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Through the use of examples, we explain one way in which applied topology has evolved

since the birth of persistent homology in the early 2000s. The first applications of

topology to data emphasized the global shape of a dataset, such as the three-circle

model for 3 × 3 pixel patches from natural images, or the configuration space of the

cyclo-octane molecule, which is a sphere with a Klein bottle attached via two circles

of singularity. In these studies of global shape, short persistent homology bars are

disregarded as sampling noise. More recently, however, persistent homology has been

used to address questions about the local geometry of data. For instance, how can local

geometry be vectorized for use in machine learning problems? Persistent homology and

its vectorization methods, including persistence landscapes and persistence images,

provide popular techniques for incorporating both local geometry and global topology

into machine learning. Our meta-hypothesis is that the short bars are as important

as the long bars for many machine learning tasks. In defense of this claim, we

survey applications of persistent homology to shape recognition, agent-based modeling,

materials science, archaeology, and biology. Additionally, we survey work connecting

persistent homology to geometric features of spaces, including curvature and fractal

dimension, and variousmethods that have been used to incorporate persistent homology

into machine learning.

Keywords: persistent homology, topological data analysis, machine learning, local geometry, applied topology

1. INTRODUCTION

Applied topology is designed to measure the shape of data—but what is shape? Early examples in
applied topology found low-dimensional structures in high-dimensional datasets, such as the three
circle and Klein bottle models for grayscale natural image patches. These models are global: they
parameterize the entire dataset, in the sense that most of the data points look like some point in
the model, plus noise. In more recent applications, however, the shape that is being measured is
not global, but instead local. Local features include texture, small-scale geometry, and the structure
of noise.

Indeed, for the first decade after the invention of persistent homology, the primary story was
that significant features in a dataset corresponded to long bars in the persistence barcode, whereas
shorter bars generally corresponded to sampling noise. This story has evolved as applied topology
has become incorporated into the machine learning pipeline. In machine learning applications,
many researchers have independently found (as we survey in sections 4–6) that the short bars are
often the most discriminating—the shape of the noise, or of the local geometry, is what often
enables high classification accuracy. We want to emphasize that short bars do matter. Indeed,
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the short bars in persistent homology are currently one of the
best out-of-the-box methods for summarizing local geometry for
use in machine learning. Though humans may not be able to
interpret short persistent homology bars on our own (there may
be too many short bars for the human eye to count), machine
learning algorithms can be trained to do so. In this way, persistent
homology has greatly expanded in scope during the second
decade after its invention: persistent homology has important
applications as a descriptor not only of global shape, but also of
local geometry.

In this perspective article, we begin by outlining some of the
most famous early applications of persistent homology in the
global analysis of data, in which short bars were disregarded
as noise. Our meta-hypothesis, however, is that short bars do
matter, and furthermore, they matter crucially when combining
topology with machine learning. As a partial defense for this
claim, we provide a selected survey on the use of persistent
homology in measuring texture, noise, local geometry, fractal
dimension, and local curvature. We predict that the applications
of persistent homology to machine learning will continue to
advance in number, impact, and scope, as persistent homology
is a mathematically motivated out-of-the-box tool that one can
use to summarize not only the global topology but also the local
geometry of a wide variety of datasets.

2. POINT CLOUD AND SUBLEVEL SET
PERSISTENT HOMOLOGY

What is a persistent homology bar? The homology of a space,
roughly speaking, records how many holes that a space has
in each dimension. A 0-dimensional hole is a connected
component, a 1-dimensional hole is a loop, a 2-dimensional
hole is a void enclosed by a surface like a sphere or a torus,
etc. Homology becomes persistent when one is instead given a
filtration, i.e., an increasing sequence of spaces. Each hole is now
represented by a bar, where the start (resp. end) point of the bar
corresponds to the first (resp. last) stage in the filtration where
the topological feature is present (Edelsbrunner et al., 2000).
Short bars correspond to features with short lifetimes, which
are quickly filled-in after being created. By contrast, long bars
correspond to more persistent features.

Perhaps the two most frequent contexts in which persistent
homology is applied are point cloud persistent homology and
sublevel set persistent homology. In point cloud persistent
homology, the input is a finite set of points (a point cloud)
residing in Euclidean space or some othermetric space (Carlsson,
2009). For any real number r > 0, we consider the union
of all balls of radius r centered at some point in our point
cloud (see Figure 1). This union of balls provides our filtration
as the radius r increases1. A typical interpretation of the
resulting persistent homology, from the global perspective, is
that the long persistent homology bars recover the homology
of the “true” underlying space from which the point cloud
was sampled (Chazal and Oudot, 2008). A more modern but

1In practice, the union of balls is stored or approximated by a simplicial complex,

for example a Čech or Vietoris–Rips complex (Chazal et al., 2014).

increasingly utilized perspective is that the short persistent
homology bars recover the local geometry—i.e., the texture,
curvature, or fractal dimension of the point cloud data.

In sublevel set persistent homology, the input is instead a real-
valued function f : Y → R defined on a space Y (Cohen-
Steiner et al., 2007). For example, Y may be a Euclidean space of
some dimension. The filtration arises by considering the sublevel
sets {y ∈ Y | f (y) ≤ r}. As the threshold r increases, the
sublevel sets grow. One can think of f as encoding an energy, in
which case sublevel set persistent homology encodes the shape
of low-energy configurations (Mirth et al., 2021). The length
of a bar then measures how large of an energy barrier must
be exceeded in order for a topological feature to be filled-in: a
short bar corresponds to a feature that is quickly filled-in by
exceeding a low energy barrier, whereas a long bar corresponds to
a topological feature that persists over a longer range of energies
(see Figure 2). Sublevel set persistent homology is frequently
applied to grayscale image data or matrix data, where a real-
valued entry of the image or matrix is interpreted as the value
of the function f on a pixel.

We remark that the “union of balls” filtration for point cloud
persistent homology can be viewed as a version of sublevel set
persistent homology: a union of balls of radius r is the sublevel
set at threshold r of the distance function to the set of points in
the point cloud.

Persistent homology can be represented in two equivalent
ways: either as a persistence barcode or as a persistence diagram
(see Figure 3). Each interval in the persistence barcode is
represented in the persistence diagram by a point in the plane,
with its birth coordinate on the horizontal axis and with its death
coordinate on the vertical axis2. As the death of each feature
is after its birth, persistence diagram points all lie above the
diagonal line y = x. Short bars in the barcode correspond to
persistence diagram points close to the diagonal, and long bars
in the barcode correspond to persistence diagram points far from
the diagonal.

3. EXAMPLES MEASURING GLOBAL
SHAPE

The earliest applications of topology to data measured the
global shape of a dataset. In these examples, the long persistent
homology bars represented the true homology underlying the
data, whereas the small bars were ignored as artifacts of
sampling noise.

What do we mean by “global shape”? Consider, for example,
conformations of the cyclo-octane molecule C8H16, which
consists of a ring of eight carbons atoms, each bonded to a pair of
hydrogen atoms (see Figure 4, left). The locations of the carbon
atoms in a conformation approximately determine the locations
of the hydrogen atoms via energy minimization, and hence each
molecule conformation can be mapped to a point in R

24 = R
8·3,

as the location of each carbon atom can be specified by three

2Barcodes allow for open or closed endpoints of intervals. This information can be

also be encoded in a decorated persistence diagram (Chazal et al., 2016).
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FIGURE 1 | A point cloud, the surrounding union of balls, and its Čech complexes at different choices of scale.

FIGURE 2 | (Top right) An energy function for the molecule pentane. The domain is a torus, i.e., a square with periodic boundary conditions, as there are two circular

degrees of freedom (dihedral angles) in the molecule. (Left) Nine different sublevel sets of energy. (Bottom right) The sublevel set persistent homology of this energy

function on the torus, with 0-dimensional homology in red, 1-dimensional homology in blue, 2-dimensional homology in green. Image from Mirth et al. (2021).

coordinates. This map realizes the conformation space of cyclo-
octane as a subset of R24, and then we mod out by rigid rotations
and translations. Topologically, the conformation space of cyclo-
octane turns out to be the union of a sphere with a Klein bottle,
glued together along two circles of singularities (see Figure 4,
right). This model was obtained by Martin et al. (2010), Martin
and Watson (2011), and Brown et al. (2008), who furthermore
obtain a triangulation of this dataset (a representation of the
dataset as a union of vertices, edges, and triangles).

A Klein bottle, like a sphere, is a 2-dimensional manifold.
Whereas, a sphere can be embedded in 3-dimensional space,
a Klein bottle requires at least four dimensions in order to be
embedded without self-intersections. When a sphere and Klein

bottle are glued together along two circles, the union is no longer
a manifold. Indeed, near the gluing circles, the space does not
look like a sheet of paper, but instead like the tail of a dart
with four fins, i.e., the letter “X” crossed with the interval [0, 1].
However, the result is still a 2-dimensional stratified space. In
Figure 5, we compute the persistent homology of a point cloud
dataset of 1,000,000 cyclo-octane molecule configurations. The
short bars are interpreted as noise, whereas the long bars are
interpreted as attributes of the underlying shape. We obtain
a single connected component, a single 1-dimensional hole,
and two 2-dimensional homology features. These homology
signatures agree with the homology of the union of a sphere with
a Klein bottle, glued together along two circles of singularities.
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FIGURE 3 | (Left) A persistent homology barcode, with the birth and death scale of each bar indicated on the horizontal axis. (Right) Its corresponding persistence

diagram, i.e., a collection of points in the first quadrant above the diagonal, with birth coordinates on the horizontal axis and death coordinates on the vertical axis.

FIGURE 4 | (Left) The cyclo-octane molecule consists of a ring of 8 carbon atoms (black), each bonded to a pair of hydrogen atoms (white). (Right) A PCA projection

of a dataset of different conformations of the cyclo-octane molecule; this shape is a sphere glued to a Klein bottle (the “hourglass”) along two circles of singularity. The

right image is from Martin et al. (2010).

One of the first applications of persistent homology was to
measure the global shape of a dataset of image patches (Carlsson
et al., 2008). This dataset of natural 3 × 3 pixel patches from
black-and-white photographs from indoor and outdoor scenes
in fact has three different global shapes! The most common
patches lie along a circle of possible directions of linear gradient
patches (varying from black to gray to white). The next most
common patches lie along a three circle model, additionally
including a circle’s worth of horizontal quadratic gradients, and
a circle’s worth of vertical quadratic gradients. At the next level
of resolution, the most common patches in some sense lie along
a Klein bottle. All three of these models—the circle, the three
circles, and the Klein bottle—are global models, summarizing the
global shape of the dataset at different resolutions.

4. EXAMPLES MEASURING LOCAL
GEOMETRY

Though a single long bar in persistent homology may carry a lot
of information, a single small bar typically does not. However,
together a collection of small bars may unexpectedly carry a large

amount of geometric content. A long bar is a trumpet solo—
piercing through to be heard over the orchestra with ease. The
small bars are the string section—each small bar on its own is
relatively quiet, but in concert the small bars together deliver a
powerful message. We survey several modern examples where
small persistent homology bars are now the signal, instead of
the noise.

Birds, fish, and insects move as flocks, schools, and hordes in
a way which is determined by collective motion: each animal’s
next motion is a random function of the location of its
nearby neighbors. In a flock of thousands of birds, there is an
impressively large amount of time-varying geometry, including
for example all

(n
2

)

pairwise distances, where n is the number
of birds (see Figure 6). How can one summarize this much
geometric content for use in machine learning tasks, say to
predict how the motion of the flock will vary next, or to predict
some of the parameters in a mathematical model approximately
governing the motion of the birds? Persistent homology has
been used in Topaz et al. (2015), Ulmer et al. (2019), Bhaskar
et al. (2019), Adams et al. (2020b), and Xian et al. (2020) to
reduce a large collection of geometric content down to a concise
summary. These datasets of animal swarms do not lie along
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FIGURE 5 | 0-, 1-, and 2-dimensional persistent homology barcodes for the cyclo-octane dataset. The horizontal axis corresponds to the birth and death scale of the

bars, and the vertical axis is an arbitrary ordering of the bars (here by death scale).

FIGURE 6 | A large amount of local and global geometric information is

contained in a flock of birds.

beautiful manifolds (global shapes), but nevertheless there is a
wealth of information in the local geometry as measured by
the short persistent homology bars. For example, Ulmer et al.
(2019) show via time-varying persistent homology3 that a control
model for aphid motion, in which aphids move independently
at random, does not fit experimental data as well as a model
incorporating social interaction (distances to nearby neighbors)
between the aphids.

Other recent work has used persistent homology to
characterize the complexity of geometric objects. Bendich

3In particular, the crocker plot (Topaz et al., 2015).

et al. (2016b) apply sublevel set persistent homology to the study
of brain artery trees, examining the effects of age and sex on
the barcodes generated from artery trees. While younger brains
have artery trees containing more local twisting and branching,
older brains are sparser with fewer small branches and leaves.
The authors use the 100 longest bars in dimensions 0 and 1 in
their analysis, and they further examine which lengths of bars
give the highest correlation with age and sex. For instance, when
examining age, they find it is not the longest bars, but instead the
bars of medium length (roughly the 21st through 40th longest
bars) that are the most discriminatory.

In other datasets where points are nearly evenly spaced,
barcodes will consist of bars with mostly similar birth and
death times. Consider for instance the point cloud persistent
homology for a square grid of points in the plane: all non-
infinite 0-dimensional bars are identical and adding a small
amount of noise to the points will result in a small change
to the bars. The same is true for 1-dimensional bars. With
this in mind, Motta et al. (2018) use persistent homology
to measure the order, or regularity, of lattice-like datasets,
focusing on hexagonal grids formed by ion bombardment of
solid surfaces (see Figure 7). The authors’ techniques use the
variance of 0-dimensional homology bar lengths, and the sum
of the lengths of 1-dimensional homology bars, as well as a
particular linear combination of the two especially suited to
hexagonal lattices. Their results suggest that techniques based on
persistent homology can provide useful measures of order that
are sensitive to both large scale and small scale defects in lattices.
Point cloud persistence has also been used to summarize the local
order and randomness in other materials science and chemistry
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FIGURE 7 | Hexagonal lattices, of varying degree of regularity, created by ion bombardment. Figures from Motta et al. (2018).

contexts, including amorphous solids and glass (Nakamura et al.,
2015; Hiraoka et al., 2016; Hirata et al., 2020), nanoporous
materials used in gas adsorption (Krishnapriyan et al., 2020),
crystal structure (Maroulas et al., 2020), and protein folding (Xia
and Wei, 2014; Cang and Wei, 2018).

Though the above examples focus on point cloud persistence,
sublevel set persistent homology has also been used to detect
the local geometry of functions. Kramár et al. (2016) use
sublevel set persistence to summarize the complicated spatio-
temporal patterns that arise from dynamical systems modeling
fluid flow, including turbulence (Kolmogorov flow) and heat
convection (Rayleigh-Bénard convection). With sublevel set
persistence, Zeppelzauer et al. (2016) improve 3D surface
classification, including on an archaeology task of segmenting
engraved regions of rock from the surrounding natural rock
surface. In a task of tracking automobiles, Bendich et al. (2016a)
use the sublevel set persistent homology of driver speeds in order
to characterize driver behaviors and prune out improbable paths
from their multiple hypothesis tracking framework.

5. THEORY OF HOW PERSISTENT
HOMOLOGY MEASURES LOCAL
GEOMETRY

Recent work has begun to formalize the idea that persistent
homology measures local geometry. Bubenik et al. (2020) explore
the effect of the curvature of a space on the persistent homology
of a sample of points, focusing on disks in spaces with constant
curvature. Their work includes theoretical results about the
persistence of triangles in these spaces, and they are also
able to demonstrate experimentally that persistent homology
in dimensions 0 and 1 can be used to accurately estimate
the curvature given a random sample of points. Since the
disks in spaces with different curvature are homeomorphic, the
differences in persistent homology cannot be due to topology, but
rather result from the geometric features of the spaces.

Fractal dimension is another measure of local geometry, and
indeed some of the earliest applications of persistent homology
in Vanessa Robins’ Ph.D. thesis were motivated as a way to
capture the fractal dimension of an infinite set in Euclidean
space (Robins, 2000; MacPherson and Schweinhart, 2012). Can
this also be applied to datasets, i.e., to random collections of

finite sets of points? Given a random sample of points from
a measure, Adams et al. (2020a) use persistent homology to
detect the fractal dimension of the support of the measure. This
notion of persistent homology fractal dimension agrees with the
Hausdorff/box-counting dimension for 0-dimensional persistent
homology and a restricted class of measures; see Schweinhart
(2019, 2020) for further theoretical developments.

A related line of work studies what can be proven about the
topology of random point clouds, typically as the number of
points in the point cloud goes to infinity (Kahle, 2011; Adler et al.,
2014; Bobrowski and Kahle, 2014; Bobrowski et al., 2017). The
magnitude (Leinster, 2013) andmagnitude homology (Hepworth
and Willerton, 2017; Leinster and Shulman, 2017) of a metric
space measure both local and global properties; recent and
ongoing work is being done to connect magnitude with
persistent homology (Otter, 2018; Govc and Hepworth, 2021).
See also Weinberger (2019) for connections between sublevel set
persistent homology and the geometry of spaces of functions,
including Lipschitz constants of functions. We predict that much
more work demonstrating how local geometric features can be
recovered from persistent homology barcodes will take place over
the next decade.

6. MACHINE LEARNING

Because persistent homology gives a concise description of
the shape of data, it is not surprising that recent work has
incorporated persistent homology into machine learning. When
might one consider using persistent homology in concert with
machine learning, as opposed to other more classical machine
learning techniques measuring shape such as clustering (Xu and
Wunsch, 2005) or nonlinear dimensionality reduction (Roweis
and Saul, 2000; Tenenbaum et al., 2000; Kohonen, 2012; McInnes
et al., 2018)? We recommend persistent homology when one
desires either (i) a quantitative reductive summary of local
geometry, (ii) an estimate of the number or size of more global
topological features in a dataset, or (iii) a way to explore if either
local geometry or global topology may be discriminatory for
the machine learning task at hand. Researchers have taken at
least three distinct approaches: persistence barcodes have been
adapted to be input to machine learning algorithms, topological
methods have been used to create new algorithms, and persistent
homology has been used to analyze machine learning algorithms.
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Perhaps the most natural of these approaches is inputting
persistence data into a machine learning algorithm. Though
the persistent homology bars provide a summary of both local
geometry and global topology, for a quantitative summary
to be fully applicable it needs to be amenable for use in
machine learning tasks. The space of persistence barcodes is
not immediately appropriate for machine learning. Indeed,
averages of barcodes need not be unique (Mileyko et al.,
2011), and the space of persistence barcodes does not coarsely
embed into any Hilbert space (Bubenik and Wagner, 2020).
These limitations have initiated a large amount of research on
transforming persistence barcodes into more natural formats
for machine learning. From barcodes, Bubenik (2015) creates
persistence landscapes, which live in a Banach space of functions4.
Persistence landscapes are created by rotating a persistence
diagram on its side—so that the diagonal line y = x becomes
as flat as the horizon—and then using the persistence diagram
points to trace out the peaks in a mountain landscape profile.
A landscape can then be discretized by taking a finite sample
of the function values, allowing it to be used in machine
learning tasks (see for instance Kovacev-Nikolic et al. (2016)).
From barcodes, Adams et al. (2017) create persistence images,
a Euclidean vectorization enabling a diverse class of machine
learning tools to be applied (see also Chen et al., 2015;
Reininghaus et al., 2015). A persistence image is created by taking
a sum of Gaussians, one centered on each point in a persistence
diagram, and then pixelating that surface to form an image.
By analogy, recall that in point cloud persistent homology, one
“blurs their vision” when looking at a dataset by replacing each
data point with a ball—this is similar to the process of “blurring
one’s vision” when looking at a persistence diagram in order to
create a persistence image.

Persistence landscapes were defined as part of an effort to
give a firm statistical foundation to persistent homology. In fact,
Bubenik (2015) proves a strong law of large numbers and a
central limit theorem for persistence landscapes. This allows one
to discuss hypothesis testing with persistent homology. Another
approach to hypothesis testing is given by Robinson and Turner
(2017). Other statistical approaches include Fasy et al. (2014),
which describes confidence intervals and a statistical approach to
distinguishing important features from noise, Divol and Polonik
(2019) and Maroulas et al. (2019), which consider probability
density functions for persistence diagrams, and Maroulas et al.
(2020), which describes a Bayesian framework. See Wasserman
(2018) for a review of statistical techniques in the context of
topological data analysis.

Persistence landscapes and images are only two of the
many different methods that have recently been invented in
order to transform persistence barcodes into machine learning
input. Algorithms that require only a distance matrix, such as
many clustering or dimensionality reduction algorithms, can
be applied on the bottleneck or Wasserstein distances between
persistence barcodes (Cohen-Steiner et al., 2007; Mileyko et al.,
2011; Kerber et al., 2017). Other techniques for vectorizing

4In practice, a different metric is sometimes chosen to map landscapes into a

Hilbert space, though the restrictions of Bubenik and Wagner (2020) apply.

persistence barcodes involve heat kernels (Carrière et al.,
2015), entropy (Merelli et al., 2015; Atienza et al., 2020),
rings of algebraic functions (Adcock et al., 2016), tropical
coordinates (Kališnik, 2019), complex polynomials (Di Fabio
and Ferri, 2015), and optimal transport (Carrière et al., 2017),
among others. Some of these techniques, including those by Zhao
and Wang (2019) and Divol and Polonik (2019), allow one
to learn the vectorization parameters that are best suited for
a machine learning task on a given dataset. Others allow one
to plug persistent homology information directly into a neural
network (Hofer et al., 2017). Recent research on incorporating
persistence as input for machine learning is vast and varied, and
the above collection of references is far from complete.

As for the creation of new algorithms, persistent homology
has recently been applied to regularization, a technique used
in machine learning that penalizes overly complicated models
to avoid overfitting. Chen et al. (2019) propose a “topological
penalty function” for classification algorithms, which encourages
a topologically simple decision boundary. Their method is based
on measuring the relative importance of various connected
components of the decision boundary via 0-dimensional
persistent homology. They show how the gradient of such a
penalty function can be computed, which is important for use
in machine learning algorithms, and demonstrate their method
on several examples. Similar work using topological methods to
examine a decision boundary can also be found in Varshney and
Ramamurthy (2015) and Ramamurthy et al. (2019).

Finally, other recent work has used persistent homology
to analyze neural networks. Naitzat et al. (2020) provide
experimental evidence that neural networks operate by
simplifying the topology of a dataset. They examine the
topology of a dataset and its images at the various layers of
a neural network performing classification, finding that the
corresponding barcodes become simpler as the data progresses
though the network. Additionally, they observe the effects
of different shapes of neural networks and different activation
functions. They find that deeper neural networks have a tendency
to simplify the topology of a dataset more gradually than shallow
networks, and that networks with ReLU activation tend to
simplify topology more in the earlier layers of a network than
other activation functions.

7. CONCLUSION

Topological tools are often described as being able to stitch
local data together in order to describe global features: from
local to global. The history of applied topology, however, has in
some sense gone in the reverse direction—from global to local—
as surveyed above! Applied topology was developed in part to
summarize global features in a point cloud dataset, as in the
examples of the conformations of the cyclo-octane molecule or
the collection of 3× 3 pixel patches from images. If global shapes
are the focus, long persistent homology bars are interpreted as
the relevant features, while small bars are often disregarded as
sampling artifacts or noise. However, inmore recent applications,
and in particular when using applied topology in concert with
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machine learning, it is often many short persistent homology
bars that together form the signal. One of the biggest benefits of
applied topology is that one need not choose a scale beforehand:
persistent homology provides a useful summary of both the local
and global features in a dataset, and this summary has been made
accessible for use in machine learning tasks.

We have seen how the short bars can be a measure of
local geometry, texture, curvature, and fractal dimension; their
sensitivity to various features of datasets leads to the wide variety
of applications surveyed here. Because persistent homology
provides a concise, reductive view of the geometry of a dataset, for
instance in the examples studying brain artery trees or hexagonal
grids, it is not hard to imagine the potential applications to
machine learning problems. This has led to recent techniques
that turn barcodes into machine learning input, exemplified by
persistence landscapes and persistence images. We hope that this

wealth of recent work, which has shifted more attention to short
persistent homology bars and the geometric information they
summarize, will inspire further research at the intersection of
applied topology, local geometry, and machine learning.
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