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Abstract: Immune checkpoint receptors with co-stimulatory and co-inhibitory signals are important
modulators for the immune system. However, unrestricted co-stimulation and/or inadequate
co-inhibition may cause breakdown of self-tolerance, leading to autoimmunity. Systemic lupus
erythematosus (SLE) is a complex multi-organ disease with skewed and dysregulated immune
responses interacting with genetics and the environment. The close connections between co-signaling
pathways and SLE have gradually been established in past research. Also, the recent success of immune
checkpoint blockade in cancer therapy illustrates the importance of the co-inhibitory receptors in cancer
immunotherapy. Moreover, immune checkpoint blockade could result in substantial immune-related
adverse events that mimic autoimmune diseases, including lupus. Together, immune checkpoint
regulators represent viable immunotherapeutic targets for the treatment of both autoimmunity and
cancer. Therefore, it appears reasonable to treat SLE by restoring the out-of-order co-signaling axis
or by manipulating collateral pathways to control the pathogenic immune responses. Here, we
review the current state of knowledge regarding the relationships between SLE and the co-signaling
pathways of T cells, B cells, dendritic cells, and neutrophils, and highlight their potential clinical
implications. Current clinical trials targeting the specific co-signaling axes involved in SLE help to
advance such knowledge, but further in-depth exploration is still warranted.

Keywords: autoimmunity; co-stimulatory signals; co-inhibitory signals; immune checkpoint; immune
regulation; immune-related adverse events; systemic lupus erythematosus

1. Introduction

A balanced immune system is vital for good health, as diminished immunity cannot protect
us from various infections and malignancies, whereas skewed or unrestricted inflammation leads
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to autoimmunity and devastating collateral damage. Ultimately, the necessary balance relies on
organized and timely communications between stimulatory and inhibitory pathways in the immune
system. In general, an adaptive immune response is triggered by the antigen presented by the
antigen-presenting cells (APCs), followed by subsequent interactions between different immune cells.
These processes involve a variety of co-signaling and cytokine receptors, and together determine the
end results of the immune response. While co-stimulatory receptors play essential roles in relaying
the response, co-inhibitory receptors are generally induced following stimulations and subsequently
transduce signals that moderate the co-stimulatory signals. Additionally, the existence of compensatory
mechanisms is also suggested based on the findings of previous interventional studies [1], though the
crosstalk among different axes largely remains to be explored. Given the complexity of the immune
system, fruitful results may only be obtained from the manipulation of these co-signaling axes after
their specific roles have been clearly elucidated.

Systemic lupus erythematosus (SLE) is one of the most devastating autoimmune diseases and is
known for its complicated and skewed immune responses, including autoantibody formation, immune
complex deposition, and cytokine activation [2]. Although the etiologies and clinical presentations of SLE
are also complex, it is normally believed to be caused by the loss of self-tolerance with excessive activation
of autoreactive T cells which subsequently promotes autoantibody production by auto-B cells along
with excessive expressions of pro-inflammatory cytokines that further enhance the immune response [3].
Dendritic cells (DCs) are also crucial in the modulation of peripheral tolerance to self-antigens [4,5].
Neutrophils have been linked to the pathophysiology of SLE, and the release of neutrophil extracellular
traps (NETs) during a distinct process of cell death, known as NETosis, plays an important role in the
tissue damage experienced by patients with SLE [6]. These immune cells and an augmented expression of
co-stimulatory molecules are thought to be critical for the disease pathogenesis of SLE.

Notably, the recent success of immune checkpoint blockade in cancer therapy illustrates the importance
of two inhibitory pathways, cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), and programmed
cell death protein 1 (PD1) and its ligands (PD-L1, PD-L2), in the regulation of anti-tumor immune
responses. Relatedly, the blocking of these inhibitory immune checkpoint receptors is also associated
with further immune-related adverse events (irAEs) that can resemble autoimmune rheumatic diseases,
including SLE [7]. Accumulating evidence has further suggested that dampening immune responses by
either blocking the co-activating signals or enhancing the co-inhibitory signals in different cell types is a
promising approach to treating autoimmune diseases. Herein, we review the most up-to-date literature
regarding the co-signaling pathways of T cells, B cells, and dendritic cells, as well as neutrophils, involved
in the pathogenesis of SLE. We also focus on the outcomes of the development of clinical trials targeting
these pathways and discuss the primary challenges to further advances that remain.

2. Co-Signaling Axes in T Cells Relating to SLE

SLE is generally believed to involve the breach of tolerance of CD4+ T cells, leading to subsequent
autoreactive immune responses as well as an abnormal tendency toward inflammation. Although
the precision of the immune system mainly relies on the specific recognition of antigens presented by
major histocompatibility complex (MHC) molecules ligating the T cell receptor (TCR), co-stimulatory
and co-inhibitory receptors on T cells are believed to collectively determine the fate of those T cells [8].

2.1. Involvement of Co-Stimulatory Receptors on T Cells in SLE

2.1.1. CD28

Since the discovery of CD28, the receptor for CD80 (B7.1) and CD86 (B7.2) proteins, as a prototype
co-stimulatory receptor on T cells, the well-known two-signal model of T cell activation has been
recognized, highlighting the fact that both TCRs and co-stimulatory signaling are essential for full T
cell activation [9–11]. Since then, various co-stimulatory pathways have been discovered (Figure 1),
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and some of them have been successfully utilized in treatments against autoimmune diseases as well
as malignancies.
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Figure 1. Co-signaling axes of T cells driving systemic lupus erythematosus (SLE). T cell is initially
activated by the bridging between the T cell receptor (TCR) and major histocompatibility complex
(MHC) on the surface of antigen-presenting cells (APCs). Besides this first signal, T cell activity could
further be regulated by multiple co-stimulatory as well as co-inhibitory axes that participate in the
cell-cell interaction. Co-stimulatory axes (green line) facilitate successful activation of T cells, whereas
co-inhibitory axes (red line) limit the activation. CTLA-4: cytotoxic T-lymphocyte-associated antigen
4; ICOS: Inducible co-stimulator; SLAMF6: signaling lymphocyte activation molecule family 6; TCR:
T cell receptor; PD-1: programmed cell death protein 1; VISTA: V-domain Ig suppressor of T cell
activation; TIGIT: T-cell immunoreceptor with Ig and ITIM domains; TIM-3: T-cell immunoglobulin
and mucin-domain containing-3.

CTLA-4 is a cell surface molecule that is closely related to CD28, and it has been reported to
also be a powerful negative regulator of T cell activation [12]. By targeting the CD80 and CD86
molecules through CTLA-4 chimera proteins, both abatacept and belatacept became the earliest
approved treatments against various autoimmune diseases, including rheumatic arthritis and juvenile
idiopathic arthritis [13,14]. With respect to SLE, there are various forms of evidence supporting the
rationale of treating SLE patients via the manipulation of this pathway. The polymorphism at the
CTLA-4 promoter has been identified as being related to susceptibility to SLE [15]. CTLA-4 also
modulates humoral responses by affecting follicular helper T (Tfh), follicular regulatory T (Tfr), and
regulatory T (Treg) cells [16]. Moreover, CTLA-4–Fc has been proven to be highly effective in mouse
models of lupus [17,18]. The clinical efficacy of CTLA-4 chimera proteins has likewise been tested in
SLE patients. However, the results of the clinical trials completed thus far were disappointing as two
phase II trials and one phase III trial failed to meet predetermined endpoints [19–21]. BMS-931699,
an anti-CD28 protein, has also been investigated in a phase II clinical trial to determine its effects
against SLE, but the results of that trial also failed to meet the hoped for endpoints [22]. Despite the
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negative results so far, however, there are an additional two phase II trials of abatacept currently under
recruitment to further verify its efficacy [23,24].

2.1.2. Inducible Co-Stimulator (ICOS)

Inducible co-stimulator (ICOS), which is recognized as the third member of the CD28 family,
serves as a co-stimulatory receptor of T cells that is essential for their activation and can further promote
downstream humoral immunity [25]. It is expressed after the activation of naive T cells, which is
dependent on prior CD28 signaling [26,27]. The ligand for ICOS, B7h (also known as B7RP-1), has been
demonstrated to be constitutively expressed on B cells and macrophages, whereas inflammatory stimuli
can induce its expression in non-lymphoid tissues as well as certain fibroblasts [28,29]. In previous
murine studies, the generation, function, and maintenance of Tfh and extra-follicular Th cells that
facilitate germinal center (GC) formation, B cell maturation, and IgG production were found to be
dependent on ICOS [30,31]. A recent study on lupus-prone mice further elucidated that the systemic
inflammation in lupus critically depends on ICOS stimulation by DCs and CD11c+ macrophages
via the induction of essential PI3K-mediated pro-survival signals in organ-infiltrating T cells [32].
In addition, the suppression effect against glomerulonephritis in lupus-prone mice by nasal anti-CD3
treatment was found to be associated with a significant reduction in the percentage of IL-17 expressing
CD4+ICOS+CXCR5+ T cells [33]. Moreover, previous studies have noted that in contrast with the
aforementioned B7.1/B7.2-CD28/CTLA-4 and programmed death-ligand (PDL) 1/PDL2-programmed
cell death protein 1 (PD-1) axis, B7h and ICOS are the only counterparts for each other [34]. Therefore,
targeting this pathway with AMG557, a human Ab that targets the ICOS ligand, may be effective
against SLE. To date, a phase I clinical trial of AMG557 has shown that it has an acceptable safety
profile [35], but a clear answer as to whether its efficacy can be translated into clinical scenarios will
require further explorations.

In addition to the B7 family discussed above, co-inhibitory signals of B7-H3, BTNL2, and B7S1
have also been shown to negatively regulate T cell functions [36–38]. Intriguingly, previous studies
have revealed that CD28 co-stimulation greatly increased the proliferation of B7-H3-treated T cells, did
so less well in BTNL2–Ig-treated cells, and had no effect on cells stimulated with B7S1–immunoglobulin
(Ig) [25]. Moreover, IL-2 and CD28 co-stimulation synergistically enhanced T-cell proliferation in
the presence of B7-H3–Ig or BTNL2–Ig but not B7S1–Ig [25]. These results suggested that different
mechanisms are utilized by these three molecules in T-cell regulation. Therefore, despite the finding
that BTNL2 polymorphism exhibits strong linkage disequilibrium with autoimmune diseases including
SLE [39], it is still important to carefully examine whether targeting this pathway could overcome the
effects of other co-stimulation signals.

2.1.3. OX40

Besides the co-stimulatory pathways tested out in clinical trials, there are many other axes that have
shown immunomodulatory potential (Table 1). In preclinical studies of SLE, one of the most studied
co-stimulation axes has been that consisting of the OX40 (also known as TNFRSF4 or CD134) expressed
by activated T cells along with its ligand OX40L. To be specific, OX40 can promote T helper (Th) cell
survival [40], cytokine production [41], and T cell accumulation within B cell follicles [42], as well as
memory cell formation [43], while it also participates in the regulation of the balance of Treg, effector
T, and Th cell functions [44,45]. Previous murine studies have revealed that the OX40-OX40L axis is
crucial in the development of autoimmune diseases, and that disrupting this axis could be utilized to
prevent and treat these diseases [46]. It was further discovered that OX40L can stimulate Tfh responses
by activating OX40L+ APCs, contributing to SLE pathogenesis [47]. Furthermore, it was reported that
polymorphism in OX40 correlates with increased susceptibility to SLE [48]. Moreover, in addition
to OX40 and OX40L having been found to be abundant in the glomerular walls of proliferative
lupus nephritis patients, the expression of OX40 on peripheral blood T cells from patients with lupus
nephritis has been found to be correlated with disease severity [49–51]. These findings have indicated
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the therapeutic potential of anti-OX40 therapy. Relatedly, the in vitro treatment of splenocytes from
lupus-prone BXSB mice with OX40L mAb, in combination with an anti-CTLA-4 strategy, suppresses
autoantibody production and pro-inflammatory cytokines [52]. Similarly, although a high percentage
of IL-10 secreting cells has been noted in patients with lupus nephritis, in vitro treatment of their
peripheral blood mononuclear cells with anti-OX40 therapy reduces IL-10 expression [53]. Additionally,
in a recent study of a type I interferon-accelerated NZB/NZW.F1 mice model, anti-OX40 treatment
significantly delayed severe proteinuria onset and improved survival [54], suggesting the potential
therapeutic benefit of targeting this axis in SLE.

Table 1. Co-stimulatory axes involved in SLE.

Molecule Expression Ligand/Receptor Possible Targeted Cells in SLE

CD80 and CD86 APCs CD28 T cells

B7h APCs ICOS T cells

OX40L APCs OX40 T cells

SLAMF6 T cells, B cells, and NK cells SLAMF6 T cells

CD137L APCs CD137 T cells

CD40L T cells CD40 B cells

SLE: systemic lupus erythematosus; APCs: antigen presenting cells; ICOS: Inducible co-stimulator; SLAMF6:
signaling lymphocyte activation molecule family 6; NK cells: natural killer cells.

2.1.4. Signaling Lymphocyte Activation Molecule Family (SLAMF)

It is important to point out that the role of the co-stimulatory receptors of the signaling lymphocyte
activation molecule family (SLAMF) in SLE has also been of considerable interest recently because of
their vital role in Tfh cell function [55]. Multiple genome-wide association studies of families with
multiple members affected with SLE have found a susceptibility locus which includes the SLAMF
genes [56]. Furthermore, SLAMF3 and SLAMF6 receptors on T cell surfaces have been reported to be
positively associated with disease activity in SLE patients, possibly via increasing IL-17 production [57].
Moreover, signaling via SLAMF6 also enhances Th1 cytokine production, likely through clustering
with TCR and increasing T cell adhesiveness [58], but this effect has been shown to be defective in SLE
patients [59]. Other SLAMF receptors have also been suggested to play roles in both murine models of
SLE and SLE patients [60,61]. For instance, SLE patients were found to have enhanced expressions of
SLAMF1 on both T cells and B cells, whereas SLAMF2 level was increased on their CD4+ and CD8+

T cells [62]. In addition, lupus nephritis (LN) patients which were not responded to B cell depletion
therapy had reported to have a higher proportion of SLAMF6 expression on CD4− CD8− T cells.
Moreover, CD8+ T cells expressing SLAMF3, SLAMF5, and SLAMF7 were all significantly decreased
in LN patients who were in remission [63]. Further clarification of their roles in SLE is essential before
it is possible to utilize them to treat SLE in clinical scenarios.

2.1.5. CD137

As another co-stimulating pathway, CD137 (also known as TNFRSF9 or 4-1BB) belongs to the
TNF/TNF receptor family in T cells, but it has also been found on a variety of immune cells, including
B cells, natural killer (NK) cells, DCs, neutrophils, and monocytes [64]. CD137 signaling not only
biasedly enhances the proliferation and survival of CD8+ T cells but also promotes IL-2 production by
CD4+ T cells while preventing activation-induced cell death [65,66]. However, possibly due to the fact
that anti-CD137 mAbs have multiple targets, their perplexing in vivo roles are still under investigation.
For instance, the deletion of CD137 ligand of lupus-prone mice worsens their renal and cutaneous
manifestations of lupus but lessens SLE-related neurological damage [67]. As another example, it
was found that CD137–/– of lupus-prone mice resulted in increased levels of serum anti-dsDNA
autoantibodies, Ig deposition, the accumulation of pathogenic T cells, and the exacerbation of both



Cells 2019, 8, 1213 6 of 28

skin lesions and lacrimal gland inflammation [68,69]. On the other hand, agonistic anti-CD137 mAb
treatment of NZB/NZW.F1 mice suppresses GC formation and anti-dsDNA IgG production without
inducing immunosuppression, reversing SLE and prolonging the mouse’s lifespan [70]. The ability
to dampen overall humoral immunity and therefore extend survival by targeting this axis was also
confirmed in another lupus-prone mouse model treated with αCD137 Ab [71], and the suppressed
CD4+ T-dependent humoral immune responses may be responsible for these findings [72].

2.2. Involvement of Co-Inhibitory Receptors on T Cells in SLE

CTLA-4 and PD-1/PD-L1 are the two most well studied co-inhibitory pathways in terms of targeting
such pathways to fight malignancies [73]. Immune checkpoint inhibitors with anti-CTLA-4 antibodies
(Abs) and anti-PD-1/PD-L1 Abs have been approved by the U.S. Food and Drug Administration for
the treatment of metastatic non-small cell lung cancer, melanomas, head and neck squamous cancers,
urothelial carcinomas, gastric adenocarcinomas, etc. [74–76]. However, while these therapies have
achieved clinical success in patients with various malignancies, blockades of CTLA-4 and PD-1/PD-L1
are associated with side effects known as irAEs that can resemble autoimmune disorders, including
SLE, rheumatic arthritis (RA), thyroiditis, Stevens–Johnson syndrome/toxic epidermal necrolysis,
colitis, pneumonitis, myocarditis, type 1 diabetes, etc. [7,77,78]. In contrast, the augmentation of these
co-inhibitory axes holds the potential to stop the progression of autoimmune diseases.

2.2.1. CTLA-4

As one of the most promising approaches against malignancy, anti-CTLA-4 treatment (such as
ipilimumab, tremelimumab) has been extensively utilized in clinical scenarios, but its irAEs had raised
substantial concerns. It is known that CTLA-4 deficiency promotes preferential expansion of Treg cells,
leading to subsequent non-infectious inflammation likely through the production of organ-specific
autoantibodies [79–81]. A recent meta-analysis demonstrated that the overall incidence of irAEs
associated to anti-CTLA-4 treatment was 72% for all-grade and 24% for high-grade [82]. Among
the irAEs related to checkpoint inhibitors, the incidence of rheumatic manifestations approximately
accounts for 3.5% of all patients treated, with the majority of them being inflammatory arthritis [83].
Interestingly, lupus has rarely been reported as an irAE of checkpoint inhibitors [84], reflecting its
complex nature that may require a multi-faceted approach based on comprehensive understandings of
the pathogenic axes involved.

In the previous section, we introduced how CTLA-4 chimera proteins could compete with CD28
for CD80 and CD86, therefore inhibiting T cell responses. To our knowledge, there had not been
a therapeutic strategy for SLE by enhancing the CTLA-4 responses, but similar approaches were
investigated extensively in other axes.

2.2.2. PD-1

PD-1 belongs to the surface protein that can bind to its ligand and inhibit the proliferation and
function of T cells. PD-1 receptor is expressed after T cell activation. PD-1 interacts with two ligands,
PD-L1 and PD-L2. PD-L1 is also expressed on the surface of APCs, as well as epithelial and endothelial
tissues [85], whereas PD-L2 is expressed mainly by APCs. The expression of PD-L1 inhibits the
proliferation of activated T cells. Anti-PD-1 (such as nivolumab, pembrolizumab) and anti-PD-L1
antibodies (atezolizumab, durvalumab, avelumab) prevent PD-1/PD-L1 and PD-1/PD-L2 binding and
result in the restoration of the activity of antitumor T cells [86]. Similar to anti-CTLA treatment, these
anti-PD1/anti-PD-L1 agents also cause irAEs with variable autoimmune disorders.

PD-1 has been extensively explored in preclinical studies of autoimmune diseases. PD-1 mRNA is
known to be broadly expressed at low levels in T, B, and myeloid cells, and could be further upregulated
upon activation [87]. PD-1 deficiency in mice leads to spontaneous, lupus-like autoimmune diseases,
and the introduction of the lymphoproliferation (lpr) mutation promotes lupus onset [88,89]. It is
also known that both deficiency and blockade of PD-1 accelerate autoimmune diabetes in non-obese
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diabetic mice, while blocking PD-1 was found to induce experimental autoimmune encephalomyelitis
(EAE) in mice [90–92]. However, controversial results were found in targeting PD-1 by the fusion
proteins of its ligands, PD-L1–Ig and PD-L2–Ig. Both fusion proteins have been shown to either
stimulate or inhibit CD4+ T cell responses [89,93]. Moreover, whereas blockade with anti-PD-L1 Abs
accelerates the onset of LN, PD-1 blockade, in contrast, limits LN and facilitates immunosuppression
via both CD4+ and CD8+ Treg cells in NZB/NZW.F1 mice, one of the most widely utilized mouse
models of SLE [94–96]. As a step forward to reconcile the inconsistencies in previous findings, a recent
study revealed that the PD-1 pathway modulates Tfh-mediated humoral immunity by downregulating
Tfr cells [97], which indicated that blocking PD-1 may preferentially influence the PD-1 function in
Tfr cells and therefore mitigate lupus manifestations. Although polymorphisms at PDCD1 have also
been reported to be associated with susceptibility to SLE [98], the clinical efficacy of manipulating this
pathway still requires further investigation based on the preclinical studies to date.

2.2.3. V-Domain Ig Suppressor of T Cell Activation (VISTA)

In addition to the well-known pathways currently under investigation, the recent discoveries of
several new axes have also brought new vigor and vitality to this field (Table 2). As a novel co-inhibitory
axis, V-domain Ig suppressor of T cell activation (VISTA) is known to be expressed on T cells and some
subsets of APCs. In vitro exposure to VISTA–Ig inhibits T cell proliferation and cytokine production,
while blocking VISTA on mouse APCs enhances T cell responses [99]. Previous studies have further
shown that VISTA-knockout mice are more susceptible to EAE [100], whereas both VISTA deficiency
and blockade in SLE mouse models promote the activation of splenic CD4+ T cells and myeloid cell
populations, resulting in increased pro-inflammatory cytokines, as well as more severe proteinuria and
LN [101,102]. In terms of its therapeutic potential, a study based on the NZB/NZW.F1 mouse model of
lupus has shown that the prophylactic use of VISTA–Ig prevents proteinuria and weight loss, while its
therapeutic use also reverses proteinuria [103].

2.2.4. CD200

Another co-signaling pathway affecting T cells, consisting of CD200R1 and its ligand CD200,
is expressed on multiple immune cell types, including macrophages, neutrophils, monocytes, and
subsets of T cells and B cells [7]. Their expression can be induced by chronic infection, regulating
the inflammatory threshold, Th2 polarization, and immune homeostasis [104]. Previous studies on
autoimmune diseases have further shown that the treatment of EAE and collagen-induced arthritis
with CD200–Fc fusion protein reduces disease severity [105,106]. Meanwhile, a recent in vivo study
of SLE based on NZB/NZW.F1 mice revealed that they have significantly lower percentages of
CD200-CD200R1-positive cells in their splenocytes with significantly higher plasma anti-dsDNA levels
that could be decreased after anti-CD200 treatment [107]. In another recent study of SLE patients,
decreased expression of CD200R1 by CD4+ T cells and DCs was noted along with higher numbers of
CD200+ cells and greater levels of soluble CD200 [108]. Moreover, the same study also found that
in vitro engagement of CD4+ T cells with CD200 attenuated the differentiation of T-helper type 17 (Th17)
cells and reversed the defective induction of a subset of Treg through transforming growth factor-beta,
while anti-CD200R1 Ab facilitated CD4+ T-cell proliferation. Although the anti-inflammatory potential
of CD200R1 agonist was demonstrated to limit the LPS-induced inflammation of human renal proximal
tubular epithelial cells [109], the clinical efficacy of treating SLE or LN via this approach requires
further elucidation. Interestingly, CD200R1 also plays a role in osteoclastogenesis without affecting
osteoblast formation [110–112]. Therefore, besides its immunomodulatory function, targeting this axis
may also have the potential to prevent bone destruction from various forms of autoimmune arthritis.
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Table 2. Co-inhibitory axes involved in SLE.

Molecule Expression Ligand/Receptor Possible Targeted Cells in SLE

CD80 and CD86 APCs CTLA4 T cells

PD-L1 and PD-L2 APCs PD-1 T cells and B cells

VSIG-3 Unknown VISTA T cells

VISTA APCs and T cells VISTA receptor T cells

CD200 B cells, eosinophils, pDCs and
a subset of T cells CD200R1 T cells, DCs, and neutrophils

CD155 DCs or macrophages TIGIT T cells and NK cells

Galectin-9 Cytoplasmic expression in
most cell types. TIM-3 T cells and macrophages

B7S1 APCs B7S1 receptor T cells

BTNL2 T cells, B cells, and
macrophages BTNL2 receptor T cells

Unknown APCs B7S3 T cells

Sialic acid Siglec-2/CD22 B cells

Immune complexes FCγRIIB B cells

Collagen (C1qCLR) LAIR-1 B cells, DCs, and macrophages

Asialo-galactosyl-oligosaccharide BDCA2 pDCs

HLA-G Monocytes and trophoblasts ILT-4
Myeloid cells, including
monocytes, macrophages,
dendritic cells, and granulocytes.

HLA-G Monocytes and trophoblasts ILT-2 T cells, B cells, DCs, and NK cells

VSTM1-L SIRL-1 Neutrophils

Sialylated surface protein PILR-α Neutrophils

SLE: systemic lupus erythematosus; APCs: antigen presenting cells; CTLA-4: cytotoxic T-lymphocyte-associated
antigen 4; PD-1: programmed cell death protein 1; VISTA: V-domain Ig suppressor of T cell activation; pDCs:
plasmacytoid dendritic cells; DCs: dendritic cells; NK cells: natural killer cells; TIGIT: T-cell immunoreceptor with
Ig and ITIM domains; TIM-3: T-cell immunoglobulin and mucin-domain containing-3; FcγRIIB: Fc fragment of IgG
receptor IIb; LAIR-1: leukocyte-associated Ig-like receptor 1; BDCA2: Blood-derived dendritic cell antigen 2; ILT4:
immunoglobulin-like transcripts 4; ILT2: immunoglobulin-like transcripts 2; SIRL-1: signal inhibitory receptor on
leukocytes-1; PILR-α: paired immunoglobulin-like type 2 receptor.

2.2.5. T-Cell Immunoreceptor with Ig and ITIM Domains (TIGIT)

Recently, the co-inhibitory axis of T-cell immunoreceptor with Ig and ITIM domains (TIGIT) present
on activated CD4+ T cells and NK cells has drawn great attention. Poliovirus receptor (PVR, also called
CD155), a surface receptor highly expressed on DCs, fibroblasts, and some tumor cells, has high-affinity
ligation to TIGIT [113–115]. It was found, moreover, that TIGIT+ CD4+ T cells exhibit a more activated
phenotype than TIGIT− CD4+ T cells [116]. The frequency of TIGIT-expressing CD3+CD4+ T cells
is significantly elevated in SLE patients, especially in severe cases [117]. Of note, these activated T
cells with TIGIT+ do respond to co-inhibitory signals from TIGIT. Relatedly, recent in vitro studies
found that activating the TIGIT pathway not only reduces the proliferation of T cells from mice, but
also substantially down-regulates the activities of CD4+ T cells from SLE patients [116,118]. This could
be explained by the fact that interactions between TIGIT and PVR on DCs lead to increased IL-10
secretion by DCs and, consequently, reduced proliferation of T cells. In line with these findings, in vivo
studies revealed that targeting this axis could delay the development, or even improve the survival,
of lupus mice [116,119]. Intriguingly, a significantly lower frequency of TIGIT+ NK cells was noted in
SLE patients, and this phenomenon could be reversed after regular treatment [120]. However, whether
this finding implies the potential synergistic effect of targeted therapy with regular treatment remains
to be explored.
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2.2.6. T-Cell Immunoglobulin and Mucin-Domain Containing-3 (TIM-3)

As a negative regulatory checkpoint shared by a variety of immune cells, T-cell immunoglobulin
and mucin-domain containing-3 (TIM-3) and its ligand galectin-9 are best known for their high
expressions in SLE patients [121–123] and have also been reported to be correlated with the activity
of the disease [124,125]. With respect to the possible mechanisms by which TIM-3 and galectin-9
drive SLE, it was proposed that the elevated expression of soluble TIM-3 may impair the clearance of
apoptotic cells [126], whereas the increase in galectin-9 may promote SLE by inhibiting the functions of
regulatory T cells [127]. However, there had also been experiments showing that the intervention of
lupus-prone mice with intraperitoneal galectin-9 could ameliorate their proteinuria and arthritis by
decreasing the anti-dsDNA antibody levels, likely through the pro-apoptotic effect of galectin-9 on
plasma cells [128]. Therefore, although selectively targeting this axis holds the potential to treat SLE,
further investigations are required to elucidate their effects on different immune cells.

2.2.7. Others

So far, clinical trials investigating treatments of SLE focusing on the co-signaling pathways of T
cells through direct cell-cell contact have generally failed to find success (Table 3). Many co-signaling
axes of T cells associated with SLE that are still under investigation, including the herpes virus
entry mediator-B- and T-lymphocyte attenuator (BTLA) signaling [129], CD94 ⁄NKG2A-HLA class
I histocompatibility antigen, alpha chain E [130,131], and other axes, are not discussed at length in
this review, but targeting their downstream signaling, as well as cytokine-mediated pathways, has
shown encouraging results [132]. For instance, calcineurin is a phosphatase involved in facilitating
TCR downstream signaling through multiple pathways [133–136], and its inhibition with cyclosporin
A or tacrolimus is widely utilized for various immunosuppressive purposes [137,138]. A phase II
randomized control trial of voclosporin, a chemical analogue of cyclosporin A that causes greater
calcineurin inhibition, recruited 265 patients with active lupus nephritis, and demonstrated that both
complete and partial renal response rates were significantly higher in the 2 voclosporin arms (23.7 or
39.5 mg bid) compared to the placebo group, in the background of glucocorticoid and mycophenolate
mofetil (2 g/day) treatment [139]. These promising results have since led to a larger phase III global
study of voclosporin (NCT03021499). Along with other positive findings for the treatment of SLE
with tacrolimus plus mycophenolate mofetil combinations [140,141], these results again underline the
potential of combinatorial therapies in treating SLE.

Table 3. Current progress in co-signaling pathways targeted in clinical trials against SLE.

Medication Target Phase/Outcome Clinical Trials.gov ID

Abatacept CD80 and CD86 Phase III—terminated NCT00430677

Abatacept CD80 and CD86 Phase II—failed to meet endpoint NCT00119678

Abatacept CD80 and CD86 Phase II—failed to meet endpoint NCT00774852

Abatacept CD80 and CD86 Phase II—recruiting NCT02270957

Abatacept CD80 and CD86 Phase II—recruiting NCT02429934

BMS-931699 CD28 Phase II—failed to meet endpoint NCT02265744

AMG557 ICOSL Phase I—acceptable safety profile NCT00774943

JNJ-61610588 VISTA Phase I—terminated NCT02671955

CFZ533 CD40 Phase II—recruiting NCT03656562

BG9588 CD40L Phase II—terminated Boumpas DT, et al. Arthritis
Rheum. 2003.

IDEC-131 CD40L Phase II—failed to meet endpoint Kalunian KC, et al. Arthritis
Rheum. 2002.



Cells 2019, 8, 1213 10 of 28

Table 3. Cont.

Medication Target Phase/Outcome Clinical Trials.gov ID

Dapirolizumab Pegol CD40L Phase II—unpublished NCT02804763

Anti-CD40L CD40L Phase II—terminated NCT00001789

Epratuzumab CD22 Phase III—unpublished NCT01408576

Epratuzumab CD22 Phase III—terminated NCT00111306

Epratuzumab CD22 Phase III—terminated NCT00383214

Epratuzumab CD22 Phase III—withdrawn NCT00382837

Epratuzumab CD22 Phase III—failed to meet endpoint NCT01262365

Epratuzumab CD22 Phase III—failed to meet endpoint NCT01261793

Epratuzumab CD22 Phase II—unpublished NCT01534403

Epratuzumab CD22 Phase II—encouraging NCT00624351

Epratuzumab CD22 Phase II—encouraging NCT00660881

Epratuzumab CD22 Phase II—encouraging NCT00383513

Epratuzumab CD22 Phase II—terminated NCT00113971

Epratuzumab CD22 Phase I/II—acceptable safety profile NCT01449071

Epratuzumab CD22 Phase I—unpublished NCT00011908

BIIB059 BDCA2 Phase II—active, not recruiting NCT02847598

BIIB059 BDCA2 Phase I—acceptable safety profile NCT02106897

SLE: systemic lupus erythematosus; ICOSL: Inducible co-stimulator ligand; VISTA: V-domain Ig suppressor of T cell
activation; BDCA2: Blood-derived dendritic cell antigen 2.

3. Co-Signaling Axes in B Cells Relating to SLE

The presence of serum autoantibodies has been associated with SLE, supporting the view that a
breakdown of self-tolerance in B cells and the production of antibodies against nuclear self-antigens
play a central role in this disease [142]. Several co-signaling axes of B cells have been pointed out as
being closely related to SLE (Figure 2).

3.1. Involvement of Co-Stimulatory Receptors on B Cells in SLE

CD40

Besides having been observed in T cells, two-signal activation has also been found in B cells,
with the CD40-CD40L(CD154) axis, the interaction between the B cell-expressed CD40 and its binding
partner CD40L, serving as the second signal required [143,144]. For rheumatic diseases that generate
pathogenic autoantibodies, such as lupus, CD40L expressed on Tfh cells in germinal centers plays a key
role in stimulating plasma cells with autoimmune specificities [145,146]. This may explain the effect of
reductions in autoantibodies after treatment with anti-CD20-depletion drugs such as rituximab and
ofatumumab [147–149]. Even though these short-lived antibody-producing plasmablasts and plasma
cells are not directly targeted by anti-CD20 therapy, they are continuously derived from the CD20+

B cells via the induction of CD40L. Moreover, CD40L has been found to be ectopically expressed
on B cells in lupus patients and lupus-prone mice [150,151]. In one study, CD40L-transgenic mice
produce greater amounts of autoantibodies such as antinuclear Abs, anti-DNA Abs, and antihistone
Abs with increasing age [151]. Moreover, almost half of the mice developed lupus-like disease
characterized by glomerulonephritis with immune-complex deposition. Additionally, it was confirmed
that anti-CD40L therapy in NZB/NZW.F1 mice decreases IgG anti-dsDNA Abs levels and delays the
disease onset, likely by blocking both T cells from activation and B cells from class switching as well as
somatic mutation [152]. In vivo study also revealed that anti-CD40L monoclonal Ab could block the
over-expression of CD86 on B cells, which was found in patients with lupus [153], and further abrogate
their anti-DNA Abs production [154]. However, clinical trials of the use of anti-CD40L to treat SLE
have yet to yield positive results so far.
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co-signaling axes. Co-stimulatory axes (green line) promote B cell activation, while co-inhibitory axes
(red line) prevent B cell from activation. PD-1: programmed cell death protein 1; FcγRIIB: Fc fragment
of IgG receptor IIb; LAIR-1: leukocyte-associated Ig-like receptor 1.

There have been several clinical trials targeting this axis, including one in which an antibody
targeting CD40L called IDEC-131 was used, with that trial failing to meet its desired endpoint [155].
Another trial of an antibody named BG9588 was terminated due to adverse effects such as hematuria
and thromboembolic events [156]. Recently, a phase II clinical trial attempting to target CD40 by using
a fully human IgG1 anti-CD40 monoclonal Ab, iscalimab (CFZ533), was started, and that trial is still
undergoing [157]. It is noteworthy that the combinatorial treatment of anti-CD40L and anti-CTLA-4
for NZB/NZW.F1 mice has demonstrated synergistic effectiveness in delaying the onset of SLE by
suppressing both autoreactive B and T cells [158,159], suggesting that combinatorial approaches have
the potential to further enhance efficacy. Whether such synergistic effects could also be replicated in
human SLE thus warrants further clinical studies.

3.2. Involvement of Co-Inhibitory Receptors on B Cells in SLE

3.2.1. PD-1

The role of the PD-1-PD-L1/PD-L2 pathway in the development of lupus has largely been
discussed with respect to T cells. However, the immune responses of B cells can also be regulated
via this pathway [160,161]. In one study of SLE patients, the expression of CD19+PD-L1+B cells
was enriched in the peripheral blood and correlated with disease-related laboratory parameters,
clinical indicators (such as the Systemic Lupus Erythematosus Disease Activity Index), and Tfh cell
populations [162]. CD19+PD-L1+B cells played an important role in activating the pathogenic T cell
and B cell responses in SLE [162]. In another previous study, it was found that the activation of B
cells via bacteria-derived oligodeoxynucleotides (CpG) alone or in combination with CD40/CD40L
co-stimulation could significantly increase the expression of both PD-1 and PD-L1 on those B regulatory
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(Breg) cells [163]. Via PD-L1, the Breg cells could then limit the expansion and the function of PD-1+ Tfh
cells, and down-regulate humoral immune responses [163]. Interestingly, these Breg cells are resistant
to an anti-CD20-depletion drug, which thus generates a residual B-cell population that expresses high
levels of PD-L1 and has potent T-cell-suppressive activity [161].

Recent research has further revealed that lupus B cells with enhanced PD-1 expression exhibit
functionally reduced proliferation along with reduced PD-L1 up-regulation capacity upon stimulation
by interleukin-2(IL-2)/IL-10, anti-B cell receptor (anti-BCR), CpG, and CD40L [164]. Moreover, PD-1
and PD-L1 interactions between Tfh and B cells help to maintain the stringency of affinity selection in
germinal centers [165]. PD-L1-deficient B cells in a Sap−/− mouse model developed an outgrowth of
low-affinity or irrelevant antibodies following immunization, which contributed to the initiation and
perpetuation of autoimmune disease [166].

3.2.2. CD22 and Siglec

CD22/Siglec-2 and Siglec-G are membrane receptors that are restricted on B cells, and both belong
to the sialic acid-binding Ig-like lectin (Siglec) family. CD22 presents throughout most of B2-cell
development. It is firstly found on immature B cells, being most highly expressed on naïve B cells,
but is then lost on plasmablasts and plasma cells [167]. It functions primarily as a negative regulator of
BCR signaling, in addition to regulating Toll-like receptor signaling and the survival of B cells [168,169].
Siglec-G, on the other hand, is an important inhibitor on B1 cell subsets. These two B-cell Siglecs
have been proven to have an important function in preventing autoimmunity, as double-deficient
mice spontaneously develop a lupus-like phenotype with age that is characterized by antinuclear Ab
development, lupus nephritis, and early death [170,171].

Epratuzumab, a humanized monoclonal Ab targeting CD22, can induce the rapid movement of
CD22 into lipid draft without BCR activation, as well as the removal of BCR along with CD22 [172,173].
Therefore, it was thought to potentially be beneficial for the treatment of lupus. However, two large
phase III studies yielded disappointing results in terms of the treatment responses of moderate and
severe lupus patients [174,175]. Further analysis did show, however, a potential treatment response to
epratuzumab among lupus patients with positive anti-Ro/La [176].

3.2.3. FCγRIIB

FcγRIIB, one of the receptors for the Fc portion of IgG molecules (FcγRs), is the only inhibitory IgG
Fc receptor that suppresses the activation of immune cells [176]. Unlike other FcγRs receptors, FcγRIIB
possesses an immune receptor tyrosine-based inhibition motif (ITIM) in its cytoplasmic tail [177].
The tyrosine within the ITIM could be phosphorylated by the Src-family kinase Lyn when activated by
antigen-antibody immune complex, and then transduce an inhibitory signal downwards [178]. Studies
have revealed that this down-regulation is built on both increasing the BCR activation threshold and
suppressing antigen internalization and presentation to T cells [179]. In previous studies, animal
models consisting of FcγRIIb-deficient mice developed splenomegaly due to uninhibited expansion
of B cells and formed lupus-like disease [177,180]. In humans, FcγRIIb-I232T, a polymorphic variant
in which isoleucine at position 232 of FcγRIIb is replaced by threonine, is reported to be a risk allele
for developing systemic lupus erythematosus. FcγRIIb-I232T shows a strong disease susceptibility in
Southeast Asians, especially in the subgroups of lupus nephritis and male gender [181,182]. In addition,
two ex vivo studies of PBMCs from SLE patients further identified reduced expression of FCγRIIB on
memory B cells from SLE patients [183,184].
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3.2.4. Leukocyte Associated Immunoglobulin-Like Receptor (LAIR)-1

The leukocyte associated immunoglobulin-like receptor (LAIR)-1 is a transmembrane molecule
belonging to the Ig superfamily which binds to different types of collagen [185]. Similar to FcγRIIB,
it processes ITIM in the cytoplasmic domain, and thus causes the down-regulation of NK and T cell
activation [186,187]. Within B cells, LAIR-1 cross-linking leads to down-regulation of the production
of both immunoglobulins and cytokines in B cells [188]. Defective expressions of LAIR-1 on both
B cells and plasmacitoid dendritic cells have previously been found in lupus patients, and such
defective expressions can result in a lower inhibiting signal in Ig production after LAIR-1 and collagen
interaction [189].

4. Co-Signaling Axes in Dendritic Cells (DCs) Relating to SLE

DCs are critical sentinel cells that effectively link the innate and adaptive immune systems. Within
lymph nodes and lymphoid organs, DCs present antigens to T cells, contributing to the induction of
immunological tolerance and the expansion of protective pro-inflammatory immune responses [190].
In the last decade, studies of human and mice models have found that the aberrant activation of classical
DCs (cDCs) or plasmacytoid DCs (pDCs), altered DC localization, and the functional impairment of
DCs may contribute to the pathogenesis of SLE [4,5]. Intriguingly, reduced numbers of circulating
pDCs and cDCs within the blood of patients with SLE have been reported, with those reduced numbers
being correlated, in turn, with increased recruitment in the target tissues, possibly contributing to SLE
progression [190–193].

As a distinct subset of DCs, pDCs can sense bacterial and viral pathogens, producing massive
amounts of type I interferon (IFN) in response to infections [194].

Despite the nature of the strictly regulated type I IFN system, abnormal activation of it has been
noted in a considerable proportion of patients with SLE, which was also found to be closely related to
genetic variants that modulate this system [195].

Type I IFN released by pDCs has been proposed to increase autoantibody formation by facilitating
plasma cell differentiation [196,197]; in addition, heightened levels of type I IFN are observed in SLE
patients, suggesting a positive role of pDCs in SLE development [198–200]. Since the therapeutic effects
of some conventional medications against SLE, including hydroxychloroquine and glucocorticoids,
may at least be partially contributed by their ability to downregulate the type I IFN system [201–203],
targeting the co-signaling axis of pDCs could undoubtedly serve as a potential therapeutic strategy
against SLE (Figure 3).

4.1. CD200

With respect to co-signaling pathways affecting DCs, Li et al. reported that the aberrant functional
status of CD200-CD200R1 signaling may contribute to the immunologic abnormalities of DC activity in
SLE [108]. CD200+ apoptotic cells expressed by DCs and serum levels of soluble CD200 in SLE patients
were significantly higher than those in healthy controls, whereas the expression of CD200R1 by CD4+ T
cells and DCs was decreased. Heightened lymphocyte apoptosis and impaired phagocytic processing of
apoptotic cells have been described as having impacts on the mechanisms of SLE [204–206]. Moreover,
the early expression of apoptotic cells with increased CD200 expression was conjugated with their
diminished binding and phagocytosis by DCs in SLE. In addition, this down-regulation of CD200R1
expression on DCs was also noted in lupus-prone mice along with elevated levels of anti-dsDNA Abs,
which could be reversed by CD200-Fc treatment possibly through reducing the productions of IL-6
and IL-10 from DCs [107]. Therefore, augmenting the co-inhibitory effect of CD200R1 on DCs serves as
a plausible strategy to be further explored.
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ILT2: immunoglobulin-like transcripts 2; LAIR-1: leukocyte-associated Ig-like receptor 1.

4.2. Blood-Derived Dendritic Cell Antigen 2 (BDCA2)

Blood-derived dendritic cell antigen 2 (BDCA2) is a pDC-specific receptor that inhibits the
production of type-I IFN and other inflammatory cytokines when ligated [207]; also, BDCA2 signaling
by pDCs restrains antigen processing and presentation to T cells [208]. In a previous study, BDCA2
was shown to recognize asialo-galactosyl-oligosaccharides with terminal galactose, which facilitates
the binding of certain CD14+ monocyte-derived DCs and several human tumor cell lines [209]. As an
inhibitory receptor of pDCs, the engagement of BDCA2 represents a feasible therapeutic target for
inhibiting pDC-derived type-I IFN for the treatment of SLE.

Recently, Furie et al. reported on a phase 1b study demonstrating an approach to targeting the
BDCA2 receptors of pDCs in SLE patients using a humanized monoclonal Ab (BIIB059); such targeting
showed decreased type-I IFN expression and reduced immune infiltrates in cutaneous lesions with a
favorable safety profile [210]. However, whether BIIB059 targeting of the type-1 IFN pathway will be
effective in managing SLE in other organs remains unclear, which highlights the developing question
of whether organ-specific approaches to lupus will be explored in future clinical trials [211].

4.3. Immunoglobulin-Like Transcript 4 (ILT4) and ILT2

On the other hand, immunoglobulin-like transcript 4 (ILT4) expressed by DCs is a
well-characterized co-inhibitory receptor and recognizes human leukocyte antigen-G (HLA-G) [212].
Human leukocyte antigen-G (HLA-G) is a class I non-classical HLA molecule that plays an important
regulatory role in the immune system during viral infections and some autoimmune diseases [213].
Paola Del Carmen Guerra-De-Blas et al. reported that significantly lower levels of ILT4-positive
circulating pDCs and cDCs were detected in SLE patients; this diminished expression of ILT4 may
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contribute to a higher immunogenic phenotype of DCs in SLE [214]. It has also been reported that
monocytes from psoriatic arthritis patients reveal downregulated expression of ILT4, demonstrating
that alterations of these inhibitory receptors may not be exclusive to SLE patients but, rather, a common
characteristic that SLE shares with other autoimmune conditions [215]. ILT2, on the other hand,
also recognizes a broad range of classic class I MHC molecules including HLA–G. ILT2 was found
to be downregulated in both pDCs and cDCs from SLE patients [216]. Moreover, as the common
ligand of these axes, HLA-G was found to be diminished in monocytes from SLE patients, and a
compromised ability of these monocytes to inhibit the proliferation of autologous lymphocytes was
also revealed [217].

4.4. LAIR-1

To describe another co-signaling pathway affecting DCs in detail, C1q collagen-like region (CLR)
engaging the leukocyte-associated Ig-like receptor 1 (LAIR-1; CD305), an inhibitory immunoreceptor
expressed on pDCs, has been associated with the inhibition of Toll-like receptor activity and
a suppressive effect on type-I IFN production from pDCs [218]. Classical pathway-mediated
hypocomplementemia is a frequent feature in SLE patients and is often associated with the occurrence
of autoantibodies (Abs) against C1q [219]; the high prevalence of anti-C1q Abs was previously strongly
correlated with active lupus nephritis [220]. These findings indicate that complement C1q has a role in
the pathogenesis of SLE. Notably, several studies have shown that LAIR-1 function and expression
were impaired on B cells, monocytes, and DCs in SLE patients [189,221,222].

5. Co-Signaling Axes in Neutrophils Relating to SLE

Neutrophils, one of the important leukocytes primed towards the eradication of pathogens
and the activation of inflammatory responses, have been linked to the pathophysiology of SLE.
Neutrophils from SLE patients may display increased apoptosis, impaired ability to be removed by
the C1q/calreticulin/CD91-mediated apoptotic pathway, defective phagocytosis, and altered oxidative
metabolism [223–225].

Notably, the release of neutrophil extracellular traps (NETs) during a distinct process of cell
death, known as NETosis, plays a crucial role in the tissue damage seen in patients with SLE [6]. First
mentioned in 2004, NETs constitute an extracellular meshwork of DNA scaffolds bound to granular
peptides that can entrap and kill microorganisms, and activate other immune cells [226,227].

In SLE patients, impaired degradation of NETs may result from the presence of DNase-1 inhibitors
and anti-NET Abs [228,229]; Davis et al. conducted a phase Ib trial to investigate the safety and
pharmacokinetics of recombinant human DNase-1 in patients with lupus nephritis, which showed
well-tolerated results without significant adverse events [230]. Additionally, Steevels et al. observed
that the ligation of signal inhibitory receptor on leukocytes-1 (SIRL-1), an inhibitory receptor expressed
by neutrophils and monocytes, suppresses the release of NETs in SLE [231], and this inhibitory
phenomenon was also found in both spontaneous and antibody-induced NETosis from neutrophils
from SLE patients [232]. Moreover, this inhibitory effect of SIRL-1 is specific for NET formation, without
having a dampening effect on the phagocytosis and ROS production that participate in intracellular
microbial killing [233].

Besides SIRL-1, there are also other co-inhibitory axes that regulate NETosis, including siglec9,
siglec5, and semaphorin4D. On the other hand, PILRα, which regulates the trafficking of neutrophils
during inflammation, has drawn great attention recently, since targeting this axis potentially attenuates
neutrophil influx and subsequent collateral tissue damage [234]. In mouse arthritis models, it was
found that anti-PILRα mAb reduces inflammation and decreases the production of proinflammatory
cytokines [235]. However, whether these novel findings can be utilized in therapies against SLE
warrants further investigations.
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6. Conclusions

To date, clinical trials targeting the co-signaling axes involved in SLE have yet to find great success,
but further studies of these co-signaling axes are nonetheless warranted. Although the relationships
between individual co-signaling pathways and SLE have been identified, their interactions with each
other have yet to be clarified. In addition, combinatorial approaches may be reasonable approaches for
overcoming autoimmunity, but current knowledge regarding the compensatory mechanisms between
different axes may be insufficient to indicate the most potent combinations. Moreover, whether the
observed changes in the expression of certain co-signaling molecules in patients with SLE are responses
to or the pathogenic upstream of this complex disease requires further clarification. In line with these
rationales, future studies targeting one or more co-signaling axes are encouraged to evaluate the
responses with a more comprehensive approach given the essential complexity of immune responses.
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