1231.

58. Gallei A, Pankraz A, Thiel HJ, Becher P (2004) RNA recombination in vivo in
the absence of viral replication. J Virol 78: 6271–6281.

59. Quan PL, Firth C, Street C, Henriquez JA, Petrosov A, et al. (2010)

Identification of a severe acute respiratory syndrome coronavirus-like virus in
a leaf-nosed bat in Nigeria. Mbio 1(Issue 4): 1–9.

Novel Astroviruses and Picornaviruses in Pigeons

PLoS ONE | www.plosone.org 14 October 2011 | Volume 6 | Issue 10 | e25964


