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Purpose: The current study compared metabolic profiles and movement patterns
between different player positions and explored relationships between indicators of
internal and external loads during elite male basketball games.

Methods: Five main players from 14 basketball teams (n � 70) were selected as subjects
and defined as backcourt (positions 1–3) or frontcourt (positions 4–5) players. Video-
based time motion analysis (VBTMA) was performed based on players’ individual maximal
speeds. Movements were classified into high and low intensity running with and without
ball, high and low intensity shuffling, static effort and jumps. Saliva samples were collected
before and after 40-min basketball games with metabolomics data being analyzed by
multivariate statistics. Independent t-tests were used to compare VBTMA.

Results: Frequency, duration, and distance of high and low intensity running and -shuffling
were higher in backcourt players, whereas static effort duration and frequency as well as
jump frequency were higher in frontcourt players (all p ≤ 0.05). The levels of taurine,
succinic acid, citric acid, pyruvate, glycerol, acetoacetic acid, acetone, and hypoxanthine
were higher in backcourt players, while lactate, alanine, 3-methylhistidine were higher and
methionine was lower in frontcourt players (all p < 0.05). High intensity running with ball was
significantly associated by acetylecholine, hopoxanthine, histidine, lactic acid and leucine
in backcourt players (p < 0.05).

Conclusion: We demonstrate different metabolic profiles of backcourt and frontcourt
players during elite male basketball games; while aerobic metabolic changes are more
present in backcourt players, frontcourt players showed lager changes in anaerobic
metabolic pathways due to more static movements.

Keywords: internal load, external load, team sport, metabolome, metabolites

Edited by:
Mohamed A. Elrayess,
Qatar University, Qatar

Reviewed by:
Francesco Donati,

Federazione Medico Sportiva Italiana
(FMSI), Italy
Rengfei Shi,

Shanghai University of Sport, China

*Correspondence:
Øyvind Sandbakk

oyvind.sandbakk@ntnu.no

Specialty section:
This article was submitted to

Metabolomics,
a section of the journal

Frontiers in Molecular Biosciences

Received: 09 December 2020
Accepted: 29 April 2021
Published: 13 May 2021

Citation:
Khoramipour K, Gaeini AA, Shirzad E,
Gilany K, Chamari K and Sandbakk Ø

(2021) Using Metabolomics to
Differentiate Player Positions in Elite

Male Basketball Games: A Pilot Study.
Front. Mol. Biosci. 8:639786.

doi: 10.3389/fmolb.2021.639786

Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 6397861

ORIGINAL RESEARCH
published: 13 May 2021

doi: 10.3389/fmolb.2021.639786

http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2021.639786&domain=pdf&date_stamp=2021-05-13
https://www.frontiersin.org/articles/10.3389/fmolb.2021.639786/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.639786/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.639786/full
http://creativecommons.org/licenses/by/4.0/
mailto:oyvind.sandbakk@ntnu.no
https://doi.org/10.3389/fmolb.2021.639786
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2021.639786


INTRODUCTION

Basketball is an intermittent team sport, characterized by
alternating phases of low and high intensity work during four
10-min quarters. Players combine explosive and powerful
accelerations, jumps, sprints, and specific movements such as
rebounding, jump shooting, lay-ups, closing out, shot blocking,
high-speed play, and fast breaks (Vázquez-Guerrero et al., 2019).
Several factors can affect the movement demands in basketball,
with player position being the most important (Pion et al., 2018)
because each position is associated with its own duties and
therefore requires specific movements. For example, backcourt
players (i.e., point guards and shooting guards) run more than
frontcourt players (i.e. centers) (Scanlan et al., 2011; Scanlan et al.,
2012; Scanlan et al., 2014a). In contrast, point guards run more
compared to forwards and centers (Hůlka et al., 2013). These
differences reflect the nature of the positions. While backcourt
players are generally smaller, quicker, and responsible for ball
transitions, which require more movements, frontcourt players
tend to be bigger, slower, and have more physical contact as they
play in a smaller area (Kucsa and Mačura, 2015; Ibáñez et al.,
2018). Such data is a result of external load monitoring studies
using different methods of analysis among which video-based
time motion analysis (VBTMA) is the most popular. However,
these studies are based on predetermined speed thresholds that
could result in over/under-estimate external load since player’s
running speed vary depending on their playing levels, position,
physical fitness, genetic background and other factors. Therefore,
individualization of thresholds would make VBTMA a more
accurate, valid approach (Abt et al., 2020).

The difference in movement patterns between different player
positions indicates various contribution from aerobic and
anaerobic metabolic pathways in each position during
basketball games (Ferioli et al., 2018). In a previous study, the
metabolic load of different positions (2 guards, 3 forwards, and 3
centers) in five games was compared, showing that guards have
higher heart rates (HR) than forwards or centers (Vaquera et al.,
2008). However, it is likely that HR underestimates the metabolic
load in basketball because of its intermittent nature (Lambert and
Borresen 2010), meaning that better methods to study the
metabolic load are required. In this context, metabolomics can
be a good alternative since it is a comprehensive, non-invasive
approach, which can identify high numbers of metabolites
simultaneously (Pohjanen et al., 2007). To date, previous
studies have used metabolomics to distinguish the metabolic
profile of athletes from different disciplines (Al-Khelaifi et al.,
2018). However, the only study using metabolomics to investigate
team sports is a comparison between the quarters of a game in
elite male basketball players (Khoramipour et al., 2020).

The association between movement patterns determined by
VBTMA and metabolic profiles assessed by metabolomics would
provide a further understanding of the interaction between player
movement and the metabolic consequences. Currently, only three
studies have explored the correlation between indicators of
internal and external loads in basketball games. Of these,
Scanlan et al. (2014b) found moderate correlations between
accelerometer data and session ratings of perceived exertion

(sRPE), training impulse (an index coming from a
combination of heart rate during training and rest) and
summated-heart-rate-zones (adding up the time spent in each
of five HR zones) in semiprofessional male basketball players.
Furthermore, Svilar et al. (2018) reported that player load,
acceleration and deceleration, jumps, and changes of direction
were highly correlated to sRPE. More detailed internal load
analyses (e.g., using metabolomics) could provide a better
understanding of the associations between external and
internal load in basketball.

Therefore, the current pilot study aimed to compare metabolic
profiles and movement patterns between different player
positions during elite male basketball games. In addition, we
explored the relationships between metabolic profiles and
movement patterns as indicators of internal and external
loads. We hypothesize that backcourt players have higher
movement frequency, duration, and distance and show larger
changes in aerobic metabolites, while metabolic changes in
frontcourt players tend to be more anaerobic due to the
nature of their positions, which require less dynamic but more
static, strength and power movement patterns.

MATERIALS AND METHODS

Subjects
The data presented in this study is part of a larger investigation of
male basketball games where one study is published previously
(Khoramipour et al., 2020). Five main players across 14 teams
(N � 70) who participated in the 2017–18 Iranian national
basketball super league (e.g., top division) were randomly
selected as subjects (age: 24.2 ± 5.3 years, height: 192.4 ±
12.3 cm, weight: 88.7 ± 6.4 kg, body fat percentage: 10.9 ± 1.3,
BMI: 24.1 ± 0.8 kg/m2) and studied during seven games (two
teams and a total of 10 players in each game). Having at least
3 years league experience was considered as inclusion criteria;
however, international players were excluded. Subjects reported
no metabolic disorder and were asked to refrain from taking
supplements one month prior to the study.

Ethics Statement
The Research Ethics Committee of the University of Tehran
(IR.UT.SPORT.REC. 1398.007) approved this study. Prior to the
data collection, all subjects provided written informed consent to
voluntarily take part in the study. The subjects were informed that
they could withdraw from the study at any point in time without
providing a reason for doing so.

Design
In order to study metabolic profiles and movement demands in
different positions during elite male basketball games, we
experimentally combined saliva metabolomics analyses to non-
invasively examine internal load and VBTMA to study external
load, with the players movements classified into eight categories
based on athletes’ maximal shuffling and running speeds. Saliva
samples were employed due to the combination of easy sampling
procedure and informative, stable measurements as described
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elsewhere (Dame et al., 2015). Samples were collected before and
after each game and analyzed using Hydrogen nuclear magnetic
resonance (HNMR). In addition, we explored the associations
between these measures of internal and external load using linear
regression models.

Methodology
Initially, the study procedure was explained to coaches and
players and coaches were asked to decrease training load by 50%
in the last three days prior to the beginning of the study.
Thereafter, players’ body height, body weight, body fat
percentages (using 7-site measurements using a caliper), as
well as personal information were recorded. 3–5 days before
the games, individual maximal running and shuffling tests were
performed. The games were held based on the International
Basketball Federation (FIBA) rules; each game consisted of four
quarters (10 min each) with a 2-min rest interval between the
first and second quarters (i.e., first half) and between the third
and fourth quarters (i.e., second half). There were 15 min breaks
between the halves. The games were held 2 weeks before the
competitive season started to avoid interference from other
games. All games started at 11:00 a.m. and players arrived at
the stadium at 8:00 a.m. to consume a normal breakfast
consisting of around 400 calories (60% carbohydrate, 30%
protein, and 10% fat), which was calculated using food
processor nutrition analysis software (PCN software; Cesnid,
Spain). After breakfast, subjects brushed their teeth and were
not allowed to eat to avoid physiological interference with saliva
metabolites. The subjects drank 200 ml of water prior the games
and the same amount in each half. On their arrival at the
stadium, subjects were asked to sit down for 30 min to
recover from possible metabolic turbulence resulting from
daily activity. This was done to control for the main
influencers on saliva metabolome (i.e., before training meal,
saliva reaction with mouse components, hydration status, and
daily physical activity).

Thereafter, they started their regular warm-up protocol
consisting of running, dribbling, shots, and passes. All subjects
played for 40 min and no substitutions were allowed. Saliva
samples were collected from each player before and after the
games. To collect saliva, the subjects spat in a 15 ml falcon until at
least 3 ml saliva was collected. The samples were placed on liquid
nitrogen and kept at -80°C until analysis. At the same time, the
players external load was also assessed using VBTMA (see details
below). Due to position changes during the game, positions 1, 2,
and 3 were considered as backcourt players and 4 and 5 as
frontcourt players. Accordingly, a total of 70 players were divided
into 42 backcourt and 28 frontcourt players. This classification
was based on the available data and our pilot study which showed
similar movement patterns for positions 1, 2, and 3 as well as for
positions 4 and 5.

NMR Sample Preparation
After sampling, the saliva samples were placed at ambient
temperature to be liquefied, and then centrifuged for 20 min
(11,200 RCF, 4°c) to remove supernatant. Thereafter, 450 μl of the
samples were dissolved in 150 μl of D2O, transferred to 5 mm

high quality tubes, and put in the 500 MHz Bruker DRX HNMR
(Bruker company, Madison, United States).

NMR Data Acquisition
Spectroscopy was conducted using the Carr-Purcell-Meiboom-Gill
(CPMG) method. CPMG reduces wide protein resonances and
helps increase the resolution of low molecular weight metabolites.
All spectra referred to methyl lactate (1.33 ppm). Other
spectroscopy parameters were as follows: temperature: 298 K,
scan number: 154, peak width: 8389.26 Hz, and pulse time: 2 s.

Spectra Processing
The MestreNova (MasterLab company, Santiago De Compostela,
Spain) software was used for spectra processing. In a first step, the
water peak was deleted, followed by baseline correction, phase
correction, and normalization. Then, all data were converted into
numbers with each sample consisting of 408 numbers. The data
were sorted in Microsoft Excel (Microsoft company,
United States) and uploaded using the web-based software
MetaboAnalyst (www.metaboanalyst.ca).

Individual Run and Shuffle Speed Tests
To assess maximal running speed, a 30-yard speed test was
performed using an indoor basketball court. To assess
maximal shuffling speed, a 15-yard shuffle test was performed.
This test included a 15-yard right shuffle and a 15-yard left shuffle
to return to the starting point. Running and shuffling speeds were
recorded with a statistic camera (Basler A602FC; Basler Vision
Technologies, Germany), and maximal speed was calculated
using Dartfish 10 Pro (Dartfish company, Fribourg, Switzerland).

Video-Based Time Motion Analysis
The games were recorded with two fixed wide-angle color
cameras (Basler A602FC; Basler Vision Technologies,
Germany), mounted at a ∼15 m height at the middle of the
half court and ∼9 m distance from the sideline. Players were
recorded for entire games (including all stoppages), and mean
frequency, duration (s), and distance (m) were calculated for each
activity category (Table 1). Recordings were analyzed by Dartfish
10 Pro and normalized for the individual’s maximal speed
(Table 1). Two movement classes were simply analyzed by
watching the film: 1) static efforts and 2) jumps. Dartfish 10
Pro is a 3D software, which can resolve the perspective problem.
To avoid inter-observer variability, a single experienced observer
analyzed all games. Before the study, the observer analyzed two

TABLE 1 | The seven movement categories (based on each player’s maximal
speed) are used for categorization in the current study.

Movement Speed

Low intensity running without ball (LIRWO) ≤70% player’s maximal speed
Low intensity running with ball (LIRW) ≤70% player’s maximal speed
High intensity running without ball (HIRWO) >70% player’s maximal speed
High intensity running with ball (HIRW) >70% player’s maximal speed
Low intensity shuffling (LISH) ≤70% player’s maximal shuffle speed
High intensity shuffling (HISH) >70% player’s maximal shuffle speed
Static effort (SE) -
Jump (JU) -
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quarters of the same game one month apart, reporting high test-
retest reliability (correlation � 0.85).

Statistical Analysis

Descriptive statistics (mean ± SD) were calculated for each
movement variables (VBTMA). Thereafter, the
Kolmogorov–Smirnov test supported the use of parametric
analyses, in which the independent t-test was used to study the
difference between positions in movement patterns. PCA
(Principal component analysis) and PLSDA (partial least
squares discriminant analysis) were used to compare the

metabolome between positions and t-tests to identify
significantly different bins (Chong et al., 2018). Thereafter, the
bins were entered in the human metabolome database (http://
www.hmdb.ca) to identify different bins associated metabolites. A
linear regression model was employed to study the association
between indicators of internal and external load, by setting each
movement class (Table 1) as a dependent variable and the various
metabolites as independent variables using the enter method. The
regressions were done within each position separately, and we
initially included all metabolites with significant changes in each
position as independent variables. The alpha level was set to
p ≤ 0.05.

TABLE 2 | Frequency (#), duration (s), and distance (m) of the seven movement categories for the backcourt (N � 42) and frontcourt (N � 28) players during elite male
basketball games analyzed by video-based time motion analysis (mean ± SD).

Motion
Variable

Position High intensity
running with

ball

High intensity
running without

ball

Low intensity
running with

ball

Low intensity
running without

ball

High
intensity
shuffle

Low
intensity
shuffle

Static
efforts

Jump

Frequency backcourt 43 ± 4a 92 ± 27a 86 ± 8a 348 ± 24a 66 ± 6a 77 ± 5a 69 ± 4a 41 ± 6
frontcourt 31 ± 6 80 ± 9 34 ± 9 193 ± 13 22 ± 4 21 ± 4 190 ± 6 79 ± 5

Duration (s) backcourt 101 ± 10a 301 ± 73a 320 ± 33a 1656 ± 63a 142 ± 14a 163 ± 16a 105 ± 9a 60 ± 6
Frontcourt 72 ± 8 251 ± 53 134 ± 8 840 ± 52 71 ± 14 51 ± 13 323 ± 29 114 ± 16

Distance (m) backcourt 715 ± 78a 2486 ± 235a 762 ± 45a 3981 ± 147a 289 ± 27a 271 ± 32a - -
frontcourt 350 ± 56 1420 ± 105 346 ± 63 1863 ± 120 115 ± 19 85 ± 9 - -

aSignificant difference between positions.

FIGURE1 |Comparison of pre-gamemetabolomes (metabolic profile) between backcourt and frontcourt players during elite male basketball games using principal
component analysis. Red: backcourt, green: frontcourt.
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RESULTS

Time Motion Analysis
Movement frequency, duration, and distance are presented in
Table 2. For frequency, duration, and distance, high intensity
running with ball, high intensity running without ball, low
intensity running with ball, low intensity running without ball,
high intensity shuffling, and low intensity shuffling were higher in
backcourt players, whereas static movement frequency and
duration as well as jump frequency were higher among
frontcourt players (p ≤ 0.05 for all).

Metabolomics
The saliva samples collected before the games were compared
with PCA (Figure 1) and PLSDA (Figure 2) and showed no
significant differences between positions.

Post-game comparisons in metabolomes showed several
differences between positions as illustrated in the PCA
(Figure 3) and PLSDA plots (Figure 4). The levels of taurine,
succinic acid, citric acid, pyruvate, glycerol, acetoacetic acid,
acetone, and hypoxanthine were higher in backcourt players,
while lactate, alanine, 3-methylhistidine were higher and
methionine was lower in frontcourt players (all p < 0.05).

The metabolites with significant pre-to post-game changes are
listed in Table 3.

Correlation Between Internal and External
Load
The only significant prediction of VBTMA from metabolomics
indicators was found for high intensity running with ball (HIRW)
(p � 0.05, R2 � 0.866) (Tables 4 and 5). The final regression
formula is as follow:

HIRW � 111.895 + 6.880 acetylecholine − 12.414
hopoxanthine − 7.430 histidine +4.731 lactic acid − 6.289 leucine.

DISCUSSION

The present study shows that movement frequency, duration, and
distance of high and low intensity running and -shuffling were
higher in backcourt players, whereas static effort frequency and
duration as well as jump frequency were higher in frontcourt
players. Accordingly, specific indicators of aerobic metabolism
such as taurine, succinic acid, citric acid, pyruvate, glycerol,
acetoacetic acid, acetone, and hypoxanthine were higher in
backcourt players, while indicators of anaerobic metabolism
such as lactic acid, alanine, and 3-methylhistidine were higher
and methionine was lower in frontcourt players. Furthermore, a
regression analysis shows that acetylcholine, hypoxanthine,
histidine, lactic acid and Leucine could significantly
predict HIRW.

FIGURE 2 | Comparison of pre-game metabolomes (metabolic profile) between backcourt and frontcourt players during elite male basketball games using partial
least square discriminant analysis. Red: backcourt, green: frontcourt.
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Logically following time motion analysis showing that backcourt
players spend more time doing dynamic movements during the
game, the coinciding metabolomic analysis indicates a greater
reliance of aerobic metabolism compared to frontcourts. More
specifically, we find higher pyruvate concentration and lower
lactic acid in backcourt players which indicate that most of the
produced pyruvate entered the Krebs cycle and was utilized in the
aerobic metabolism (Mougios 2019; Schenk et al., 2021). A higher
Krebs cycle activity is also supported by higher succinic acid and
citric acid (i.e., Krebs cycle mediators) (Blackburn et al., 2020). A
previous study showed that VO2max was higher in backcourt than in
frontcourt players (Abdelkrim et al., 2007), which is congruent with
our data. Another study where %HRpeak was used to compare the
metabolic load between different positions showed that guards’
(considered as backcourt players in our approach) mean HR
corresponded to 88% of HRpeak (Hůlka et al., 2013), showing
high reliance on aerobic pathways. However, HR cannot be
considered a valid measure of basketball load monitoring since it
may underestimate physiological load. Here, we instead assessed
Krebs cycle mediators, which are aerobic metabolism indexes,
directly (Mougios 2019) and therefore a more valid approach.
Furthermore, higher levels of hypoxanthine, the end product of
the purine cycle, further support a higher aerobic energy turnover
and oxidative stress (Zhao et al., 2020) in backcourt players; and
increased energy demand further led to increased purine cycle
activity and subsequently higher hypoxanthine (Mougios 2019).

In addition, taurine, the most abundant amino acid-like
component in muscle and other organs, was higher in backcourt
players (Huffman et al., 2014). We also found higher amounts of
ketone bodies (e.g., acetoacetic acid and acetone) and glycerol as
indexes of higher fat oxidation in backcourt players. As a practical
consequence of the above findings of higher aerobic pathway activity
and fat oxidation with more dynamic movements, a greater
requirement for endurance training in backcourt players could be
expected.

There are several explanations for the larger oxidative stress
found in backcourt players. First, backcourt players perform more
high and low intensity shuffling, which is considered to be the most
intense movements in basketball (Abdelkrim et al., 2007) due to the
consecutive changes of direction, acceleration, and deceleration
(Abdelkrim et al., 2007; Scanlan et al., 2012). In this connection
Schelling and Torres (2016) reported that guards (i.e., backcourts)
show higher acceleration load mainly because of their lower body
mass which allow them to accelerate rapidly. On the basis of the
same reasoning, Reina et al. (2020) concluded that centers
experienced lower overall load during the game. In contrast to
our findings, Ferioli et al. (2020) reported a higher rate of high
intensity movements as well as more time spent doing high intensity
movements in centers (e.g., frontcourt players) than guards. Two
main reasons could explain this controversy; they did not subdivide
the various high intensity movements and included static efforts and
jumps in this category. Here, our results show that the amount of

FIGURE 3 | Comparison of post-game metabolomes (metabolic profile) between backcourt and frontcourt players during elite male basketball games using
principal component analysis. Red: backcourt, green: frontcourt.
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static efforts and jumps are higher in centers. In addition, Ferioli et al.
(2020) used qualitative methods for time motion analysis, in which
intra-variability could be a source of error, in contrast to our more
accurate quantitative analysis method.

Second, backcourt players’ roles are ball carrying and
dribbling, since they are more skilled in ball handling (Scanlan
et al., 2012) and in defending smaller players who perform more
agile movements and changes of direction (Abdelkrim et al.,

2007). This is supported by Ferioli et al. (2020) who showed that
guards are the players with the highest ball processioning and
when external load monitoring is conducted with ball possession,
all movement categories are higher in guards. Backcourts are also
the first players who start both offense and defense actions,
resulting in more activity (Abdelkrim et al., 2007). In addition,
previous studies using different approaches, such as sRPE,
showed higher metabolic loads in smaller players (i.e.
backcourt players) and especially point guards.

Third, backcourt players’ playing zone is out of the 3-point
shot, which is less crowded and has more movement space,

FIGURE 4 | Comparison of post-game metabolomes (metabolic profile) between backcourt and frontcourt players during elite male basketball games using partial
least square discriminant analysis. Red: backcourt, green: frontcourt.

TABLE 3 | Metabolites showing significant differences between backcourt and
frontcourt players in the post-game samples during elite male basketball.

Metabolites T-value p-value −Log 10 (p) FDR

Taurine −4.24 0.00a 3.99 0.00
Succinic acid −4.19 0.00a 3.92 0.00
Citric acid −4.15 0.00a 3.87 0.00
Pyruvate −4.15 0.00a 3.86 0.00
Glycerol 4.10 0.00a 3.80 0.00
Acetoacetic acid −4.08 0.00a 3.78 0.00
Acetone −4.05 0.00a 3.73 0.00
Hypoxanthine −4.03 0.00a 3.70 0.00
Lactate −4.01 0.00b 3.68 0.00
Alanine −4.00 0.00b 3.67 0.00
3-methylhistidine 3.97 0.00b 3.63 0.00
Methionine −3.96 0.00& 3.60 0.00

aSignificantly higher levels in backcourts.
bsignificantly higher levels in frontcourts, $ significantly lower levels in frontcourts. FDR,
false discovery rate.

TABLE 4 | Prediction of the various movements classes from metabolites using
regression analysis in backcourt players.

Movement frequency F-value p-value R2

High intensity running with ball 2.54 0.05a 0.86
High intensity running without ball 2.41 0.06 0.86
Low intensity running with ball 1.53 0.23 0.79
Low intensity running without ball 0.47 0.94 0.54
High intensity shuffle 0.80 0.69 0.67
Low intensity shuffle 0.81 0.68 0.67
Static efforts 2.30 0.07 0.85
Jump 0.84 0.65 0.68

aAll metabolites with significant changes in each position were initially included as
independent variables.
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meaning that players can move more easily and thereby increase
their activity. García et al. (2020) reported more covered distance
in guards than centers who need to stay in close distance to the
basket for rebounding. Playing in this small, crowed zone requires
frontcourt players to have much body contact during rebound
and positioning, which is evident by more static efforts
(Abdelkrim et al., 2007; García et al., 2020) and leads to
higher muscle damage clearly indicated by higher 3 mtyle
histidine in frontcourt players. Accordingly, such intense
physical activity is dependent on anaerobic rather than aerobic
metabolism. This may also explain the higher alanine
concentration in frontcourt players as alanine is the precursors
of carnosine production, the main intracellular buffer.

In the current study, indicators of anaerobic metabolism such
as lactic acid, alanine, and 3-methylhistidine were higher and
methionine was lower in frontcourt players, indicating greater
reliance of anaerobic metabolism. Previous studies have only
measured lactate, in which higher lactate concentrations have
been found in guards than forwards or centers (Rodriguez-
Alonso et al., 2003; Abdelkrim et al., 2007). In contrast,
Scanlan et al. (2011) did not observe such differences between
positions, in which tactical approaches, player level, and playing
style may explain the differences between these studies.

The only significant prediction of VBTMA data from
metabolomics indicators found using regression analysis was for
HIRW in backcourt players. This makes sense since HIRW is a
demandingmovement in basketball, which lead to the largest change
in the metabolites (e.g., acetylcholine, hopoxanthine, histidine, lactic
acid and leucine). Likely, the higher frequency in backcourt players
lead to the significant correlation between HIRW and selected
metabolites in these players. Although Fox et al. (2020) showed
that player load (representing a measure of the accumulated load)
was correlated with sRPE and session heart rate zone (sHRZ) in
training sessions and games, our study was the first to correlate
metabolomics as a measurement of the internal metabolic load,
which provide more detailed insights than previous studies.

We had three main limitations in this study: First, we were not
able to include the same diet for several days preceding the games.
Since diet could affect the players’metabolomes, our result should
therefore be taken with some caution. Second, using the 500 MHz
Bruker DRX HNMR, we may have missed some metabolic
changes due to low power of the device. Finally, we explained
the physiological basis for our findings, but the reader should be

aware that subject properties (i.e. demographic and genetic),
athletic experience, component of the team and game strategy
could affect both internal and external loads, illustrating that our
results should be interpreted with this in mind.

CONCLUSION

Based on novel metabolomics analyses, we demonstrate clearly
different metabolic profiles of backcourt and frontcourt players
during elite male basketball games; while backcourt players move
more and show more aerobic metabolite changes, frontcourt
players represent more anaerobic changes due to more static
movement patterns. However, the relationships between these
indicators of internal and external load were modest and the only
significant prediction of movement category found was HIRW
based on acetylecholine, hopoxanthine, histidine, lactic acid and
Leucine in backcourt players.
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TABLE 5 | Prediction of the various movements classes from metabolites using
regression analysis in frontcourt players.

Movement frequency F-value p-value R2

High intensity running with ball 1.55 0.36 0.90
High intensity running without ball 0.47 0.88 0.74
Low intensity running with ball 1.14 0.50 0.87
Low intensity running without ball 0.75 0.68 0.81
High intensity shuffle 1.12 0.51 0.87
Low intensity shuffle 2.43 0.20 0.93
Static efforts 0.38 0.93 0.70
Jump 1.23 0.46 0.88

All metabolites with significant changes in each position were initially included as
independent variables.
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