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Abstract: Cholangiocarcinoma (CCA) has been identified as a highly malignant cancer that
can be transformed from epithelial cells of the bile duct, including intrahepatic, perihilar and
extrahepatic. High-resolution imaging tools (abdominal ultrasound, computed tomography and
percutaneous transhepatic cholangial drainage) are recruited for diagnosis. However, the lack
of early diagnostic biomarkers and treatment evaluation can lead to serious outcomes and poor
prognosis (i.e., CA19-9, MUC5AC). In recent years, scientists have established a large number of
omics profiles to reveal underlying mechanisms and networks (i.e., IL-6/STAT3, NOTCH). With these
results, we achieved several genomic alteration events (i.e., TP53mut, KRASmut) and epigenetic
modifications (i.e., DNA methylation, histone modification) in CCA cells and clinical patients.
Moreover, we reviewed candidate gene (such as NF-kB, YAP1) that drive gene transcription factors
and canonical pathways through transcriptomics profiles (including microarrays and next-generation
sequencing). In addition, the proteomics database also indicates which molecules and their directly
binding status could trigger dysfunction signatures in tumorigenesis (carbohydrate antigen 19-9,
mucins). Most importantly, we collected metabolomics datasets and pivotal metabolites. These results
reflect the pharmacotherapeutic options and evaluate pharmacokinetic/pharmacodynamics in vitro
and in vivo. We reversed the panels and selected many potentially small compounds from the
connectivity map and L1000CDS2 system. In this paper, we summarize the prognostic value of each
candidate gene and correlate this information with clinical events in CCA. This review can serve as a
reference for further research to clearly investigate the complex characteristics of CCA, which may
lead to better prognosis, drug repurposing and treatment strategies.

Keywords: cholangiocarcinoma; genomic alterations; omics; metabolites; small molecule compounds/
drugs

1. Introduction to CCA

Cholangiocarcinoma (CCA) is a malignant tumor transformed from bile duct epithelial cells [1,2].
According to the anatomic location, it is divided into three different subtypes—intrahepatic (iCCA,
10–20%), perihilar (pCCA, 50–60%) and extrahepatic (eCCA, 20–30%) [3]. iCCA is the second most
common primary liver cancer after hepatocellular carcinoma. Recently, iCCA was divided into
two subtypes (small- and large-duct types) based on the production of mucin and phenotype by
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immunohistochemically evaluated. The small-duct-type cancer usually has a history of chronic liver
disease (five-year overall survival is longer ~60%, most of which are genetic changes of IDH1, BAP1
and FGFR2) and large-duct iCCA and pCCA have many clinicopathological characteristics and are
accompanied by premalignant biliary intraepithelial neoplasia (BiIIN) in adjacent ducts (five-year
overall survival is shorter, accounting for about 20%, most of which are genetic changes of SMAD4 and
KRAS7) [4]. The incidence of CCA has been increasing worldwide, especially in Asia [5]. Analyzing the
annual mortality rate of CCA, the average mortality rate for the period 2010–2014 was 0.3–2.88
(per 1 × 105 inhabitants) [6]. However, higher mortality rates (>4, per 1 × 105 inhabitants) including
China [7], Japan [8], South Korea [9], Thailand [10], Taiwan [11] and Austria [12]. It has also been
confirmed that men have a higher odds ratio than women [13]. Surgical resection is the only potentially
curative clinical therapy and results in a five-year overall survival rate between 15–40% [14–18].
More than two-thirds of patients relapse after resection. The main reasons for the high recurrence rate
are positive surgical margins, lymph node metastasis, vascular infiltration and multiple tumor regions.

Recent reports on CCA have identified several potential risk factors and carcinogens. Biliary tract
infections caused by parasitic infections can cause liver flukes (Clonorchis sinensis and Opisthorchis
viverrini) and they have the highest incidence of CCA in Northeastern Thailand [19]. Primary sclerosing
cholangitis, hepatitis B/C virus (HBV/HCV) infection, biliary stone diseases, congenital biliary
malformations, cirrhosis and exposure to aromatic toxins are all potential CCA disease etiologies [20].
In addition, smoking, alcohol consumption and diabetes also contribute to the risks of CCA. In particular,
1,2-dichloropropane (1,2-DCP) has been demonstrated as a carcinogen for CCA. The main role of 1,2-DCP
is interference with CYP450-dependent proliferation and apoptosis [21]. For treatment, palliative
chemotherapy with gemcitabine and cisplatin is the standard 1st line treatment for unresectable
or relapse/recurrence CCA patients. However, the response to such therapy remains limited [22].
Most importantly, CCA can escape several known tolerance mechanisms induced by chemotherapy
(including cisplatin, gemcitabine and other combinations) [23]. Drug development that relies on
well-known signal transductions needs in-depth discussion.

Compared with known pathogenic factors and diagnosis protocols, the oncogenic mechanisms
and treatment strategies still need to be improved and investigated [24]. Therefore, this review
summarizes these omics-based datasets. These comprehensive approaches aim to solve the bottleneck
of CCA study.

2. Genomics Alterations and Epigenetic Changes in CCA

In recent years, 38 CCA tumors have been added to The Cancer Genome Atlas (TCGA). Through these
changes, we can achieve alterations of tumor suppressor genes and oncogenes. TCGA has established
pipelines through the following platforms: whole exome sequencing, affymetrix SNP 6.0 copy number
array, RNA sequencing (RNA-seq) containing microRNA/long noncoding RNA, DNA methylation
and reverse-phase protein array (RPPA). Combining this evidence, scientists have revealed genetic
alterations and epigenetic events in CCA [25,26].

2.1. Genomic Alterations

The genome sequencing study conducted by Nakamura et al. in CCA identified many driver
gene changes. A total of 239 pairs of CCA and corresponding normal tissues (including 137 iCCA,
74 eCCA and 28 gallbladder cancers) were sequenced by whole exons [27]. The results show that
FDFR2 was specifically fused with iCCA (6/109, 55%), and the two FGFR2 fusion proteins can induce
ligand-independent FGFR2 autophosphorylation and downstream mitogen-activated protein kinase
signaling (MAPK). After activation, anchorage-independent growth and tumor formation can be
increased. On the other hand, in eCCA cases, cyclic AMP (cAMP)-dependent protein kinase (PKA)
signaling components can form new fusions ATP1B-PRKACA and ATP1B-PRKACB (25/260, 9.6%).
These fusions also increase the PKA activity and activate MAPK signaling [28]. Aside from somatic
alterations, they also identified several driver gene landscapes in CCA. Sixteen putative tumor-suppressor
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genes have been recognized, including TP53, ARID1A, BAP1, ARID2, PBRM1, APC, EPHA2, ELF3,
ATM, BRCA2, RPL22, ACVR2A, STK11, MLL3 (KMT2C), NF1 and MLL2 (KMT2D). After annotation and
validation, they finally announced that the key factors in CCA include kinases (FGFR1, FGFR2, FGFR3,
PIK3CA, ALK, EGFR, ERBB2, BRAF and AKT3), oncogenes (IDH1, IDH2, CCND1, CCND3 and MDM2)
and tumor suppressor genes (BRCA1 and BRCA2) [27]. Tian et al. also identified a comprehensive
genomic profile of CCA in China’s population. In this study, they inputted 44 iCCA and 22 eCCA
cases. The results show: TP53 (62.1%), KRAS (36.4%), SMAD4 (24.2%), TERT (21.2%), ARID1A (19.7%),
CDKN2A (19.7%), KMT2C (9.1%), RBM10 (9.1%), ERBB2 (7.6%) and BRAF (7.6%). Similarly, they
observed specificities expressed in iCCA (STK11, CCND1, FGF19, FGF3, FGF4 and PBRM1). For FGFR2,
they are expressed in both Western and Chinese cohorts [7]. Through the cBioPortal website [29,30],
we merged six clinical cohorts to analyze their genetic alteration events, survival time and the proportion
of several demographic factors (Figure 1). We also summarized the top frequency copy-number
alteration (CNA)/mutation/fusion gene, as shown in Table 1. In addition, we performed a graph to
indicate the multiple genetic alteration events in above studies (Figure 2).Biomolecules 2020, 10, x 4 of 27 
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Figure 1. Meta-analysis of cholangiocarcinoma (CCA) demographics and clinical events. Study recruited
six cohorts, including MSK, National Cancer Center of Singapore, National University of Singapore,
TCGA, JHU and Shanghai) with a total of 409 patients (412 samples). We summarized the clinical
information through the cBioPortal website. (A) Average overall survival probability in the study;
(B) average disease-free survival rate in the study; (C) ratio of mutation counts and the range of
changes in the number of genome alters, Y-axis = samples; (D) proportion graph indicates the ratio of
mutation counts and the range of changes in the number of genome alters; (E) range of microsatellite
instability (MSI) scores in the study, Y-axis = samples; (F) circle graphs show percentage of various
clinical parameters in the study.
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Table 1. Genetic events of cholangiocarcinoma (CCA).

Copy-Number Alteration (CNA)

Gene Cytoband CAN # Frequency (%)

CDKN2A 9p21.3 HOMDEL 21 9.1

CDKN2B 9p21.3 HOMDEL 16 6.9

MCL1 1q21.2 AMP 11 4.8

CCND1 11q13.3 AMP 8 3.5

FDF4 11q13.3 AMP 8 3.5

MDM2 12q15 AMP 8 3.5

RIT1 1q22 AMP 8 3.5

FDF19 11q13.3 AMP 8 3.5

HIST2H3C 1q21.2 AMP 6 3.4

HIST2H3D 1q21.2 AMP 6 3.4

ERBB2 17q12 AMP 7 3

FGF3 11q13.3 AMP 7 3

MUC1 1q22 AMP 7 3

MYC 8q24.21 AMP 7 3

NOTCH2 1p12 AMP 7 3

Mutated Genes

Gene #Mut Frequency (%)

TP53 114 27.3

IDH1 64 16.2

ARID1A 69 16.2

KRAS 49 12.4

BAP1 49 11.9

PBRM1 37 9.3

KMT2C 28 7.1

HLA-A 37 6.7

SMAD4 27 6.3

ATM 27 6.1

Fusion Genes

Gene #Mut Frequency (%)

FDFR2 19 4.8

RAD21 1 0.3

BRCA1 1 0.3

BRAF 1 0.3

ESR1 1 0.3

MAP3K1 1 0.3

NOTCH2 1 0.3

PIK3C2G 1 0.3

MAP2K1 1 0.3

RB1 1 0.3
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Figure 2. Meta-analysis of genetic alterations in various CCA cohorts. Study recruited six cohorts,
including MSK, National Cancer Center of Singapore, National University of Singapore, TCGA, JHU
and Shanghai) with a total of 409 patients (412 samples). We summarized the plot by RNA-sequencing
of CCA patients on the cBioPortal website. Graph collects the types and patterns of genetic alteration
of multiple targets.

2.2. Epigenetic Events

In an epigenetic study, there are often several cell cycle-related factors and genes involved in DNA
repair functions that are frequently methylated in CCA. Therefore, dysfunction of these genes may
suppress tumor suppression and unusual cell behavior. MLH1, DCLK1, CDO1, ZSCAN18, ZFG331,
p14, p16, DAPK, CCND2, CDH13, GRIN2B, RUNX3, TWIST1, EGFR and LKB1 are most of all CpG
sites that have exhibited hypermethylation and then loss of function in CCA tumorigenesis [31–40].
Moreover, RASSF1A, FHIT, 14-3-3, TMS1, CDH1, CHFR, GSTP, TIMP3, SEMA3B, RAR-β, MGMT,
BLU, THBS1, RIZ1, OPCML and PTGS2 have also been mentioned in CCA subtypes or cell lines.
In histone modification, CCA studies have shown that histone methylation, acetylation and chromatin
remodeling are unbalanced. H3K9, H3K27 and H4K20 methylation leads to transcriptional repression,
while H3K4 methylation leads to transcriptional activation [41]. In an in vivo CRISPR model, mutation
of Arid1a leads to SWI/SNF chromatin complex remodeling. Moreover, both of the SWI/SNF family
members, AT-rich interaction domain (ARID) 1A and polybromo 1 (PBRM1) showed loss of function
in CCA tumorigenesis [42,43]. Non-synonymous mutations in chromatin remodelers are typically
distributed throughout the gene. There are no definable hotspots, and the significance of many
mutations is unknown. Therefore, histone modification and chromatin remodeling still require
in-depth investigation and innovative research.
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An important aspect of epigenomics is microRNAs (miRNAs). Deregulation of miRNAs can induce
the initiation and progression of cancers by modifying target tumor suppressor genes or oncogenes.
Recently, it has been reported that IL-6 regulates the activity of DNA methyltransferase 1 (DNMT1) by
miRNAs in CCA cells [44]. DNMT1 can cause comprehensive changes in the degree of methylation.
In CCA, various genes have been reported to have frequent methylation, including MLH1, DCLK1,
CDO1, ZSCAN18, ZNF331, p14, p16, DAPK, CCND2, CDH13, GRIN2B, RUNX3, TWIST1, EGFR and
LKB1 [45]. After verification, it was confirmed that the miR-148a/miR-152 family directly binds to the
DNMT gene. Interestingly, DNMT1 regulates the hypermethylation of its CpG islands and then loses
these tumor suppressor functions. Therefore, they form a negative feedback regulatory loop between
DNMT1 and miR-148a/miR-152 family in tumorigenesis. Moreover, several tumor suppressor miRNAs
have been shown in the CCA model. miR-370 was inhibited following global hypermethylation. Then,
downstream target mitogen-activated protein kinase 8 (MAP3K8) was regulated by miR-370 [46].
Another study also showed that miR-376c was regulated by DNA methylation and associated with
tumor suppression by targeting growth factor receptor-bound protein 2 (GRB2) [47]. Yang et al.
observed that miR-144 was reduced in CCA tissues. They also verified platelet-activating factor
acetylhydrolase isoform 1b (LIS1) as the direct target in CCA [48]. Although the target gene of direct
action of some miRNAs has not yet been determined, through statistics and calculations, we list
the most significant changes of miRNAs in CCA, especially between normal adjacent tissues and
tumor groups. These miRNAs include oncomiRs (miR-183, miR-96, miR-182 and miR-181b) and
tumor suppressor miRs (miR-99a, miR-125b-2, miR-621, miR-551b, miR-378c, miR-148a, miR-139,
miR-378, miR-483, miR-885, miR-122, miR-490, miR-675 and miR-1258). Although many have not been
examined and studied, these candidates have the potential for follow-up research. We drew a heat-map
from the OncoMir Cancer Database (OMCD) to illustrate the expression of the most significantly
different miRNAs between normal adjacent tissues and tumor sites according to appropriate criteria
(Figure 3 and Table 2) [49]. Regarding the regulation of non-coding genes, not only mentioned the
expression of microRNA in CCA, but also mentioned long-noncoding RNA (LncRNAs) and circular
RNA (circRNAs) as contributors to the CCA model (Table 3). Zhang et al. revealed that LncRNA–colon
cancer-associated transcript 1 (CCAT1) increased in tumor parts, and their result show that knockdown
of CCAT1 suppressed the migration and invasion of iCCA cells. Then, they demonstrated the
epithelial–mesenchymal transition (EMT) activation through the CCAT1-miR-152 axis in CCA [50].
Moreover, Xu et al. observed that CCAT2 had a similar function to CCAT1 in CCA. Overexpression of
CCAT family members promotes CCA cell migration and invasion by EMT induction [51]. In addition,
miR-590-3p was also revealed to suppress the EMT procedure through inhibition of the ZEB2 gene in
iCCA [52]. On the other hand, LncRNA H19 (chromosome11p15.5) is also involved in cell proliferation,
apoptosis and migration/invasion through EMT [53]. Li et al. also showed that lncRNA SOX2ot (SOX2
overlapping transcript) promotes cell proliferation and invasion in CCA cells [54]. Gao et al. confirmed
that miR-10a-5p is one of the targets of PTEN and the miR-10a-5p inhibitor can suppress the PTEN
expression and decrease inhibited Akt phosphorylation status in CCA cells. Therefore, miR-10a-5p
regulates cholangiocarcinoma cell growth through the Akt pathway [55]. Similarly, more candidate
miRNAs were reported over five years ago. Therefore, we do not mention them in detail in this review.
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Figure 3. Most significant differences of miRNAs in CCA. List selected from OncoMir Cancer Database
(OMCD) website. After statistical analysis (t-test), the top four upregulated miRNAs and the top
15 downregulated miRNAs in CCA were selected (ratio > 5 or < 0.2, p-value < 0.001).

Table 2. Most significant miRNAs in CCA is related to survival rate or tumorigenesis. All candidates
from WashU Pan-Cancer miRNome Atlas (OncomiR) website. Significance in tumor development was
determined through paired Student’s t-test, for survival, unpaired Student’s t-test and univariate Cox
proportional hazards analysis between living and decreased patients.

miRNAs Significantly Associated with Survival in CHOL

miRNA Name Z-Score Log Rank p-Value Upregulated in:

hsa-miR-802 0.000 3.02 × 10−3 Living

hsa-miR-500b-5p 2.718 3.57 × 10−3 Living

hsa-miR-500a-5p 2.674 4.27 × 10−3 Living

hsa-miR-202-5p 0.000 4.91 × 10−3 Living

hsa-miR-551b-3p 1.746 5.57 × 10−3 Living

hsa-miR-129-5p 2.166 5.79 × 10−3 Living

hsa-miR-3161 3.025 9.51 × 10−3 Decreased

hsa-miR-3199 0.173 1.50 × 10−2 Living

hsa-miR-1228-5p 0.000 2.03 × 10−2 Living

hsa-miR-10b-3p 1.970 2.40 × 10−2 Living

miRNAs Associated with Tumorigenesis of CHOL

miRNA Name t-Test p-Value t-Test FDR Upregulated in:

hsa-miR-183-5p 3.84 × 10−9 2.16 × 10−6 Tumor

hsa-miR-182-5p 1.15 × 10−8 3.25 × 10−6 Tumor

hsa-miR-194-3p 2.88 × 10−8 5.41 × 10−6 Normal

hsa-miR-125b-2-3p 1.35 × 10−7 1.85 × 10−5 Normal

hsa-let-7c-5p 1.71 × 10−7 1.85 × 10−5 Normal

hsa-miR-378a-3p 1.97 × 10−7 1.85 × 10−5 Normal

hsa-miR-92b-3p 2.60 × 10−7 2.09 × 10−5 Tumor

hsa-miR-1258 3.43 × 10−7 2.41 × 10−5 Normal

hsa-miR-378c 4.13 × 10−7 2.59 × 10−5 Normal

hsa-miR-23c 8.50 × 10−7 4.36 × 10−5 Normal
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Table 3. Most significant LncRNAs/CircRNAs are related to the tumorigenesis of CCA. All candidates
from LncRNADisease website (version 2.0).

LncRNAs/CircRNAs Dependency of CCA

LncRNAs Symbol Disease Name Confidence Score Database ID

SPRY4-IT1 CCA 0.9820 LDA0003741

CPS1-IT1 iCCA 0.9820 LDA0004726

MALAT1 CCA 0.9526 LDA0003742

NEAT1 CCA 0.9526 LDA0003743

SOX2-OT CCA 0.9462 LDA0003746

AFAP1-AS1 CCA 0.8808 LDA0003736

UCA1 CCA 0.8808 LDA0003749

CCAT1 iCCA 0.8808 LDA0004724

H19 CCA 0.8785 LDA0003740

HULC CCA 0.8785 LDA0003741

PCAT1 CCA 0.8785 LDA0003745

CCAT2 CCA 0.7311 LDA0003737

PANDAR CCA 0.7311 LDA0003744

TUG1 CCA 0.7311 LDA0003748

PCAT1 eCCA 0.7311 LDA0004199

TLINC iCCA 0.7311 LDA0004727

TUG1 iCCA 0.7311 LDA0004728

CDR1-AS CCA 0.7311 LDA0178708

hsa-circ_0001649 CCA 0.7311 LDA0178709

CCAT2 iCCA 0.6606 LDA0004725

ENST00000517758.1 CCA 0.5483 LDA0003738

ENST00000588480.1 CCA 0.5483 LDA0003739

The confidence scores can be calculated as follows: CS = 1 − Π
t (1 − Wt

1+e−n ).

3. Canonical Pathways and Key Drivers of the Transcriptome

Several driver genes of CCA have been revealed through next-generation sequencing and
their transcriptome datasets. Li et al. announced that Forkhead box M1 (FOXM1)/NF-kB has
an inverse correlation between methionine adenosyltransferase 1(MAT1A) in both hepatocellular
carcinoma and CCA (Pearson’s rho = −0.36, p = 1.24 × 10−190) [56]. MAT1A can mainly synthesize
S- adenosylmethionine (SAMe) levels, which can prevent cholestatic liver injury. MAT1A has been
identified that the expression level of MAT1A in primary and metastatic CCA is reduced compared
with normal bile duct cells. Among them, MAT1A exerted a tumor suppressor effect and can also
be used as an independent prognostic factor (Cox coefficient = −0.258, p = 6.8 × 10−3). In addition,
prohibitin 1 (PHB1) plays a tumor-suppressive role and positively regulates MAT1A while suppressing
c-Myc [57]. NAD(P)H-quinone oxidoreductase 1 (NQO1) plays an important role in chemo-resistance
(5-fluorouracil and doxorubicin) and proliferation in several CCA cell lines. NQO1 enzyme activity
can prevent potent cytotoxicity of chemotherapy drugs and eliminate cell apoptosis caused by caspase
3/7. [58]. Yeh et al. also claimed that TNNI3K has been noticed in array comparative genomic
hybridization (aCGH) along with its overexpression in CCA cells and patients. TNNI3K is highly
expressed and enhances cell growth and colony forming ability in vitro. [59]. Moreover, carbohydrate
antigen 19-9 (CA19-9) is recognized as a well-known biomarker in pancreatic cancer and CCA [60].
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In addition to internal genetic mutations and aberrant expression, external pathogens are also possible
carcinogenic mechanisms. Opisthorchis viverrini is a specific pathogen of CCA. Aksorn et al. also
recognized novel potential biomarkers that are associated with these events in CCA. These candidates
include immunoglobulin heavy chain, translocated in liposarcoma (TLS) and visual system homeobox 2
(VSX2) [61]. There are many typical and classic markers in CCA, including KRAS, TP53, PROM1, CTGF,
VIM, DKK1, SOX2, SOX17, MUC1, PTEN, PTPN14, c-Met, EGFR, VEGR, CD44 and CDH1 [62–72],
but this review specifically focuses on novel evidence from the past five years.

4. Protein Levels and Post-Translational Modifications in CCA

Not only DNA status and RNA expression level change in CCA, but several protein molecules have
also been raised in recent studies. For comprehensive and large-scale screening, scientists established
proteomics-based approaches to address these unsolved issues. Liquid chromatography/mass
spectrometry was used to examine the differential abundance of protein molecules in CCA.
Myeloperoxidase (MPO), complement C3, inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4),
apolipoprotein B-100 and kininogen-1 isoform 2 (KNG1) increased in the tumor group compared
to the benign group. On the other hand, trefoil factor 2, superoxide dismutase (SOD), kallikrein-1
(KLK1), carboxypeptidase B (CPDB) and trefoil factor 1 decreased in tumors [73]. Zhang et al. utilized
two-dimensional difference in gel electrophoresis (2D-DIGE) combined with MALDI-TOF to identify
mice exposed to 1,2-dichloropropane (1,2-DCP). The mice were exposed to 0, 50 and 250 ppm of
1,2-DCP through an inhalation exposure system (8 h/d, 7 d/week for four weeks) and the frozen livers
was collected for further lysis and analysis. They captured several components include ferritin heavy
chain (FTH1) (upregulated), ferritin light chain (FTL1) (upregulated), acyl-coenzyme a thioesterase 2
(ACOT2) (upregulated), GSTM1 (upregulated), aldehyde dehydrogenase X, mitochondrial (ALDH1B1),
formimidoyltransferase cyclodeaminase (FTCD) (downregulated) and selenium-binding protein 2
(SELENBP2) (downregulated) [74]. Son et al. focused on eCCA specimens and collected bile
samples from 18 patients with eCCA and the five patients with benign conditions for control group.
By liquid chromatography–mass spectrometry (LC–MS) identified immunoglobulin kappa light
chain, apolipoprotein E (APOE), albumin (ALB), apolipoprotein A-I (APOA1), antithrombin-III
(SERPINC1), α1-antitrypsin (SERPINA1), serotransferrin (TF), immunoglobulin heavy constant mu
(IGHM), immunoglobulin J chain (JCHAIN), complement C4-A (C4A) and complement C3 are all
overexpressed compared with control groups [75].

There are several molecules with secretory ability, and it has recently been reported that various
circulating RNAs and genes have been measured in serum. In the same situation, the establishment
of secretome datasets also confirms that the extracellular molecules facilitate in CCA. These markers
are also developing as prognostic/diagnostic factors in clinical study. Large et al. demonstrated the
co-expression of plasma thrombospondin-2 (THBS2) with CA19-9 in CCA patients [76]. Furthermore,
MMP7, IL-6, S100A6, DKK1 and SSP411 are also abnormally expressed proteins in CCA patients’
serum [70,77–80]. It is worth mentioning that Wang et al. declared that N-glycan status, including
peak10 and NA3F2, presents a better diagnostic value than typical marker CA19-9 in eCCA patients’
serum [81].

5. Available Omics Datasets for CCA

Omics datasets have been applied in basic research studies. Da et al. merged the Gene Expression
Omnibus (GEO) database GSE32225 with quantitative isobaric tags for relative and absolute
quantification (iTRAQ) proteomics approaches to evaluate multiple candidate proteins associated with
prognosis of CCA patients. In this study, they screened three candidate proteins APOF, ITGAV and
CASK. They detected and scored the protein levels of all molecules on the CCA tissue microarray
through IHC analysis. After comparison and statistical evaluation, they confirmed that peripheral
plasma membrane protein CASK is considered the most significant molecule in this study [82].
The level of CASK expression has been determined to be correlated with overall survival (HR = 2.031,
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p = 0.027), vascular invasion (p = 0.009) and T classification (p = 0.017). Sulpice et al. established
microarray chips (GSE45001) to predict that osteopontin is the independent predictor in iCCA
and also performed gene expression profiling of tumor microenvironment in same cohort [83,84].
Peraldo Neia et al. revealed the gene and microRNA pattern of the iCCA patient-derived xenograft
(PDX) model (GSE84918/GSE84938) [85]. Varamo analyzed the specific signatures to indicate the
gemcitabine resistance CCA cell lines (GSE116118) [23]. Long-term exposure of gemcitabine-resistance
cell lines (>1.5 uM, nine months) compared with sensible counterpart cells. They observed that several
drug resistance- (ESR2 and FGF2) and EMT-related targets (COL5A2, RGS2, SNAI2, SPP1, TFPI2,
TGFB1 and VIM) were regulated in the event. They further predicted several molecular mechanisms
through 354 downregulated and 382 upregulated targets. These typical pathways include DNA
replication, cell cycle and pyrimidine metabolism. In addition, they also found new molecules with
differently expressed in their model (QPRT, RRM1, FOSB, PRSS1, etc.) [23]. Moreover, Gu et al. tried
to find the linkage between microcystin–leucine–arginine (MC-LR) and iCCA (GSE140687). MC-LR
has recognized that certain hepatotoxins can induce liver damage and liver cancer. MC-LR is also
correlated with intrahepatic bile duct hyperplasia. Therefore, the group tried to explore the relationship
between MC-LR, inflammation and intrahepatic bile duct epithelial cell proliferation. Although they
have not yet come to the results of MC-LR in iCCA. However, they have established a microarray
profile containing blank and MC-LR after 24 h of treatment in Huh28 cells. Meijer distinguished the
circulating miR-16 and miR-877 as the diagnostic classifiers for eCCA (GSE117687) [86].

Recently, next-generation sequencing has been widely used. Yan et al. sequenced the single
cell of iCCA and found intercellular crosstalk between iCCA cells and vascular cancer-associated
fibroblasts (vCAFs) (GSE148773/GSE142784/GSE138709) [87]. They found that the IL-6/IL-6R axis was
enriched in the interplay between vCAFs and iCCA cells. vCAFs contribute to the tumorigenesis
and cancer stemness ability of iCCA through the axis. On the other hand, tumor exosomal miR-9-5p
elicits IL-6 expression in vCAFs, which leads to iCCA epigenetic alterations. Saengboonmee et al.
investigated the CCA cell lines in standard and high glucose medium (GSE137803). High glucose
medium conditions promoted proliferation, metastatic and phosphorylation/ nuclear translocation
of STAT3 [88]. Ma et al. claimed that HCC and iCCA have a varying degree of transcriptomics
diversity through single-cell transcriptome profiling (GSE125449) [89]. Zhou et al. are performing
ongoing non-coding RNA profiling to catalog the expression profiles of 1643 microRNAs in each
sample (GSE93366). To determine the difference between serum and urine in CCA patients, Lapitz et al.
established the array chips through a liquid biopsy approach (GSE144521) [90].

Many scientists have explored the aforementioned genetic alteration and epigenetic modification
using omics-based technology. Bledea et al. dissected methylation data from IDH mutant CCA
(GSE124617) [91], and their results support the suggestion that hypermethylation of enhancers
associated with cell differentiation may mediate lack of differentiation in IDH1/2 mutant cancers.
The profile of PTEN overexpression in CCA also has been checked by transcriptome array (GSE146196).
A study classified their molecular panels and re-evaluated four classes for eCCA (KRAS: 36.7%,
TP53:34.7%, ARID1A: 14% and SMAD4:10.7%) (GSE132305) [92]. All GSE datasets have been rationally
designed, with appropriate criteria and comprehensively analyzed. Therefore, this information will
become the foundation for future research.

6. Metabolomics Analysis of Oncometabolites and Metabolic Reprogramming in CCA

Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) play a pivotal role in both DNA methylation
and histone modification in CCA. IDH1 and IDH2 mutants occur only in ICC (10–28%). Wild-type
IDH1 and IDH2 convert isocitrate to α-ketoglutarate (α-KG) in the cytoplasm and mitochondria,
respectively. In contrast, mutant isoforms can produce anabolic 2-hydroxyglutarate (2-HG) [93,94].
As a result, many biologic processes that rely on α-KG, including ten-eleven translocase (TET)
2-mediated DNA demethylation, are disrupted. This leads to a wide range of epigenomic consequences,
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including increased 5-methylcytosine (5mC) content, decreased 5-hydroxymethylcytosine (5hmC) and
increased histone H3 lysine 79 (H3K79) demethylation [95].

Liang et al. analyzed concentrated secretion ability through serum metabolomics establishment,
and it was identified that the contents of LysoPC (14:0, C22H46NO7P) and LysoPC (15:0, C23H48NO7P)
in the CCA group were reduced compared with the control groups [96]. Alsaleh et al. confirmed
that lipid-derived compounds (phospholipids, bile acids and steroids) and amino acid products
(phenylalanine) are associated with the risk of CCA in the United Kingdom [97]. The reduction
of aberrant bile phospholipid secretion will cause the formation of “toxic bile” and exacerbate
inflammatory bile duct damage. Chronic cholestasis and cholangitis may further lead to secondary
cirrhosis of the liver and are susceptible to hepatobiliary cancer. In addition, this group also
identified that purine metabolism and lipid metabolism have changed in the CCA urine metabolome
in Opisthorchis viverrini-induced liver fluke-associated CCA [98]. Several comprehensive analyses
merged with transcriptome, proteome and metabolome profiles of CCA have been published [99–103].
Combined with artificial intelligence, Urman et al. analyzed the metabolomics and proteomics analysis
of bile from patients with benign and malignant tumors. Their results show that phosphatidylcholines
(PCs), sphingomyelins (SMs) and ceramides (Cer) were found in serum and tissue through machine
learning [104]. These metabolites and canonical metabolism signatures are all important indicators for
detecting and evaluating diagnosis/prognosis/cytotoxicity.

7. Using Multiple-Omics Approaches to Determine Prognostic Factors

Zhou et al. detected that miR-378 is significantly associated with the TNM classification of
malignant tumors (TNM) stage (p = 0.03) and lymph node metastasis (p = 0.018). Their results also
reveal that miR-378 can serve as an independent prognostic predictor for CCA patients (Hazard Ratio
(HR) = 1.735, 1.007–2.988, p = 0.041) [105]. In the CCA serum, Liu et al. also found that circulating
miR-21 is a promising biomarker for diagnosis and a prognostic biomarker of CCA [106]. In serum of
CCA patients, Silakit et al. also provided evidence that miR-192 expression level correlated with lymph
node metastasis (p = 0.047) and poor survival (HR = 2.076, 1.004–4.291, p = 0.049) [107]. Wang et al. also
described miR-26 in serum as a diagnostic and prognostic marker for CCA patients (overall survival
p = 0.018 and progression-free survival p = 0.0381) [108].

There is an inverse correlation between suppressor of cytokine signaling 3 (SOC3) and tumor
necrosis factorα-induced protein 3 (TNFAIP3) in CCA. Furthermore, patients with low SOC3 expression
or high TNFAIP3 expression showed a dramatically lower overall survival rate. The SOC3 and TNFAIP3
expression levels had a significant prognostic power for CCA survival rate (SOC3: HR = 2.382,
1.253–4.722, p = 0.022, TNFAIP3: HR = 6.598, 2.584–14.261, p = 0.009) [109]. It has been reported that
chitinase 3-like 1 (CHI3L1) glycoprotein is dysfunctional in CCA. Plasma CHI3L1 expression was
particularly associated with poor survival in CCA patients (HR = 2.117, 1.027–4.363, p = 0.038, HR = 1.642,
0.780–3.455, p = 0.192) [110]. More important, we summarized the genes most related to survival in CCA
(top 10) from the gene expression profiling interactive analysis (GEPIA) website [111]. Interestingly,
we observed that no genes play a key role in overall survival and disease-free survival. These results
may be divided into different systems due to proliferation/tumorigenesis and recurrence/metastasis in
CCA (Table 4).
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Table 4. Most significant survival genes in CCA. All candidates from gene expression profiling
interactive analysis (GEPIA) website. Log-rank test (Mantel-Cox test), group cutoff: median.

Overall Survival

Gene Symbol Gene ID p Value

CTD-2033C11.1 ENSG00000269961.1 4.36 × 10−5

AD001527.7 ENSG00000270760.1 1.46 × 10−4

FAM86KP ENSG00000163612.10 4.47 × 10−4

RP11-209M4.1 ENSG00000267253.1 9.00 × 10−4

PTGER3 ENSG00000050628.20 9.41 × 10−4

AP003774.6 ENSG00000231680.1 9.95 × 10−4

FAM177A1 ENSG00000151327.12 1.00 × 10−3

RP11-574F21.2 ENSG00000228606.1 1.05 × 10−3

CXCL17 ENSG00000189377.8 1.14 × 10−3

FUT4 ENSG00000196371.3 1.27 × 10−3

Disease-Free Survival

Gene Symbol Gene ID p Value

AC104654.2 ENSG00000234362.5 1.31 × 10−6

AP003774.6 ENSG00000231680.1 5.59 × 10−6

NADK ENSG00000008130.15 3.05 × 10−5

AGAP2 ENSG00000135439.11 3.59 × 10−5

NRXN2 ENSG00000110076.18 4.80 × 10−5

RP1-28O10.1 ENSG00000227591.5 4.81 × 10−5

CPSF3L ENSG00000127054.18 7.45 × 10−5

TPRG1L ENSG00000158109.14 8.32 × 10−5

CDC40 ENSG00000168438.14 8.54 × 10−5

KLHL34 ENSG00000185915.5 8.86 × 10−5

In our review, we have preliminarily sorted out the significant differences calculated on various
analysis platforms in CCA based on statistical formulas, but these analyses are carried out in
low-dimensional areas. The latest variable selection approach integrating multilevel omics data.
Through horizontal/vertical integration model and various algorisms (penalized, Bayesian, etc.), we can
obtain multidisciplinary data as the focus of future research [112,113]. These models will calculate and
evaluate some of the above targets and combined with actual in vitro and in vivo studies to determine
their authenticity. At current stage, we first collected significantly different genes in CCA through
statistical models and predicted their participation in the interactions and networks by bioinformatics
software (Figure 4).
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Figure 4. Network of most differential genes in CCA. All candidates were determined that overexpress
in CCA tumors compared with normal parts from gene expression profiling interactive analysis
(GEPIA) website. (A) String and (B) ingenuity pathway analysis websites predict potential interactions,
transcription factors and networks (p < 0.01).
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8. Potential Small Molecule Compounds and Clinical Drugs from Omics Datasets

8.1. FGFR Family

Based on previous study, several specific inhibitors and small compounds were developed to
combat aggressive features in CCA. Selective/non-selective small molecule kinase inhibitors were
designed for FGFR gene fusion. Pemazyre (pemigatinib), which targets to fibroblast growth factor
receptor 2 (FGFR2) rearrangement or fusion, was developed. This agent was proved to be effective
by a multicenter, open-labeled single-arm trial in advanced cholangiocarcinoma patients and got
FDA-approval recently [114]. Infigratinib passed Phase I and II studies of advanced CCA with
FGFR2 gene fusion or other FGFR genetic alterations that failed platinum-based chemotherapy
(NCT02150967) [115]. Erdafitinib (BALVERSA) is an oral pan-FGFR selective small molecule kinase
inhibitor and the FDA granted accelerated approval for patients with locally advanced or metastatic
urothelial carcinoma, with susceptible FGFR3 or FGFR2 genetic alterations. The initial reports of
CCA pts with FGFR alterations treated with erdafitinib had encouraging efficacy and acceptable
safety profile. (NCT02699606). ARQ-087 (derazantinib) is a small molecule kinase inhibitor with
ATP competitiveness that can block the proliferative activity of cell lines with FGFR aberrations [116].
Its related Phase I/II trial also focused on iCCA patients with FGFR2 fusion (NCT01752920). Moreover,
TAS-120 [117], AZD4547 [118] and CH5183284 (Debio-1347) [119] are undergoing early clinical trials
for FGFR-driven tumors (NCT02052778, NCT01948297, respectively). Non-selective FGFR inhibitors
ponatinib or pazopanib have also been used in specific populations (NCT02265341). In the case series
study, ponatinib has been shown to reduce carbohydrate antigen 19-9 and decrease lymph node
metastasis in chemotherapy-refractory CCA patients [120]. Finally, FGFR monoclonal antibodies have
fewer off-target effects through competitive binding to FGFR2b and were evaluated in a Phase I trial
(NCT02318329).

8.2. IDH Mutants

IDH1/IDH2-specific inhibitors are also important issues in the treatment of CCA. IDH mutations
cause metabolic reprogramming and the production of oncometabolites. Epigenetic platforms are
also affected by IDH mutation status. Therefore, AGI-5198 and AGI-6780 are divided into selective
IDH1 and IDH2 inhibitors, respectively. In clinical trials (NCT02073994, NCT02273739), AG-120
(Ivosidenib) and AG-221 (enasidenib) were used as next-generation orally selective inhibitors (IDH1,
IDH2, respectively). More important, it was determined that they can inhibit the production of
oncometabolite 2-HG and impair the growth of IDH mutant cells.

8.3. Others

Through omics-based approaches, various genetic changes, oncogenic pathways and oncometabolites
have been identified in CCA. Thus, more functional inhibitors have been designed for tumorigenesis:
(1) The PKA inhibitor isoquinoline H89 can inhibit CCA cell proliferation by regulating the expression
levels of PRKACA and PRKACB [121]; (2) S63845 and AZD1480 can regulate myeloid cell leukemia
sequence 1 (Mcl-1), Janus kinase (JAK) and the signal transducer and activator of transcription
(STAT) signaling cascade [122,123]; (3) KRAS is a typical mutant marker in CCA. However, there
are no effective direct inhibitors of KRAS mutants and downstream pathways. In a clinical study,
selumetinib (selective MEK 1/2 inhibitor) has a synergistic effect with gemcitabine and cisplatin in
advanced CCA and ongoing clinical trials (NCT02042443, NCT01438554) [124]; (4) The combined
treatment of CCA includes the PI3K/AKT/mTOR pathway (BKM120), the RAF–MEK–ERK axis with
gemcitabine and platinum-based drugs [125]; (5) Tissue with abnormal expression of mesothelin in
several malignant tumors has been observed. Amatuximab is a chimeric monoclonal antimesothelin
antibody, while SS1P is a recombinant anti-mesothelin immunotoxin, and they are all involved in
clinical trials of multiple cancer types [126]; (6) DNMT inhibitors azacitidine and decitabine and
HDAC inhibitors vorinostat and romidepsin through rearrangement of chromatin remodeling form an
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epigenetic platform to rescue the function of tumor suppressor genes [127–129]; (7) The MET tyrosine
kinase inhibitors tivantinib and cabozantinib were selected as chemotherapy strategies in clinical
trials (NCT01954745) [130]; (8) reforafenib inhibited the Raf/Erk/Elk-1 pathway, and MALT1 has been
identified as having a pivotal role in CCA tumorigenesis. Moreover, regorafenib has been recognized
as the second standard treatment option in metastatic colon cancer. The clinical trial in CCA is currently
at Phase II-III [131–133].

8.4. Immune Checkpoint Blockage

Immunotherapy was regarded as the next-generation strategy for cancer. Thus, immune checkpoint
blockages are recruited and often used in combination therapy. The cytotoxic T lymphocyte associated
protein 4 (CTLA-4) monoclonal antibody and the programmed death 1 (PD-1)/programed death
ligand-1 (PD-L1) pathways are the spotlight of various cancers [134–136]. Investigation of iCCA
specimens has shown that PD-L1 is highly expressed in tumor tissues and is inversely related to CD8+

T cell infiltration. The loss of HLA Class 1 antigen expression leads to CCA immune escape. On the
other hand, the total mutation burden (TMB) and microsatellite instability (MSI) were reflected in the
immune response in cancers. [137]. Therefore, patients with increased cases of high TMB or MSI-H
may have a better immune response. Pembrolizumab, the PD-1 monoclonal antibody, was thawed
for multiple treatment combinations (NCT02628067, NCT02268825). Merging all the information,
we classified the clinical trial phase, targets and status of each potential compound (Table 5).

Table 5. Inhibitors and their related clinical trials for CCA.

Compound Target Clinical Trial Number Phase Status

NVP-BGJ398
(infigratinib) FGFR NCT02150967 II Recruiting

JNJ-42756493
(Erdafitinib) FGFR NCT02699606 II Recruiting

ARQ 087
(derazantinib) FGFR NCT017529520 I + II Active

TAS-120 FGFR NCT02052778 I + II Active

CH5183284
(debio 1347) FGFR NCT03834220 II Active

Ponatinib FGFR2 NCT02265341 II Completed

FPA144
(bemarituzumab) FGFR2 N/A

Pemazyre
(pemigatinib) FGFR2 NCT03656536 III Recruiting

AG-120
(Ivosidenib) IDH1 NCT02073994 I Active

Trametinib MEK NCT02070549/
NCT02042443 I/II Recruiting/Completed

Pazopanib MEK/VEGFR/
PDGFR/REF NCT01855724 II Terminated

Pembrolizumab PD-1 NCT03111732 II Recruiting

Regorafenib MEK/VEGFR/
PDGFR/REF NCT02115542 II Active

AGI-5198 IDH1 N/A

AGI-6780 IDH2 N/A

AG-221
(enasidenib) IDH2 NCT02273739 I + II Completed

Isoquinoline PKA N/A
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Table 5. Cont.

Compound Target Clinical Trial Number Phase Status

S63845 MCL1 N/A

AZD1480 JAK N/A

AZD6244
(selumetinib) MEK1/2 NCT00553332 II Completed

BKM120
(buparlisib) PI3K NCT01501604 II Withdrawn

Amatuximab Mesothelin NCT01766219 I + II Completed

Azacitidine DNMT N/A

Decitabine DNMT N/A

Vorinostat HDAC N/A

Romidepsin HDAC N/A

Tivantinib MET N/A

Cabozantinib MET NCT01954745 II Completed

9. Future Prospects

CCA research still requires greater sample sizes and detailed clinical data as evidence and support.
The omics-based dataset and techniques are suitable for CCA bottlenecks in basic research and clinical
applications. Using the available information from RNA-sequencing, we can clearly classify subtypes
and specific characteristics based on genetic/epigenetic background. Moreover, omics-based datasets
also support a large number of expressions of each coding/non-coding gene/protein/metabolites for our
analysis and quantification. Multi-omics platforms can merge with events in clinical part, including
treatment options, drug response or clinicopathological factors. From these data, reliable prognostic
and diagnostic factors can be obtained, and the results can also be judged by the blood, urine, bile
as well as the primary tumor of CCA patients. On the other side, the combination of omics-based
dataset and bioinformatics tools can reveal available/underlying signatures and mechanisms. Potential
inhibitors/small compounds or drug repurposing can also be used to reverse their observations in
precision medicine. Therefore, the omics-based approaches have the potential as useful tools to explore
a series of multiplex events in CCA. More important, multi-omics approaches can integrate the latest
artificial intelligence and machine-learning to improve the accuracy and remain competitive in future
research (Figure 5).
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Figure 5. Schematic model of CCA approaches and applications. In this overview, we show several
CCA subtypes according to the location of CCA, including intrahepatic (iCCA), perihepatic (pCCA) and
extrahepatic (eCCA). We collected previous studies to indicate various mechanisms and experiments in
patients’ blood, urine and primary tissue specimens. This schematic model illustrates that omics-based
approaches can be used and integrated for further CCA basic and clinical research. In this topic, we input
genomics, epigenomics, transcriptomics, proteomics and metabolomics observations for readers.
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