Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N^{\prime}-[(E)-Furan-2-ylmethylidene]-4-hydroxybenzohydrazide

Riya Datta, ${ }^{\text {a }}$ V. Ramya, ${ }^{a}$ M. Sithambaresan ${ }^{\text {b }}$ and M. R. Prathapachandra Kurup ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Chemistry, Christ University, Hosur Road, Bangalore 560 029, India, ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka, and ${ }^{\text {c }}$ Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India
Correspondence e-mail: eesans@yahoo.com

Received 13 December 2013; accepted 25 January 2014

Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$;
R factor $=0.024 ; w R$ factor $=0.064 ;$ data-to-parameter ratio $=6.2$.

The title compound, $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$, exists in the E conformation. The five-membered ring and the phenyl rings form dihedral angles of 36.73 (10) and $12.22(10)^{\circ}$, respectively, with the central $\mathrm{C}(=\mathrm{O}) \mathrm{N}_{2} \mathrm{C}$ unit. The crystal packing is dominated by strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. Together with weaker $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, these establish a three-dimensional supramolecular network.

Related literature

For biological applications of benzohydrazones and derivatives, see: Sreeja et al. (2004); Rakha et al. (1996). For the synthesis of related compounds, see: Emmanuel et al. (2011). For a related structure, see: Datta et al. (2013).

Experimental

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$
$M_{r}=230.22$
Orthorhombic, Pna2
$a=9.5934(3) \AA$
$b=11.1939(4) \AA$
$c=10.3332(3) \AA$
$V=1109.66(6) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
$0.25 \times 0.20 \times 0.16 \mathrm{~mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2004)
$T_{\text {min }}=0.975, T_{\text {max }}=0.984$
3425 measured reflections 1014 independent reflections 992 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.015$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.064$
$S=1.05$
1014 reflections
163 parameters
3 restraints
independent and constrained refinement
$\Delta \rho_{\text {max }}=0.13$ e \AA^{-3}
$\Delta \rho_{\min }=-0.10 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 2-\mathrm{H} 2^{\prime} \cdots \mathrm{O} 2^{\mathrm{i}}$	0.88 (1)	2.09 (1)	2.9187 (19)	157 (2)
$\mathrm{O} 3-\mathrm{H}^{\prime} \cdots \cdots 1^{\text {ii }}$	0.85 (1)	2.13 (1)	2.971 (2)	169 (3)
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 2^{\text {i }}$	0.93	2.35	3.160 (2)	145
$\mathrm{C} 11-\mathrm{H} 11 \cdots 3^{\text {iii }}$	0.93	2.42	3.202 (2)	142

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

The authors are grateful to the Department of Chemistry, IIT Madras, Chennai, India, for providing the single-crystal X-ray diffraction data. RV and RD thank Christ University, Hosur Road, Bangalore 560029, India, for financial support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: FJ2657).

References

Brandenburg, K. (2010). DIAMOND . Crystal Impact GbR, Bonn, Germany. Bruker (2004). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
Datta, R., Ramya, V., Sithambaresan, M. \& Kurup, M. R. P. (2013). Acta Cryst. E69, o1549.
Emmanuel, J., Sithambaresan, M. \& Kurup, M. R. P. (2011). Acta Cryst. E67, 03267.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Rakha, T. H., Ibrahim, K. M., Abdallah, A. M. \& Hassanian, M. M. (1996). Synth. React. Inorg. Met. Org. Chem. 26, 1113-1123.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sreeja, P. B., Kurup, M. R. P., Kishore, A. \& Jasmin, C. (2004). Polyhedron, 23, 575-581.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

N^{\prime}-[(E)-Furan-2-ylmethylidene]-4-hydroxybenzohydrazide

Riya Datta, V. Ramya, M. Sithambaresan and M. R. Prathapachandra Kurup

1. Comment

Hydrazones and their derivatives show excellent biological activities (Sreeja et al., 2004). The great potential applications of aryl- hydrazones as antineoplastic, antiviral and antiinflammatory agents, hammered on the investigations of their derivatives (Rakha et al., 1996). As a continuous work on hydrazone compounds, a new hydrazone derivative, N^{\prime}-[(E)-4,5-dihydrofuran-2-ylmethylidene]-4-hydroxybenzohydrazide, was prepared and structurally characterized. The ORTEP view of the title compound is shown in Fig. 1.
The compound crystallizes in orthorhombic space group Pna2. This molecule adopts an E configuration with respect to the $\mathrm{C} 5=\mathrm{N} 1$ bond and it exists in the amido form with a $\mathrm{C} 6=\mathrm{O} 2$ bond length of 1.232 (2) \AA which is very close to the reported $\mathrm{C}=\mathrm{O}$ bond length of similar structure (Datta et al., 2013). The O 2 and N 1 atoms are in Z configuration with respect to $\mathrm{C} 6-\mathrm{N} 2$ having a torsion angle of $3.7(3)^{\circ}$. The central $\mathrm{C}(=\mathrm{O}) \mathrm{N}_{2} \mathrm{C}$ unit has dihedral angles of 36.73 (10) and $12.22(10)^{\circ}$, respectively with the five-membered ring and the phenyl ring.

There are two classical intermolecular $\mathrm{N} 2-\mathrm{H}^{\prime} \cdots \mathrm{O} 2$ and $\mathrm{O} 3-\mathrm{H}^{\prime} \cdots \mathrm{N} 1$ hydrogen bond interactions (Fig. 2) between the neighbouring molecule with $\mathrm{D} \cdots \mathrm{A}$ distances of 2.9187 (19) and 2.971 (2) \AA respectively (Table 1). Two weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond interactions (Fig. 3) between the H atoms attached at the $\mathrm{C} 5 \& \mathrm{C} 11$ and $\mathrm{O} 2 \& \mathrm{O} 3$ atoms of neighbouring molecules with D \cdots A distances of 3.160 (2) and 3.202 (2) \AA respectively, also promote the classical hydrogen bond interactions forming a supramolecular three-dimensional-hydrogen bonding network in the lattice. Notwithstanding that there are very weak short ring interactions found in the crystal system, they are not significant to support the network since centroid-centroid distances are above $4 \AA$. Fig. 4 shows a packing diagram of the title compound viewed along a axis.

2. Experimental

The title compound was prepared by adapting a reported procedure (Emmanuel et al., 2011). A solution of furan-2carbaldehyde $(0.096 \mathrm{~g}, 1 \mathrm{mmol})$ in methanol/DMF 2:1 (10 ml) was mixed with a methanol/DMF solution (10 ml) of 4hydroxybenzhydrazide ($0.152 \mathrm{~g}, 1 \mathrm{mmol}$). The mixture was refluxed for 6 h and then cooled to room temperature. Light orange colored crystals were formed which were recrystallized in methanol/DMF (2:1 $v / v)$. Block shaped crystals, suitable for SXRD studies, were obtained after slow evaporation of the solution in air for a few days.

3. Refinement

The atoms $\mathrm{H} 2^{\prime}$ and $\mathrm{H} 3^{\prime}$ were located from a difference Fourier map and $\mathrm{N} 2-\mathrm{H} 2^{\prime}$ and $\mathrm{O} 3-\mathrm{H} 3^{\prime}$ distances are restrained to 0.88 ± 0.01 and $0.84 \pm 0.01 \AA$ respectively. All the other H atoms on C were placed in calculated positions, guided by difference maps, with $\mathrm{C}-\mathrm{H}$ bond distances $0.93 \AA$. H atoms were assigned as $U_{\text {iso }}(\mathrm{H})=1.2 \mathrm{Ueq}($ carrier $)$.

Computing details

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figure 1
ORTEP view of the title compound drawn with 50% probability displacement ellipsoids for the non-H atoms.

Figure 2
Classical hydrogen-bonding interactions in the crystal structure of $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$.

Figure 3
Hydrogen-bonding interactions in the crystal structure of $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$.

Figure 4
Packing diagram of the compound along the a axis.
N^{\prime}-[(E)-Furan-2-ylmethylidene]-4-hydroxybenzohydrazide
Crystal data
$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3} \quad F(000)=480$
$M_{r}=230.22$
Orthorhombic, $\mathrm{Pna2}_{1}$
Hall symbol: P 2c -2n
$a=9.5934$ (3) \AA
$b=11.1939$ (4) \AA
$c=10.3332(3) \AA$
$V=1109.66(6) \AA^{3}$
$Z=4$
$D_{\mathrm{x}}=1.378 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
$\theta=2.7-28.4^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Block, light orange
$0.25 \times 0.20 \times 0.16 \mathrm{~mm}$

Data collection

Bruker APEXII CCD area-detector

 diffractometerRadiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.33 pixels mm^{-1}
phi and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\min }=0.975, T_{\max }=0.984$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.064$
$S=1.05$
1014 reflections
163 parameters
3 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

> 3425 measured reflections
> 1014 independent reflections
> 992 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.015$
> $\theta_{\max }=25.0^{\circ}, \theta_{\min }=2.7^{\circ}$
> $h=-11 \rightarrow 11$
> $k=-13 \rightarrow 9$
> $l=-10 \rightarrow 12$

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0363 P)^{2}+0.1774 P\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.13$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.10$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.046 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
O1	$1.10537(16)$	$0.44042(12)$	$0.85962(16)$	$0.0487(4)$
O2	$1.15292(13)$	$0.82491(12)$	$0.64988(16)$	$0.0454(4)$
O3	$0.79142(15)$	$1.25293(13)$	$0.43449(17)$	$0.0509(4)$
N1	$1.00354(16)$	$0.64857(13)$	$0.74734(17)$	$0.0346(4)$
N2	$0.94150(15)$	$0.74797(14)$	$0.69195(18)$	$0.0357(4)$
C1	$1.1354(3)$	$0.3230(2)$	$0.8813(3)$	$0.0609(7)$
H1	1.2119	0.2956	0.9279	0.073^{*}
C2	$1.0401(3)$	$0.2529(2)$	$0.8265(3)$	$0.0655(7)$
H2	1.0390	0.1698	0.8271	0.079^{*}
C3	$0.9410(3)$	$0.32850(19)$	$0.7673(3)$	$0.0528(6)$
H3	0.8614	0.3054	0.7224	0.063^{*}
C4	$0.9853(2)$	$0.44092(17)$	$0.7889(2)$	$0.0394(5)$
C5	$0.9330(2)$	$0.55207(17)$	$0.7401(2)$	$0.0389(5)$
H5	0.8452	0.5539	0.7019	0.047^{*}
C6	$1.02519(18)$	$0.83589(16)$	$0.64733(19)$	$0.0332(4)$

C7	$0.95845(19)$	$0.94475(16)$	$0.5952(2)$	$0.0327(4)$
C8	$0.81588(19)$	$0.96915(18)$	$0.6015(2)$	$0.0422(5)$
H8	0.7566	0.9156	0.6428	0.051^{*}
C9	$0.7622(2)$	$1.07164(18)$	$0.5474(2)$	$0.0464(5)$
H9	0.6670	1.0866	0.5525	0.056^{*}
C10	$0.8484(2)$	$1.15259(16)$	$0.48562(19)$	$0.0363(5)$
C11	$0.9907(2)$	$1.13042(17)$	$0.4805(2)$	$0.0400(5)$
H11	1.0502	1.1850	0.4410	0.048^{*}
C12	$1.04335(19)$	$1.02759(17)$	$0.5340(2)$	$0.0383(5)$
H12	1.1387	1.0131	0.5291	0.046^{*}
H2 $^{\prime}$	$0.8518(11)$	$0.7474(18)$	$0.676(2)$	$0.041(6)^{*}$
H3 $^{\prime}$	$0.853(2)$	$1.288(2)$	$0.389(2)$	$0.062(8)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0473(8)$	$0.0475(9)$	$0.0515(9)$	$0.0037(7)$	$-0.0047(7)$	$0.0042(8)$
O2	$0.0233(6)$	$0.0449(8)$	$0.0679(10)$	$0.0008(5)$	$-0.0012(7)$	$0.0128(8)$
O3	$0.0378(8)$	$0.0491(9)$	$0.0657(11)$	$0.0131(7)$	$0.0115(9)$	$0.0196(8)$
N1	$0.0280(7)$	$0.0328(8)$	$0.0428(9)$	$0.0011(6)$	$0.0003(7)$	$0.0026(7)$
N2	$0.0235(7)$	$0.0349(8)$	$0.0488(10)$	$0.0005(6)$	$-0.0024(8)$	$0.0037(7)$
C1	$0.0719(16)$	$0.0551(15)$	$0.0556(14)$	$0.0205(13)$	$0.0011(14)$	$0.0138(12)$
C2	$0.098(2)$	$0.0364(12)$	$0.0621(15)$	$0.0059(13)$	$0.0102(16)$	$0.0116(12)$
C3	$0.0609(14)$	$0.0396(11)$	$0.0578(14)$	$-0.0100(10)$	$0.0026(12)$	$0.0031(11)$
C4	$0.0360(9)$	$0.0397(10)$	$0.0426(11)$	$-0.0017(8)$	$0.0032(9)$	$0.0006(9)$
C5	$0.0302(9)$	$0.0388(10)$	$0.0478(12)$	$-0.0020(7)$	$-0.0008(10)$	$-0.0004(9)$
C6	$0.0261(8)$	$0.0356(9)$	$0.0380(10)$	$-0.0006(7)$	$-0.0014(8)$	$-0.0012(8)$
C7	$0.0271(9)$	$0.0337(9)$	$0.0372(10)$	$-0.0006(7)$	$-0.0001(9)$	$-0.0020(8)$
C8	$0.0283(9)$	$0.0430(10)$	$0.0554(12)$	$0.0004(8)$	$0.0087(10)$	$0.0099(11)$
C9	$0.0260(9)$	$0.0519(12)$	$0.0614(13)$	$0.0090(8)$	$0.0089(11)$	$0.0101(12)$
C10	$0.0328(10)$	$0.0362(10)$	$0.0399(12)$	$0.0054(8)$	$0.0017(9)$	$0.0015(9)$
C11	$0.0295(10)$	$0.0416(10)$	$0.0488(13)$	$-0.0036(8)$	$0.0037(9)$	$0.0084(10)$
C12	$0.0227(9)$	$0.0419(10)$	$0.0504(13)$	$0.0010(7)$	$0.0001(9)$	$0.0044(9)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 4$	$1.364(3)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{O} 1-\mathrm{C} 1$	$1.364(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.433(3)$
$\mathrm{O} 2-\mathrm{C} 6$	$1.232(2)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{O} 3-\mathrm{C} 10$	$1.356(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.478(2)$
$\mathrm{O} 3-\mathrm{H} 3^{\prime}$	$0.847(10)$	$\mathrm{C} 7-\mathrm{C} 12$	$1.387(2)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.277(2)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.396(3)$
$\mathrm{N} 1 — \mathrm{~N} 2$	$1.386(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.376(3)$
$\mathrm{N} 2-\mathrm{C} 6$	$1.351(2)$	$\mathrm{C} 8-\mathrm{H} 8$	0.9300
$\mathrm{~N} 2 — \mathrm{H} 2^{\prime}$	$0.876(10)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.383(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.331(4)$	$\mathrm{C} 9 — \mathrm{H} 9$	0.9300
$\mathrm{C} 1-\mathrm{H} 1$	0.9300	$\mathrm{C} 10-\mathrm{C} 11$	$1.389(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.412(4)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.373(3)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9300	$\mathrm{C} 11-\mathrm{H} 11$	0.9300
$\mathrm{C} 3-\mathrm{C} 4$	$1.347(3)$	$\mathrm{C} 12-\mathrm{H} 12$	0.9300

C4-O1-C1	105.67 (19)
$\mathrm{C} 10-\mathrm{O} 3-\mathrm{H} 3^{\prime}$	108.7 (18)
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{N} 2$	115.31 (16)
C6-N2-N1	118.08 (14)
C6-N2-H2'	121.6 (14)
N1-N2-H2'	119.6 (14)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1$	110.7 (2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	124.7
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1$	124.7
C1-C2-C3	107.1 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	126.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	126.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	106.0 (2)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	127.0
C2-C3-H3	127.0
C3-C4-O1	110.59 (19)
C3-C4-C5	129.9 (2)
O1-C4-C5	119.19 (18)
N1-C5-C4	121.89 (19)
N1-C5-H5	119.1
C4-C5-H5	119.1
C5-N1-N2-C6	-152.8 (2)
$\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	0.4 (3)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-0.9 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	1.0 (3)
C2-C3-C4-O1	-0.8 (3)
C2-C3-C4-C5	173.0 (2)
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	0.2 (3)
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$	-174.3 (2)
N2-N1-C5-C4	177.85 (18)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	-164.8 (3)
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	8.5 (3)
N1-N2-C6-O2	3.7 (3)
N1-N2-C6-C7	-176.57 (16)
O2-C6-C7-C12	8.1 (3)

O2-C6-N2	120.73 (17)
O2-C6-C7	121.39 (16)
N2-C6-C7	117.87 (15)
C12-C7-C8	117.77 (17)
C12-C7-C6	117.59 (15)
C8-C7-C6	124.63 (17)
C9-C8-C7	120.71 (19)
C9-C8- H 8	119.6
C7-C8-H8	119.6
C8-C9-C10	120.64 (17)
C8-C9-H9	119.7
C10-C9-H9	119.7
O3-C10-C9	118.77 (17)
$\mathrm{O} 3-\mathrm{C} 10-\mathrm{C} 11$	121.97 (18)
C9-C10-C11	119.24 (18)
C12-C11-C10	119.74 (18)
C12-C11-H11	120.1
C10-C11-H11	120.1
C11-C12-C7	121.88 (16)
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12$	119.1
C7-C12-H12	119.1
N2-C6-C7-C12	-171.64 (19)
O2-C6-C7-C8	-172.9 (2)
N2-C6-C7-C8	7.4 (3)
C12-C7-C8-C9	0.7 (3)
C6-C7-C8-C9	-178.4 (2)
C7-C8-C9-C10	0.0 (4)
C8-C9-C10-O3	-179.5 (2)
C8-C9-C10-C11	-1.1 (3)
$\mathrm{O} 3-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	179.84 (19)
C9-C10-C11-C12	1.5 (3)
C10-C11-C12-C7	-0.8 (3)
C8-C7-C12-C11	-0.3 (3)
C6-C7-C12-C11	178.9 (2)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H}^{\prime} \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.88(1)$	$2.09(1)$	$2.9187(19)$	$157(2)$
$\mathrm{O} 3-\mathrm{H}^{\prime} \cdots \mathrm{N} 1^{\mathrm{ii}}$	$0.85(1)$	$2.13(1)$	$2.971(2)$	$169(3)$
$\mathrm{C} 5 — \mathrm{H} 5 \cdots 2^{\mathrm{i}}$	0.93	2.35	$3.160(2)$	145
$\mathrm{C} 11 — \mathrm{H} 11 \cdots \mathrm{O}^{\mathrm{iii}}$	0.93	2.42	$3.202(2)$	142

Symmetry codes: (i) $x-1 / 2,-y+3 / 2, z$; (ii) $-x+2,-y+2, z-1 / 2$; (iii) $x+1 / 2,-y+5 / 2, z$.

