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Abstract  
Studies have suggested that phytochemicals in green tea have systemic anti-inflammatory and 
neuroprotective effects. However, the mechanisms behind these effects are poorly understood, 
possibly due to differential metabolism of phytochemicals resulting from variation in gut 
microbiome composition. To unravel this complex relationship, our team utilized a novel 
combined microbiome analysis and metabolomics approach applied to low complexity 
microbiome (LCM) and human colonized (HU) gnotobiotic mice treated with an acute dose of 
powdered matcha green tea.  A total of 20 LCM mice received 10 distinct human fecal slurries 
for an n=2 mice per human gut microbiome; 9 LCM mice remained un-colonized with human 
slurries throughout the experiment. We performed untargeted metabolomics on green tea and 
plasma to identify green tea compounds that were found in plasma of LCM and HU mice that 
had consumed green tea.  16S ribosomal RNA gene sequencing was performed on feces of all 
mice at study end to assess microbiome composition. We found multiple green tea compounds 
in plasma associated with microbiome presence and diversity (including acetylagmatine, 
lactiflorin, and aspartic acid negatively associated with diversity). Additionally, we detected 
strong associations between bioactive green tea compounds in plasma and specific gut 
bacteria, including associations between spiramycin and Gemmiger, and between wildforlide 
and Anaerorhabdus. Additionally, some of the physiologically relevant green tea compounds are 
likely derived from plant-associated microbes, highlighting the importance of considering foods 
and food products as meta-organisms. Overall, we describe a novel workflow for discovering 
relationships between individual food compounds and composition of the gut microbiome.  

 

Importance  

Foods contain thousands of unique and biologically important compounds beyond the macro- 
and micro-nutrients listed on nutrition facts labels. In mammals, many of these compounds are 
metabolized by the community of microbes in the colon. These microbes may impact the 
thousands of biologically important compounds we consume; therefore, understanding microbial 
metabolism of food compounds will be important for understanding how foods impact health. 
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We used metabolomics to track green tea compounds in plasma of mice with and without 
complex microbiomes. From this, we can start to recognize certain groups of green tea-derived 
compounds that are impacted by mammalian microbiomes. This research presents a novel 
technique for understanding microbial metabolism of food-derived compounds in the gut, which 
can be applied to other foods. 

 

 
Introduction 
Assessing the impact of food on health is challenging.1 This is exacerbated by the unique co-
metabolism of foods by the host and the gut microbiome across individuals with distinct 
microbiota. Owing to recent advances in ‘omics technologies, determining the identity of 
microbial and microbial:host metabolites following consumption of specific foods is now 
possible.1–3 For example, Wang, et. al. found that a product of microbiome:host co-metabolism 
of phosphatidylcholine, trimethylamine N-oxide (TMAO), predicted risk for cardiovascular 
disease (CVD).4 In addition, integrated metabolomics and microbiome approaches are being 
applied with promising results.5–12 However, challenges remain, including identifying metabolites 
that are specifically produced by the microbiome or by host:microbiome interactions.  

Alteration of the gut microbiome has been associated with the development of multiple 
disorders,13 including depression and anxiety,14 metabolic syndrome,15 and inflammation.16A 
broad understanding of how the microbiome affects the host metabolome has come from 
comparing germ-free mice to those colonized with the microbiota of various humans17 and/or 
treated with antibiotics compared to non-antibiotic treated controls.17–19 These studies found that 
microbial composition has a profound influence on the presence and relative abundances of 
many metabolites in various sites including the blood, urine, feces, and the gastrointestinal tract. 
Additionally, dietary differences clearly influence microbial community structure, as certain 
substrates favor specific taxa. For example, Wu et al.20 reported greater relative abundance of 
Bacteroidetes with high animal protein consumption and greater relative abundance of 
Prevotella with plant consumption, which is supported by other research investigating the effects 
of a mediterranean diet intervention.21 Together, these findings suggest that unique microbiome 
profiles may be bidirectionally linked to specific dietary components. 

Even dietary components that are not calorically dense, such as green tea (GT), have effects on 
mammalian health. Several studies have suggested that various components of tea, including 
flavonoids and phenolic acids, have both anti-inflammatory and neuroprotective effects.22–25 
These polyphenols are metabolized by a combination of the host and microbiome, which means 
that variation in the functional capacity of the microbiome along the gastrointestinal tract will 
affect the downstream host metabolism of GT-derived compounds.26 However, the exact 
mechanisms by which the microbiome alters GT metabolism and downstream molecular 
networks are not yet understood. To our knowledge, only a few studies have focused on the 
metabolism of tea in the context of the microbiome. For example, Axling et. al. found that 
supplementing mice with GT powder along with Lactobacillus plantarum promoted growth of 
Lactobacillus and attenuated high fat diet-induced inflammation.27 Studies utilizing humanized 
mice is a logical next step for determining the metabolites responsible for these effects and 
which microbes might be involved in their metabolism. 
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Our approach begins to address this challenge through use of human colonized (HU) mice fed 
GT. It aims to determine how the gut microbiome affects which GT compounds are found in the 
plasma of HU and low complexity microbiome (LCM) mice. These scientific premises resulted in 
the formation of our hypotheses that specific GT compounds in plasma will associate with 
specific bacterial genera or be altered in concentration by the presence of a gut microbiome. We 
tested these hypotheses by colonizing gnotobiotic mice with microbiomes from 10 healthy 
humans and then treating both colonized and LCM mice with an acute dose of GT extract by 
oral gavage (Figure 1).  

Because diet is among the most significant modifiers of human health, detailed understanding of 
the microbiome in the context of food metabolism is critical for disease modification and 
prevention.  

 
Methods 
Chemicals, standards, and reagents: Chemicals, standards, and reagents used for sample 
preparation and liquid chromatography-mass spectrometry (LCMS) analysis were of high-
performance liquid chromatography (HPLC) or LCMS grade. These included water from 
Honeywell Burdick & Jackson (Muskegon, MI, USA), methanol, and J.T. Baker methyl tert-butyl 
ether (MTBE) from VWR (Radnor, PA, USA), formic acid from ThermoFisher Scientific 
(Waltham, MA, USA), Fisher Chemical acetonitrile and methanol from Fisher Scientific (Fair 
Lawn, NJ, USA), and Supelco 2-Propanol from Millipore Sigma (Burlington, MA, USA). 
Authentic standards for sample preparation were from Avanti Polar Lipids Inc. (Alabaster, AL, 
USA), Cambridge Isotope Laboratories (Tewksbury, MA, USA), Sigma-Aldrich (St. Louis, MO, 
USA), and CDN Isotopes (Pointe-Claire, Quebec, Canada).  
 
Human fecal sample collection: Human fecal samples were collected from 10 healthy 
participants using a commode specimen collector. Fecal samples were then shipped cold within 
48 hours, aliquoted, and stored at -80 °C prior to use in gnotobiotic mouse experiments. 
Collection of the human fecal samples used in these experiments was approved by the 
Colorado Multiple Institutional Review Board (COMIRB) COMIRB #14-1595.    
 
Mouse Colonization: All mouse studies were approved by the University of Colorado Institutional 
Animal Care and Use Committee (IACUC). C57BL/6 germ-free mice from the colony maintained 
at the University of Colorado Gnotobiotics Core were placed on an irradiated, low polyphenol 
diet (TD.97184, Envigo, Indianapolis, IN) at the time of weaning (3 weeks of age) through 6 
weeks of age. At 4 weeks of age, mice were orally gavaged with 200 µL of either human fecal 
slurry (100 mg stool homogenized in 1 mL reduced phosphate buffered saline (PBS) in an 
anaerobic chamber) or PBS for LCM controls (n=9). A total of 20 mice received 10 distinct 
human fecal slurries, for an n=2 mice per human gut microbiome. Due to limited availability of 
LCM mice, the experiment was conducted in three cohorts as described in the Supplemental 
Methods.  Mice were housed individually in a sterile caging system to maintain their LCM or 
individualized colonization status for the remainder of the experiment. Mice were weighed three 
times weekly and on the day of GT dosing.  
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Mouse GT Gavage: Gavage solutions of GT were prepared under sterile conditions in a Nuair 
Biological Safety Cabinet (Plymouth, MN). LCMS water was heated to 70 °C and sterile filtered 
through a Steriflip disposable vacuum filtration tube (Merck KgaA, Darmstadt, Germany). Jade 
Leaf brand matcha green tea (“Culinary Grade Premium Second Harvest - Authentic Japanese 
Origin (8.8 Ounce Pouch)”, Seattle, WA) was irradiated by Envigo at the same time as the low 
polyphenol diet and stored in a sterile 50 mL Falcon Tube (Corning, Glendale, AZ) at 4 °C. GT 
slurries were prepared at 10 mg/mL with the warm sterile water, vortexed for 15 seconds to mix 
and then stored at 4 °C until gavage. A total of 29 mice (20 HU, 9 LCM) were gavaged with 100 
µL of GT slurry (50 mg/kg equivalent). Four leftover slurries were stored at -80 °C for GT 
metabolomics analysis.  
 
Plasma and Tissue Collection: Mice were sacrificed approximately 2 hours after the GT gavage. 
Blood was collected in 1.3 mL K3 EDTA micro sample tubes (Sarstedt Inc., Nuembrecht, 
Germany) via submandibular bleeding, inverted 5 times and immediately placed on ice. Blood 
was centrifuged at 3,000 xg for 30 mins at 4 °C, within 30 minutes of collection. Plasma was 
aliquoted into 1.5 mL microcentrifuge tubes (Fisher Scientific) and stored at -80 °C until 
analysis. Fecal microbiome samples were collected in 1.5 mL microcentrifuge tubes, flash 
frozen in liquid nitrogen and stored at -80 °C until analysis. The 2 hour time point was selected 
following a small pilot utilizing wild type (WT) mice whereby GT compounds were detected in 
higher numbers and abundance compared to 4 and 24 hour timepoints (Supplemental 
Methods).  
 
Metabolomics: Frozen plasma samples and four GT extracts were thawed on ice and prepared 
for analyses as previously described.28–30 Briefly, proteins were precipitated and small 
molecules were extracted from supernatants using an organic liquid-liquid extraction technique 
with methyl tert-butyl ether (MTBE) and water. This resulted in hydrophilic (aqueous) and 
hydrophobic (lipid) fractions.  Nine hydrophobic and 6 hydrophilic labeled spike-in standards 
were used to monitor instrument performance and sample preparation batch variability.31 Spiked 
and un-spiked methanol preparatory blanks were prepared alongside study samples. Quality 
control (QC) included analysis of purchased plasma (BioIVT, Westbury, NY), spiked with 
authentic standards and prepared alongside study plasma samples (Supplemental Methods).  
 
Aqueous and lipid fractions were analyzed by LCMS using published methods.29,31,32 Briefly, the 
hydrophobic fraction was analyzed using reverse phase C18 chromatography and a quadrupole 
time-of-flight mass spectrometer (QTOF 6545, Agilent Technologies, Santa Clara, CA) in 
positive ionization mode. The hydrophilic fraction was analyzed using an SB-Aq column (Agilent 
Technologies) on the same instrument. LCMS method details are provided in the Supplemental 
Methods.   
 
Metabolomics Data Processing: Metabolomics spectral data for both plasma and GT extracts 
were processed using a recursive workflow and area-to-height conversion with Agilent’s 
MassHunter Profinder ver. 10.0 service pack 1 (Profinder) and Mass Profiler Professional Ver. 
15.1 (MPP, Agilent Technologies).10 Data from lipid and aqueous fractions were extracted 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2024. ; https://doi.org/10.1101/2024.07.11.603097doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.11.603097
http://creativecommons.org/licenses/by-nc-nd/4.0/


separately in Profinder using Batch Molecular Feature Extraction followed by Batch Targeted 
Feature Extraction. Compounds found in blanks were removed. Plasma samples were limited to 
compounds eluting before 10.4 min and 13 min for lipid and aqueous fractions, respectively. GT 
samples were limited to compounds eluting before 10.4 min and 11 min for lipid and aqueous 
fractions, respectively. Compounds eluting past these times had poor signal to noise ratios and 
were not used.  
 
Plasma compounds were annotated using MassHunter ID Browser ver. 10.0 (Agilent 
Technologies) by searching custom in-house databases and public databases consisting of 
compounds from METLIN, Lipid Maps, Kyoto Encyclopedia of Genes and Genomes (KEGG), 
and Human Metabolome Database (HMDB) using accurate mass and isotope ratios. An initial 
database search was conducted using H+ as the primary charge carrier. Unannotated 
compounds were re-searched using the same databases with loss of water included. These 
compounds were designated Metabolomics Standards Initiative (MSI) level three and are listed 
by software-assigned compound number (e.g. C1287 is compound number 1287).11 Plasma 
compound lists were exported for statistical analysis and to determine which GT compounds 
were detected in plasma. 
 
Green Tea compounds in Plasma: Data from the four GT extracts were processed as above 
with the following adjustments: GT compounds had to be present in 100% of GT samples and 
the compounds were restricted to those eluting before 10 min for both the aqueous and lipid 
fractions. In addition to the databases used to annotate plasma, the GT samples were also 
searched against Phenol Explorer, FooDB, and a Traditional Chinese Medicine natural products 
database (Agilent Technologies). The GT compound lists were exported as .cef files and 
imported into Quantitative Analysis (Agilent Technologies).  
 
To verify that GT compounds originated from GT, data from a separate experiment using mice 
not fed green tea was used to determine baseline differences (Supplemental Methods). Briefly, 
10 mice were gavaged with the same 10 distinct human fecal slurries as described above (i.e. 1 
microbiome per mouse), and 6 mice were gavaged with PBS. At two weeks post-gavage, 
plasma was collected as described in the main text. LCMS data for plasma samples was 
processed as described above and imported into Quantitative Analysis. Extracted ion 
chromatograms were generated for each GT compound from plasma LCMS data using a 
“targeted data extraction” strategy. The method parameters included: left and right extraction 
window of 10 ppm, retention time extraction window + 0.2 minutes, and retention time outlier 
>0.3 minutes. For each GT compound, the monoisotopic peak (M1) and C13 peak (M2) were 
used for qualification. The M1 peak was used as the quantifier ion, while M1 and M2 peaks (or 
only M1 when no M2 peak was detected) were used as qualifier ions. When a second charge 
carrier such as sodium was detected, its monoisotopic peak was used as a qualifier. Qualifier 
relative uncertainty was set to 20%. Analysis results were imported into MPP and filtered to 
retain only targets that were present in at least 3 plasma samples with an area ≥20,000 counts 
for the aqueous fraction and ≥ 55,000 counts for the lipid fraction. These compound lists, 
including area under the curve (AOC) for relative quantitative comparison, were exported for 
statistical and informatic analysis. 
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Whole metabolomics datasets were visualized using principal components analysis (PCA) for 
the purpose of quality control (Supplemental Methods).  
 
Microbiome - DNA extraction and sequencing: DNA was extracted from the fecal samples using 
the Power Soil Pro Kit protocol (Qiagen, Germantown, MD). Barcoded primers targeting the V4 
region of the16S rRNA gene were used to PCR amplify the extracted bacterial DNA using the 
Earth Microbiome Project (EMP) standard protocols (http://www.earthmicrobiome.org).33 PCR 
product quantification was completed using PicoGreen (Invitrogen, Carlsbad, CA) and used to 
pool equal amounts of amplified DNA from each sample. The QIAquick PCR Purification Kit 
(Qiagen) was used to clean the pooled libraries. Three runs were used to generate sequences 
using the Illumina MiSeq platform (San Diego, CA). 
 
Microbiome - Sequence data processing: Microbiome sequencing data were processed in 
QIIME2-2021.8.34 Sequences were demultiplexed using the q2-demux plugin, then denoised 
using q2-dada235 with a truncation length of 230bp. A phylogenetic tree was created using Saté-
enabled phylogenetic placement (SEPP) via the q2-fragment-insertion plugin.36 Taxonomy was 
assigned to reads using a naïve-Bayes classifier trained on the latest Greengenes 1 database 
as of January 2022 (Greengenes 13.8).37 Reads with no taxonomy below the kingdom level and 
reads classified as mitochondria and chloroplast were removed from further consideration. For 
diversity analyses, samples were rarefied to 40,625 reads per sample, which was the highest 
rarefaction depth that did not exclude any samples. A taxa bar plot was created using 
Microshades.38 
 
Differential abundance testing: Analysis of Compositions of Microbiomes with Bias Correction 
(ANCOM-BC)39 was used to assess differentially abundant taxa between LCM and HU mice. 
ANCOM-BC was performed at the family and genus level, and a Benjamini-Hochberg FDR 
correction was applied to p values.  
 
Diversity metrics: Alpha diversity was calculated using Faith’s phylogenetic diversity,40 and 
microbiome beta diversity was calculated using unweighted UniFrac distances.41 Metabolome 
beta diversity was calculated using the Bray-Curtis distance metric. 
 
Ordination: Microbiome principal coordinate analysis (PCoA) plots were generated using the 
unweighted UniFrac distance matrix via the Python package scikit-bio (v0.5.6),42 and 
metabolomics PCoA plots were generated using Bray-Curtis distances. 
 
Calculation of centroids for distance-based statistics: To avoid pseudoreplication43 affecting 
precision of estimates in permutation-based tests where random effects or cluster-robust 
standard errors cannot be used, we collapsed microbiome UniFrac distances to centroids within 
humanized microbiome donors, or LCM centroids within each experimental cohort, using the 
dist_multi_centroids function from the usedist R package (v0.4.0).44 This reduced sample size 
from n=29 (20 mice with microbiomes humanized in pairs from 10 unique donors + 9 LCM 
across 3 experimental cohorts) to n=13 (10 averaged HU centroids corresponding to each 
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donor microbiome + 3 LCM centroids corresponding to each cohort). Corresponding non-
distance data (such as compound abundance) were averaged (arithmetic mean) within groups.  
 
Procrustes randomization test: Procrustes randomization tests were performed on the 
metabolomics and microbiome PCoA coordinates from centroid distances using the protocol 
described by Peres-Neto and Jackson.45 Specifically, we first performed a Procrustes 
transformation on the observed datasets, and then permuted the GT lipid or GT aqueous 
compound Bray-Curtis distance PCoA coordinates 104 times and performed a Procrustes 
transformation on the permuted datasets. The p value was calculated based on the portion of 
permuted Procrustes-transformed datasets with resulting m2 (Gower’s statistic, also referred to 
as disparity) scores lower than the Procrustes m2 score of the observed datasets. 
 
Compounds associated with microbiome composition: To identify compounds and 
neurochemicals associated with microbiome community composition, PERMANOVA tests were 
performed using Adonis2 from the R package vegan (v2.6-4)46 to assess correlations between 
plasma abundances of each individual compound and the microbiome unweighted UniFrac 
distance matrix (using 104 permutations). p values were adjusted with a Benjamini-Hochberg 
correction to reduce false discovery rates. Due to reduced power from using centroids, we 
considered uncorrected p < 0.01 to be associated with microbiome composition. For any 
compounds associated with microbiome composition, we used the R package Selbal (v0.1.0)47 
with 10-fold cross validation to identify genus-level balances that explained compound 
abundance.  
 
Compounds associated with microbiome diversity: We performed linear regression with cluster 
robust standard errors on each individual compound and Faith’s phylogenetic diversity to 
assess which compounds associated with microbiome diversity. Standard errors were clustered 
by humanized microbiome donor, or by experiment for LCM mice, and p values were calculated 
based on clustered standard errors using the R package fixest (v0.11.2).48 p values were 
adjusted with a Benjamini-Hochberg correction to reduce false discovery rates (FDR). 
Regressions with any data points that had a dffit (difference in model fit if the point was 
removed) absolute value greater than 1 were removed from further consideration. 
 
Mixed-effects multi-omics modeling: Associations between metabolites and microbes were 
assessed by pairwise linear mixed effects models between each microbe and each metabolite, 
with the formula: 
 

� ������	�
����
�� ~ � � ��������	������ �  100� � �1|��	������ ���  �  �  (eqn.1) 
 
Metabolite concentrations were z-score transformed so that � coefficients could be compared 
across compounds. Microbe relative abundances were multiplied by 100 to transform to percent 

relative abundance and then arcsinh transformed (����������  �  �√�� � 1 � to alter the 
distributions of relative abundances to minimize violations of linear modeling assumptions 
across features. (1|humanized id) indicates a random effect for the humanized microbiome ID or 
LCM status. The maximum influence of any datapoint was calculated for each regression using 
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the mdffits function from the R package HLMdiag (v0.5.0).49 Any regressions with any data 
points that had an influence (difference in model fit if the point was removed) absolute value 
greater than or equal to 4 were removed from further consideration. Models were run using the 
R package lme4 (v1.1-29),50 and p values were calculated based on Satterthwaite’s degrees of 
freedom using the R package LmerTest (v3.1-3).51 p values were adjusted with a Benjamini-
Hochberg correction to reduce FDR.  
 
Data and code availability: Data and code for reproducing these analyses can be accessed at 
https://github.com/sterrettJD/GT-micro-metabo. Raw 16S sequencing data is available in the 
European Nucleotide Archive using the accession IDs PRJEB77100 and ERP161582. 
 
Results 
Metabolomics of mouse plasma and GT: Metabolomics of the mouse plasma resulted in 4,282 
lipid and aqueous compounds while metabolomics of GT extract resulted in 4,415 compounds 
(Figure 1). Of those, 624 GT compounds were detected in at least 3 plasma samples following 
GT gavage. 432 were found in the lipid-rich extract (GT lipids) while 192 were found in the 
aqueous extract (GT aqueous).  
 
We removed from consideration any plasma GT compounds that were also found in the plasma 
of mice not gavaged with GT. This step removed 86 lipid compounds and 59 aqueous 
compounds, resulting in a total of 145 compounds removed. After all filtering steps, 479 (346 
lipids, 133 aqueous) compounds remained, which were evaluated for their relationships with 
microbiome composition and diversity. These compounds are listed in the supplemental file 
denoted “Green Tea Compounds Table”. 
 
Contamination of germ-free controls: Following 16S rRNA gene amplicon sequencing of LCM 
and HU fecal microbiomes, it was discovered that the LCM mice were not germ-free as 
intended, and instead had microbiomes (Figure 2). Additionally, the LCM controls had small 
cecums, which are uncharacteristic of germ-free mice (data not shown). Specifically, the LCM 
controls were dominated by 6 Amplicon Sequence Variants (ASVs) in the Firmicutes phylum, 
which made up over 90% of the detected reads. Supplemental Table 1 shows the taxonomic 
assignment and relative abundances of these ASVs. Following extensive investigation, it was 
determined that the contamination resulted from the irradiated low polyphenol food that was fed 
to mice. For example, bacterial colonies grew when irradiated food was plated and PCR 
analysis showed a range of 3.5 ng/μL-4.6 ng/μL in the 3 irradiated samples tested. No growth 
was seen when irradiated GT was plated. Discussions with the vendor were largely 
inconclusive, but it was surmised that the source of bacteria may have been casein used in the 
diet.52 While not ideal, because all mice in the study received the same food, it was determined 
that all mice were exposed to this contamination, and therefore we continued with data analysis, 
focusing on statistical methods that consider microbiome community composition or diversity 
rather than solely group status (LCM vs HU).  
 
Taxonomic composition of fecal microbiomes: LCM and HU mouse microbiomes differed in 
community composition (pseudo-F = 5.9, p = 0.005). LCM mice were colonized almost entirely 
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by Firmicutes, with six of the nine mice having high levels of unassigned ASVs in the family 
Peptostreptococcaceae (Figure 2, p = 0.005). Additionally, LCM mice had higher relative 
abundances of Epulopiscium (ANCOM-BC; p = 0.015), and Turicibacter (ANCOM-BC; p = 
0.002) in their microbiomes compared to HU mice (Figure 2).  
 
Microbiome composition was very similar within HU mouse replicates (UniFrac distance within 
pairs mean [95% confidence interval (CI)] = 0.25 [0.21 – 0.30]), and variable between mice 
colonized with different human donors (UniFrac distances between centroids mean [95% CI] = 
0.50 [0.49 – 0.52]) (Figure 2). This is supported by a PERMANOVA demonstrating larger 
variance in phylogenetic composition between pairs than within pairs (R2 = 0.87, psuedo-F = 
7.6, p  < 0.001). The microbiome of all but two pairs of HU mice had Akkermansia present at 
high relative abundances (≥20%). All HU pairs had representation of Bacteroidetes, primarily 
including Bacteroides, Parabacteroides, and Alistipes. Proteobacteria were present in the 
microbiome of all HU but not LCM mice, and this phylum predominantly consisted of ASVs 
belonging to Bilophila and Sutterella. Some HU pairs also had low relative abundances (<5%) of 
Fusobacteria in their fecal microbiome. 
 
Diversity, composition and relationships between the fecal microbiome, plasma metabolome, 
and plasma lipidome: Both alpha and beta diversity of the fecal microbiome differed between 
HU and LCM mice. Specifically, microbiome phylogenetic composition (UniFrac distance) 
strongly differed between LCM and HU mice (pseudo-F = 5.9, p = 0.005), and clear separation 
between LCM and HU can be seen in the unweighted UniFrac PCoA (Figure 3A). Additionally, 
Faith’s phylogenetic diversity was significantly higher in HU mice (mean [95% CI] = 12.0 [12.3 – 
13.3]) than LCM mice (mean [95% CI] = 4.1 [2.3 – 5.9]; regression β = 8.7, p < 0.001; Figure 
3B).  
 
The overall composition of GT-specific lipids in the plasma was not different between LCM and 
HU mice (Bray-Curtis distance PERMANOVA on centroids R2 = 0.12, pseudo-F = 1.5, p = 0.14; 
Figure 3C), nor was the composition of aqueous GT-specific (Bray-Curtis distance 
PERMANOVA on centroids R2 = 0.16, pseudo-F = 0.17, p = 0.96; Figure 3D). This can be seen 
in PCoA plots, where the GT compounds in plasma do not cluster according to LCM or HU 
group (Figure 3C and 3D). The portion of shared GT compounds present in plasma was high in 
both the lipid and aqueous datasets (Jaccard similarity lipid mean [min – max] = 1.0 [0.99 – 1.0]; 
aqueous mean [min – max] = 0.95 [0.88 – 0.98]. Furthermore, a Procrustes randomization test 
did not reveal an overall significant relationship between microbiome composition (UniFrac) and 
GT lipids in plasma (Figure 4A, m2 = 0.39, p = 0.085) or aqueous GT compounds in plasma 
(using Procrustes-transformed Bray-Curtis PCoA, Figure 4B, m2 = 0.66, p = 0.79).  
 
Green tea compounds associated with microbiome composition: One goal of the study was to 
determine if GT compounds in plasma associate with microbiome diversity and composition. 
Understanding these associations are a first step towards determining which bacterial species 
may be responsible for the metabolism of specific GT compounds. PERMANOVA tests on 
centroids assessing associations between the concentration of each GT compound and 
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microbiome composition (unweighted UniFrac) found no significant relationships after FDR 
correction. For reference, Supplemental Table 2 shows compounds with uncorrected p < 0.05.  
 
The lack of significance looking while comparing multivariate similarity between samples may be 
too unfocused. It is very likely that many compounds would be unaffected by most members of 
the microbiome, as many food-derived compounds are absorbed in the small intestine. We thus 
looked for finer-grained relationships between individual compounds and smaller sets of 
microbes. 
 
Though whole community-level associations were not found, for the 12 compounds most 
associated with microbiome composition, Selbal-identified balances were able to explain 45% to 
70% of the variation in the abundance of these compounds, and all had a regression slope 
adjusted p < 0.05. Gamma-glutamyl-alanine having the most variation explained by a positive 
correlation with a balance of the genera Alistipes to Butyricimonas (Figure 5). Balances 
identified by Selbal are ratios of taxa, meaning that as gamma-glutamyl-alanine increased, 
Alistipes increased relative to Butyricimonas, or Butyricimonas decreased relative to Alistipes. 
 
Green tea compounds associated with microbiome phylogenetic diversity: When testing GT 
compound associations with microbiome alpha diversity (Faith’s phylogenetic diversity), 8 
compounds had FDR-corrected p < 0.05 (Figure 6 and Supplemental Table 3), including 
lactiflorin, acetylagmatine, aspartic acid, 7,8- dihydroparasiloxanthin, montecristin, and 
CL(82:16) (Figure 7). Most of these compounds had negative associations with microbiome 
diversity, except for CL(82:16) and an unannotated compound. 
 
Relationships between individual microbes and GT compounds: When controlling for the 
humanized microbiome with which mice were colonized with a random effect and applying a 
Benjamini-Hochberg FDR correction, across all mice (including LCM mice) we identified 161 
significant relationships between microbes and GT compounds in plasma out of the potential 
33,433 relationships tested. Of these, the strongest associations were between an ASV in the 
genus Bifidobacterium and an unannotated compound, an ASV in the genus Allobacterium and 
montecristin (β = 277.8, p < 0.001, data not shown), and an ASV in the family 
Peptostreptococcaceae and acetylagmatine (β = 0.5, p < 0.001, data not shown).  
 
Despite including LCM status as a covariate in each compound-taxon regression, there was still 
a large signal related to the high relative abundance taxa in the LCM mice, such as 
Peptostreptococcaceae. Thus, we also performed this analysis in only HU mice, as differences 
in overall architecture of the LCM vs HU mice fecal microbiomes may have biased these 
individual metabolite-taxon relationships and violated the random effects assumption. When 
mixed effects regressions were performed for only HU mice, several GT compounds were 
significantly associated with specific bacterial ASVs. Of 30,594 potential relationships tested, 22 
were significant after Benjamini-Hochberg FDR correction (Figure 8A). For example, the GT 
compound wilforlide was positively associated with an ASV in the genus Anaerorhabdus (β = 
15.1, p < 0.001). Spiramycin was positively associated with taxa in the genera Gemmiger (β = 
13.7, p < 0.001) and Lactobacillus (β = 12.9, p < 0.001, Figure 8B). While multiple unannotated 
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compounds had multiple significantly associated microbes, spiramycin was the annotated 
compound with more than one significant relationship with individual taxa (after FDR correction). 
The genus Gemmiger had the highest number of significant relationships with GT compounds, 
though 3 of these 4 relationships were primarily with unannotated compounds, and the 
relationships between compounds are not known.  
 
Discussion: 
We show that GT compounds significantly associated with specific gut bacterial genera 
following the acute feeding of GT extract to mice. Our analysis strategy included an important 
data reduction step, whereby analysis focused on only GT compounds that were found in the 
plasma of mice who had consumed GT. This greatly increased power (via decreasing the need 
for as stringent FDR correction) by limiting analysis from 4,282 plasma compounds to 479 
compounds that were specific to the intervention. Importantly, these are compounds detected in 
dietary formulations of green tea, not solely compounds produced by the plant from which green 
tea is derived, Camellia sinensis. Much like the mice in this study with associated microbiomes, 
C. sinensis plants are meta-organisms that coexist with microbial communities.53,54 Microbial 
metabolites and even excreted metabolites from other nearby plants or pollinators may be 
present in the leaves used to create the tea used in this study, so the GT compounds discussed 
may come from a variety of sources across multiple kingdoms of life.  
  
Sequencing of LCM and HU microbiomes from fecal pellets allowed us to perform analyses 
considering microbiome composition and diversity, rather than solely LCM status. This was 
particularly useful because the LCM mice in this study were populated with a low diversity 
microbiome due to contamination of the low polyphenol food used. Despite using phylogenetic 
composition of the microbiome in our analyses, we did not see multivariate-multivariate 
relationships between overall composition of green tea compounds in plasma and the 
composition of the gut microbiome (per a Procrustes randomization test on PCoA coordinates 
from green tea compound Bray-Curtis distance and Unweighted UniFrac microbiome distance), 
which could be due to the absorption of many green tea compounds in the small intestine, 
before reaching the majority  of microbial biomass in the colon. 
 
 
Multiple compounds found in GT extracts were individually associated with microbiome 
composition and diversity. Importantly, these compounds are known to be present in plants and 
are relevant to mammalian physiology. For example, an annotated GT compound in plasma 
associated with microbiome diversity, montecristin, is an annonaceous acetogenin (a group of 
compounds that are waxy derivatives of fatty acids and are reported to have an array of health 
effects, including antimalarial, antiparasitic, and anti-cancer activities).55 Another plant 
compound from GT that differed as a function of the microbiome was lactiflorin, a compound 
originally characterized in the plant genus Paeonia, that activates the antioxidant-controlling 
transcription factor nuclear factor erythroid 2-related factor (Nrf2) in rats.56 Lactiflorin, a 
monoterpene glycoside, has been used in the treatment of rheumatoid arthritis via inhibiting 
leukocyte recruitment and angiogenesis via, potentially, the VEGFR and PI3K-Akt signaling 
pathways, interleukin signaling, and platelet activation.57  
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Previous studies have focused on the health effects of green tea catechins, a subgroup of 
flavonoids with known antioxidant properties.58 While several catechins, including 
epigallocatechin 3-p-coumarate, catechin 3-gallate, gallocatechin 3'-gallate, and 
epigallocatechin 3-cinnamate were found in GT extract, these were not found at detectable 
levels in at least 3 mouse plasma samples and hence were not included in microbiome 
analyses.  This could be due to the concentration of extract used, the sensitivity of the assay, or 
the timing of blood draw.  
 
Most of the compounds associated with microbiome presence, diversity, or composition were 
found in lower abundance in the plasma of HU mice, relative to LCM mice. For example, 
lactiflorin was nearly 7 times less abundant in HU mice. Our data suggest that the presence of a 
gut microbiome either (1) inhibits the absorption of lactiflorin, (2) increases metabolism of 
lactiflorin by the host, or (3) allows for bacterial degradation of lactiflorin. In fact, most 
compounds associated with microbiome presence, diversity, or composition were less abundant 
in HU relative to LCM mice, suggesting potential co-metabolism of these compounds by the 
microbiome.  
 
Another compound identified to be associated with microbiome composition was gamma-
glutamyl-alanine. Notably, many plants and mammals possess gamma-glutamyl transpeptidase 
(GGT),59 which is required for synthesis of gamma-glutamyl amino acids and often involved in 
glutathione metabolism; however, most bacteria also encode GGT,60 making the microbiome a 
candidate to alter concentrations of gamma-glutamyl-alanine either via direct metabolism or via 
an unknown effect on host metabolism. We did not detect gamma-glutamyl-alanine in the 
plasma of mice not gavaged with GT, so we consider this to be gamma-glutamyl-alanine above 
baseline concentrations. Seventy percent of the variation in plasma gamma-glutamyl-alanine 
was explainable by the ratio of Alistipes to Butyricimonas. Notably, human and murine gut 
colonizers within the genus Butyricimonas contain the gene gamma-D-glutamyl-L-lysine 
dipeptidyl-peptidase (K20742),61 which releases gamma-glutamyl-alanine from cell walls, and 
Alistipes is negatively correlated with plasma GGT in humans,62 supporting the directionality of 
the relationship of this ratio with plasma gamma-glutamyl alanine abundance. However, this 
balance may just be a proxy for overall microbiome functional composition, as other members of 
the microbial community that interact with Alistipes and Butyricimonas may be more directly 
responsible for differences in gamma-glutamyl alanine.  
 
We also found many significant relationships (after FDR correction) between GT compounds 
and individual taxa when only HU mice were included in analysis (Figure 8). In contrast to the 
multivariate associations where most compounds were lower in HU mice, we found primarily 
positive associations between individual taxa and GT compounds in plasma. The annotated GT 
compound with the highest number of significant relationships with individual taxa was 
spiramycin, an antimicrobial produced by Streptomyces ambofaciens, a member of the soil 
microbiome/rhizosphere.63 However, the mechanism of the positive association between 
spiramycin and ASVs within the genera Gemmiger and Lactobacillus is unclear. We found 
positive relationships with another bioactive plant compound, wilforlide B (a norditerpenoid) and 
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Anaerohabdus. While the data are compelling in that the majority of compounds have been 
found in plants, the mechanistic relationships between these compounds and individual taxa are 
unclear, especially given that metabolism pathways are poorly understood. Future work could 
track closely related compounds or apply machine learning-based approaches to identify 
potential metabolic pathways for these natural products and assess microbial genomes for 
genes responsible for these reactions. 
 
One limitation of the study is the small number of replicate mice that were colonized with a 
specific human microbiome (n=2), and that mice were colonized with only 10 different human 
microbiomes. While significant relationships between specific bacteria and GT compounds were 
found, increasing the sample size would increase power to identify relationships, especially in 
the permutation-based tests, where we needed to reduce our effective sample size to control for 
pseudoreplication. More samples would potentially allow for using within-estimator (within each 
humanized microbiome source) to estimate the effects of small changes to individual taxa within 
a similar microbiome community structure subtype; this is akin to estimating the effects of 
increasing one species of bird within different terrestrial biomes like grassland and savannah. 
Another weakness is the lack of plasma and microbiome sampling before green tea gavage. We 
removed any compounds that were detectable in (HU and LCM) mice that did not receive a GT 
gavage; however, having samples from mice before and after gavage would also increase our 
ability to identify metabolism of GT compounds. Our focus on only GT compounds found in 
plasma does reduce the possibility of assessing changes in metabolic products of GT 
compounds.  
 
Moreover, we chose the two-hour timepoint to maximize the GT compound signal in plasma, 
though multiple plasma samples after feeding would allow for more detailed resolution of GT 
compound abundance trajectories based on microbiome composition, including time lags to 
assess causal directionality. While the two-hour timepoint is when the most GT compounds 
were detectable in plasma in a small pilot study, it is not necessarily when the microbiome may 
have the strongest effects. Stronger doses of GT or more variety in timepoints may alter the 
effects of the microbiome on GT compounds in plasma. It should be noted that the dose of GT, 
if scaling linearly, is comparable to 1-3 servings in an adult human, or if scaling allometrically, is 
equivalent to a small serving of GT in an adult human. 
 
An additional limitation of the study is the presence of gut microbiomes, albeit of low diversity, in 
the LCM mouse group. Although it was assumed that all mice were exposed to the same 
contaminated low polyphenol mouse food, the contaminating taxa were able to dominate the 
fecal microbiome of the LCM mice, such that there were no mice free of microbial metabolism of 
GT compounds. Currently underway studies utilize mice unexposed to GT as a control in a 
similarly designed acute feeding study, as well as a two-week feeding of GT to compare the 
effects of the microbiome on sub-chronic versus acute metabolism of GT.  
 
One strength of our experimental design lies in the use of 10 different human microbiomes to 
enable the evaluation of relationships between individual microbial species and GT compounds. 
While many humanized microbiome studies are pseudoreplicated,43 our use of multiple donor 
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microbiomes while controlling for replication covers a broad variety of possible human-like 
microbiomes. Together, these results suggest that specific bacterial species may affect the 
metabolism of these bioactive compounds, thereby influencing their health effects. 
 
Overall, this study represents a successful workflow for discovering relationships between food 
compounds and composition of the gut microbiome, as well as individual gut bacterial genera. In 
addition, this methodology has allowed us to track GT compounds from the tea to plasma. 
Though our study was limited in size and timepoints, we believe this methodology can and 
should be applied to study the effects on the gut microbiome on food metabolism. We identified 
multiple relationships between microbiome composition and GT compounds in plasma after GT 
consumption, supporting that bacterial taxa affect the absorption and metabolism of GT 
compounds, thereby possibly influencing their positive or negative health effects.  
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Figure 1. Compounds from green tea were detected in plasma after green tea gavage in 
mice. Flowchart shows study design. A total of 29 mice (20 humanized microbiomes, 9 low 
complexity microbiomes) were gavaged with 100 µL of green tea then sacrificed 2 hours later, 
and plasma, whole brain, and fecal microbiome samples were collected. Liquid chromatography 
mass spectrometry-based metabolomics was performed on green tea samples and plasma.  
Plasma metabolomics data was mined to determine which green tea compounds could be found 
in plasma. Relationships between the fecal microbiome and green tea compounds found in 
plasma were assessed. Abbreviations: LCMS, liquid chromatography-mass spectrometry; 
MeOH, methanol; rRNA, ribosomal ribonucleic acid. 
 
 
Figure 2. Taxa bar plot shows differences in phylum and genus level composition 
between low complexity microbiome and humanized microbiome mice. Bars are colored 
by phylum and microshaded by genus, and height of each colored bar represents the relative 
abundance of the corresponding taxon. One stacked bar represents the composition of one 
mouse’s microbiome, and humanized microbiome IDs are shown along the x-axis. Low 
complexity microbiome mice are labeled as “Control” and have vastly different composition 
compared to humanized mice.  
 
 
Figure 3. Microbiome PCoA and alpha diversity show clear separation between low 
complexity microbiome and humanized mice, whereas metabolome PCoA plots do not 
separate as clearly. A) Microbiome unweighted UniFrac PCoA is colored by humanized vs low 
complexity microbiome status. B) Boxplot shows higher Faith’s phylogenetic diversity in 
humanized vs low complexity microbiome mice. C) PCoA of lipid fraction of green tea 
compounds in plasma is colored by humanized vs low complexity microbiome status. D) PCoA 
of aqueous fraction of green tea compounds in plasma is colored by humanized vs low 
complexity microbiome. Abbreviation: PCoA, principal coordinates analysis; PCo, principal 
coordinates axis. 
 
 
 Figure 4. Procrustes analysis does not indicate multivariate-multivariate relationships 
between green tea lipids or compounds in plasma and phylogenetic composition of the 
microbiome. Panel A shows the connection between microbiome composition and the 
composition of aqueous GT compounds detected in plasma, where each triangle represents the 
composition of one microbiome sample, and a line connects to that sample’s corresponding 
aqueous GT compounds in plasma. Panel B shows the connection between microbiome 
composition and the composition of lipid GT compounds detected in plasma, where each 
triangle represents the composition of one microbiome sample, and a line connects to that 
sample’s corresponding lipid GT compounds in plasma. Procrustes randomization test did not 
reveal an overall significant relationship between microbiome composition (UniFrac) and GT 
lipids in plasma (m2 = 0.39, p = 0.085) or aqueous GT compounds in plasma (m2 = 0.66, p = 
0.79). In both panels, unweighted UniFrac microbiome PCoA coordinates were left 
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untransformed, and metabolomics sample Bray-Curtis PCoA coordinates were transformed with 
a Procrustes function. Samples of the same type positioned close together were compositionally 
similar, whereas samples far apart were dissimilar. Shorter lines between samples indicate 
better overlap between the microbiome and metabolomics datasets. For statistical testing, 
samples belonging to mice from the same donor microbiome or low complexity microbiome 
mice from the same experimental cohort were collapsed into one centroid per treatment unit. 
Abbreviation: PCoA, principal coordinates analysis; PCo, principal coordinates axis. 
 
  
Figure 5. Compositional balances in microbial relative abundances explain green tea 
compound abundance in plasma. Selbal with cross validation was used to identify balances 
(log-ratios) of taxa that predict compounds that were associated with microbiome composition. 
The x-axis of each plot shows the microbiome balance, with the numerator and denominator 
labeled on the plot as <family>_<genus>. The y-axis shows the abundance of each green tea 
compound, which is labeled at the top of each plot, along with the regression R2. The line on 
each plot shows the regression line of best fit and the shaded region indicates the 95% 
confidence interval for that regression line. Each point represents the average balance for each 
donor microbiome or experimental control. 
 
 
Figure 6. Several green tea metabolites are associated with phylogenetic diversity of the 
gut microbiome. Each point represents one green tea compound. The y-axis represents p-
values from a regression between that compound and microbiome phylogenetic diversity, and 
the x-axis represents the effect size of that compound’s association with microbiome diversity. 
Compounds abundances were z-score transformed to allow for comparison of effect sizes, and 
p-values were calculated using cluster robust standard errors, where cluster ID was the donor 
microbiome source, or experimental cohort for low complexity microbiome mice. The horizontal 
line represents p = 0.01, and vertical lines represent an effect size of 1, indicating that a 1 
standard deviation increase in compound abundance was associated with a 1 unit increase in 
Faith’s phylogenetic diversity. Compounds with p < 0.01 and fold change absolute value > 2 are 
labeled with their annotation. 
 
  
Figure 7. Phylogenetic diversity of the gut microbiome is associated with green tea 
compound abundance in plasma. Fixed effects regression with cluster robust standard errors 
(clustered by humanized microbiome donor ID or low complexity microbiome experimental 
cohort) was used to identify green tea compounds that were associated with Faith’s 
phylogenetic diversity of the gut microbiome, and compounds that had significant (Benjamini-
Hochberg p < 0.05) relationship with Faith’s phylogenetic diversity are shown. The x-axis of 
each plot shows Faith’s phylogenetic diversity, and the y-axis shows the abundance of each 
green tea compound, which is labeled at the top of each plot. The line on each plot shows the 
regression line of best fit and the shaded region indicates the 95% confidence interval for that 
regression line. Each point represents one sample. 
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Figure 8. Individual green tea compounds are associated with specific genera when 
controlling for overall microbiome composition. A) A stacked bar plot shows a summary of 
relationships between green tea compounds and individual genus-level relative abundances, 
indicating the significance and direction of compound-microbe relationships. B) A shaped 
heatmap shows the direction and significance of any microbes and compounds that had 
significant relationships after Benjamini-Hochberg p-value correction. To generate these results, 
39,860 pairwise linear mixed effects regressions were run on z-score(metabolite) ~ 
arcsinh(microbe) + (1|humanized_id), where (1|humanized_id) indicates the microbiome mice 
were humanized with, or if mice were in the low complexity microbiome group. Metabolites were 
transformed to have a mean of 0 and standard deviation of 1 to allow for comparison of effect 
sizes across metabolites. Each point represents the regression run between the metabolite on 
the x-axis and the microbe shown on the y-axis. The color of each point represents the beta 
extracted from the model (coefficient of the microbe), and the size of points represents the p-
value of that coefficient. Circles represent p > 0.05, whereas triangles represent p < 0.05.  
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