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Abstract: Microvirin (MVN) is one of the human immunodeficiency virus (HIV-1) entry inhibitor
lectins, which consists of two structural domains sharing 35% sequence identity and contrary to many
other antiviral lectins, it exists as a monomer. In this study, we engineered an MVN variant, LUMS1,
consisting of two domains with 100% sequence identity, thereby reducing the chemical heterogeneity,
which is a major factor in eliciting immunogenicity. We determined carbohydrate binding of LUMS1
through NMR chemical shift perturbation and tested its anti-HIV activity in single-round infectivity
assay and its anti-hepatitis C virus (HCV) activity in three different assays including HCVcc, HCVpp,
and replicon assays. We further investigated the effect of LUMS1 on the activation of T helper (Th) and
B cells through flow cytometry. LUMS1 showed binding to α(1-2)mannobiose, the minimum glycan
epitope of MVN, potently inhibited HIV-1 and HCV with EC50 of 37.2 and 45.3 nM, respectively, and
showed negligible cytotoxicity with CC50 > 10 µM against PBMCs, Huh-7.5 and HepG2 cells, and
4.9 µM against TZM-bl cells. LUMS1 did not activate Th cells, and its stimulatory effect on B cells
was markedly less as compared to MVN. Together, with these effects, LUMS1 represents a potential
candidate for the development of antiviral therapies.

Keywords: microvirin; lectin; human immunodeficiency virus; hepatitis C virus; antiviral inhibitor;
non-immunogenic; viral entry; protein drugs; LUMS1

1. Introduction

Human immunodeficiency virus (HIV-1) and hepatitis C virus (HCV) infections continue to
be a healthcare challenge globally, accounting for an enormous disease burden [1–3]. An effective
vaccine against these viruses remains to be developed. Within the past decade, advancement in
the development of anti-viral regimens has improved the situation, particularly in controlling HCV
infections [4,5]. However, the outcome of antiviral therapies could be limited by several factors,
including the possible emergence of drug-resistant viral variants. This scenario, therefore, signifies the
continuous efforts towards the development of new anti-viral therapies or preventive measures.

The common feature between HIV-1 and HCV is the presence of highly glycosylated outer
envelope—the envelope glycoprotein 120 (gp120) of HIV-1 and E2 of HCV exhibits over 20 and 11
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N-glycosylation sites, respectively [6–8]. This glycan shield decorating the surface of viruses has
been exploited as a potential target for therapeutic or preventive interventions. In recent years,
carbohydrate-binding agents, in particular, lectins have been identified which can inhibit cellular
entry of the viruses by specifically binding to these viral surface glycans [9–12]. Given their potent
nature, use of these lectins as topical microbicides has been suggested for the prevention of sexual
transmission of HIV-1 [13–15]. As an example, griffithsin, a lectin from red algae, is currently in phase-1
clinical trials [16]. Two of the major challenges hampering the clinical application of these lectins are
their potential cytotoxicity and immunogenicity. In general, chemical and structural heterogeneity of
proteins is one of the primary factors responsible for their immunogenicity.

Microvirin (MVN) is one of the potent anti-HIV lectins, which was initially isolated from Microcystis
aeruginosa and has been shown to have only minor cytotoxicity and mitogenic effects as compared
to other antiviral lectins [17,18]. MVN has been reported to specifically recognize α(1-2)mannobiose
present at the termini of branched high mannose type glycans on the viral surface. This 12 kDa lectin
consists of two structural domains, which share 35% sequence identity, and unlike other anti-viral
lectins, it exists as a monomer (Figure 1a). Moreover, there is a four residues long insertion in domain-A
as compared to domain-B of MVN [19]. In this study, we engineered an MVN variant, LUMS1 (the name
derived from Lahore University of Management Sciences), exhibiting 100% sequence identity between
its two structural domains, thereby markedly decreasing the chemical heterogeneity. We investigated
this protein for its potential to inhibit cellular entry of HIV and HCV, and studied its cytotoxicity,
carbohydrate specificity, and preliminary effects on the activation of immune cell surface markers.
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Figure 1. Description of the protein design: (a) microvirin (MVN) structure (PDB ID 2YHH) shown in 
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colored yellow. Insertion of four amino acids in domain-A as compared to domain-B is indicated in 
magenta. The second putative carbohydrate binding site is indicated by a dotted circle. (b) The 
homology-modeled structure of LUMS1 was created through SWISS-MODEL online tools using 
MVN as a template. Qualitative model energy analysis (QMEAN) scoring function was used to 
access the quality of the model. Side chains of all cysteine residues in both proteins are shown in gold 
sticks. Alignment of amino acid sequence of two domains of MVN and LUMS1 is shown at the 
bottom of the respective protein structure. N, C indicates N- and C-termini of the protein sequences. 

Figure 1. Description of the protein design: (a) microvirin (MVN) structure (PDB ID 2YHH) shown
in cartoon presentation with two structural domains colored blue and green while bound glycan is
colored yellow. Insertion of four amino acids in domain-A as compared to domain-B is indicated
in magenta. The second putative carbohydrate binding site is indicated by a dotted circle. (b) The
homology-modeled structure of LUMS1 was created through SWISS-MODEL online tools using MVN
as a template. Qualitative model energy analysis (QMEAN) scoring function was used to access the
quality of the model. Side chains of all cysteine residues in both proteins are shown in gold sticks.
Alignment of amino acid sequence of two domains of MVN and LUMS1 is shown at the bottom of the
respective protein structure. N, C indicates N- and C-termini of the protein sequences.
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2. Materials and Methods

2.1. Protein Expression

For the recombinant expression of LUMS1, the gene encoding for LUMS1 amino acid sequence was
synthesized through commercial facilities (Genscript, Piscataway, NJ, USA), sub-cloned into pET32a
expression vector, subsequently expressed in a bacterial system (BL21 strain), and purified through
different chromatographic techniques including nickel-affinity, size exclusion, and ion exchange
chromatography. For the expression of the 15N-labelled protein, the transformed bacteria were grown
in minimal media supplemented with 15N-ammonium chloride as the only source of nitrogen. The
purified protein was transferred into PBS buffer of pH 7.4 for all biological assays, and into 20 mM
phosphate buffer containing 50 mM NaCl for NMR experiments, through dialyses using dialysis
membrane of 3.5 KDa cutoff (Slide-A-Lyzer™MINI Dialysis Device, Thermo Fisher Scientific, Waltham,
MA, USA) [19].

2.2. NMR Experiments

NMR experiments were performed on Bruker Avance Neo 600 MHz NMR spectrometer equipped
with TXI triple resonance probe at 298 K. Two dimensional 15NHSQC spectra were recorded with 16
scans and 256 data points in the indirect dimension. Topspin 4.0.5 software was used to acquire and
process the NMR data [19].

2.3. HIV Inhibition Assay

HIV-1 entry inhibition by LUMS1 was studied by using pseud-typed virus-based single-round
infectivity assay, according to a previously reported method [20]. In this regard, LUMS1 at varying
concentration was mixed with HXB2 strain of HIV-1 pseudo-typed viral particles at 37 ◦C followed by
the addition of TZM-bl cells (NIH AIDS reagent program) at a concentration of 1 × 104 cells/100 µL.
After 48 h, cells were lysed and percent infection was measured through luciferase activity (BrightGlo,
Promega, Maddison, WI, USA) for each dilution of inhibitor with respect to control containing no
inhibitor. Similarly, the activity of LUMS1 against vesicular stomatitis virus (VSV) was also tested
using virus pseudo-typed with VSV envelope and HIV-1 backbone.

2.4. HCV Infection Assay

The anti-HCV activity of LUMS1 was evaluated using cell culture-derived infectious HCV (HCVcc)
expressing an NS5A-GFP fusion protein in the presence of inhibitors as previously described [21].
Briefly, Huh-7.5 cells were seeded in 384-well plates (2.5 × 103 cells/well). LUMS1 were serially diluted
in complete DMEM, added to each well of the plates, inoculated with HCVcc and incubated at 37
◦C for 3 days. On day 3 post-infection (p.i.), cultured cells were fixed with 2% paraformaldehyde in
PBS containing 10 µg/mL Hoechst 33,342 (Life Technologies, Waltham, MA, USA) for 30 min. HCV
replication was analyzed by determining the number of GFP-positive cells using automated confocal
microscopy (Opera, PerkinElmer, Waltham, MA, USA). Cytotoxicity was assessed by counting cell
nuclei stained with Hoechst 33342 and normalized to untreated control cells.

2.5. HCV Replication Assay

HCV subgenomic replicon cells were treated with inhibitors as described previously [21]. Briefly,
replicon cells were seeded in 384-well plates and treated with inhibitors for 72 h. The inhibitory
effect of the protein on HCV RNA replication was monitored together with RNA polymerase
inhibitor (sofosbuvir) as a reference compound. Viral replication and cytotoxicity was assessed
as described above.
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2.6. HCV Pseudoparticle Assay

Viral entry was assessed using HCV pseudoparticle (HCVpp) expressing a luciferase reporter gene
as described before [22]. In brief, HEK293 T cells seeded for 1 day in T-75 flasks were co-transfected with
5 µg of an HCV E1/E2 envelope protein expression vector (genotype 1a) and 15 µg of pNL4.3.Luc.R–

E–, HIV Gag-Pol expression packaging vector containing luciferase reporter gene using Lipofectamine
3000 (Invitrogen, Waltham, MA, USA). Supernatants containing the pseudoparticles were harvested
at 72 h and used as HCVpp in the entry inhibition assay using Huh7.5 cells as described above in
Section 2.3. EI-1, a known potent inhibitor of HCV entry [23] was used as a positive control at a single
concentration of 10 µM.

2.7. Flow Cytometry Analysis of PBMCs

For the flow cytometry analysis blood from two healthy volunteers was collected after informed
consent and PBMCs were isolated separately using density gradient centrifugation (Polymorphprep;
Cosmo Bio, Tokyo, Japan) and washed with PBS (1% FBS). After treating PBMCs (106 cells/mL) with
varying concentrations of LUMS1, MVN, and cyanovirin-N (CVN) for 72 h at 37 ◦C and 5% CO2, cells
were washed with PBS (2% FBS) and incubated with APC-conjugated anti-cluster of differentiation-4
(CD4), PE-conjugated anti-CD25, and percp cy5.5-conjugated anti-CD20 antibodies for 30 min at 4 ◦C.
Respective isotype controls were used for compensation of backgrounds. Finally, cells were washed
with PBS (2% FBS), fixed with 1% formaldehyde, and analyzed by FACS (Calibur; BD Biosciences,
Franklin lakes, NJ, USA), using CellQuest software for data acquisition [18].

2.8. MTT Assay

TZM-bl cells and PBMCs were seeded in 96-well plates at optimized concentrations of 8 × 104 and
7 × 105 cells per 100 µL, respectively, with various concentrations of the LUMS1 protein (1.25, 2.5, 5,
and 10 µM), and incubated for 48 h. MTT reagent was added at a final concentration of 0.5 mg/mL and
incubated for 4 h as reported previously [24]. The plate containing PBMCs was centrifuged for 5 min
at 300× g. After completely removing the media, 100 µL DMSO was added and thoroughly mixed to
dissolve the crystals, and finally absorbance was measured at 570 nm.

3. Results

3.1. Designing of the LUMS1 Protein and Characterization of Its Carbohydrate Binding

A characteristic feature of HIV-1 entry inhibitor lectins is multivalent recognition through more
than one carbohydrate-binding site to attain high avidity of interaction required for potent antiviral
activity. MVN, however, contains one carbohydrate-binding site present in its domain-A (Figure 1a).
In this design, we removed a four-residues long insertion between strands B6 and B7 in domain-A
of MVN and changed the amino acid sequence of domain-B making it identical to that of domain-A
and creating two carbohydrate-binding sites. The removal of the four residues corresponding to a
long flexible loop could further minimize chemical heterogeneity and reduce the protein size. Since
the domain-B of MVN has been reported to adopt the structure homologous to its domain-A without
this insert [19], it was conceivable that the removal of these four residues may not disturb the protein
folding. Subsequently, we built a homology model of the designed protein, LUMS1, using MVN as
a template to obtain a preliminary idea about its structure. The resultant model exhibited a similar
structure to MVN, but unlike MVN, each of the structural domains of LUMS1 contained a putative
carbohydrate-binding site and two potential inter-strand disulfide linkages (Figure 1b). In order to
experimentally investigate LUMS1, we produced the recombinant protein in two different forms,
unlabeled and isotopically labeled with 15N.

To find out if the purified protein was folded, we recorded a two-dimensional 15NHSQC spectrum
of isotopically labeled LUMS1. Well-dispersed 1H-15N correlation cross-peaks were observed indicating
that protein was folded (Figure 2). In order to test the binding of LUMS1 to α(1-2)mannobiose, the
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minimum glycan epitope of MVN, we used the NMR chemical shift perturbation technique, as
backbone 1H-15N resonances are sensitive to change in the environment resulting from the binding
of a ligand [25]. In this regard, 15NHSC spectra were acquired on a sample containing 15N-lableled
LUMS1 alone in solution and in the presence of increasing concentrations of α(1-2)mannobiose. On
addition of α(1-2)mannobiose, cross-peaks of several amino acids in 1H-15N correlation spectra either
broadened or underwent chemical shift changes, indicating the binding of the carbohydrate. Upon the
addition of the carbohydrate at two equivalents of the protein molar concentration, titration appeared
to be completed as no further changes in the spectra were observed upon addition of more quantities
of the carbohydrate. 15NHSQC spectra of LUMS1 free and in the presence of one equivalent of
α(1-2)mannobiose is shown in Figure 2 with the expansion of a cross-peak showing a stepwise change
in chemical shift with the addition of one and two equivalents of carbohydrate. At one equivalent
of carbohydrate, the cross-peak in the expanded region representing free and carbohydrate-bound
state of LUMS1 appeared, while in the presence of two equivalents of carbohydrate, the cross-peak
representing the free state of LUMS1 completely disappeared. This indicated the binding stoichiometry
as 2:1 and the presence of two carbohydrate-binding sites on LUMS1.
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Figure 2. Carbohydrate binding of LUMS1: 15NHSQC spectra of LUMS1 alone (blue) and in the
presence of one equivalent of the α(1-2)mannobiose glycan (red), superimposed. Expansions of a region
of spectrum containing single cross-peak in the absence (blue) and presence of one and two equivalents
of α(1-2)mannobiose are shown at the top.

3.2. LUMS1 Inhibits HIV-1 Cellular Entry

We tested LUMS1 for its anti-HIV activity in pseud-typed virus-based single-round infection
assay using the HXB2 strain of HIV-1 [19]. LUMS1 potently inhibited the HIV-1 entry with EC50 of 37.2
± 4.4 nM (Figure 3) measured from its dose-response curve. For comparison, the activity of MVN was
also determined as positive control, and its EC50 was measured as 8.0 ± 1.4 nM. To determine viral
specificity, the activity of LUMS1 against an amphotropic virus, VSV, was tested and it was found that
LUMS1 did not inhibit VSV at a concentration as high as 10 µM (Figure S2, Supplementary Material).
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Figure 3. Human immunodeficiency virus (HIV-1) entry inhibition by LUMS1: dose-response curve
showing inhibition of pseudo-typed virus, HIV-1 strain HXB2, by LUMS1 and MVN. The proteins at
varying concentration was mixed with the virus at 37 ◦C followed by the addition of TZM-bl. After
48 h, cells were lysed, and percent infection was measured through luciferase activity. The assay was
performed in triplicates.

3.3. LUMS1 Inhibits HCV Cellular Entry

Next, to evaluate the effect of LUMS1 on HCV infection, we used cell culture-derived infectious
HCV (HCVcc) expressing an NS5A-GFP fusion protein [21]. In this assay, the infection of liver-derived
cell line Huh-7.5 by HCVcc was analyzed by determining the number of GFP-positive cells using
automated confocal microscopy. The expression of the NS5A-GFP fusion protein, which served as a
marker for productive HCV infection, was inhibited by LUMS1 in a dose-dependent manner with a
calculated EC50 of 45.3 ± 18.6 nM and CC50 > 10 µM (Figure 4a). Representative images are shown
in Figure 4b. To investigate whether LUMS1 can also interfere with some post entry event of viral
replication cycle, we tested the effect of LUMS1 using subgenomic HCV replicon cells [21]. We observed
that HCV replication was not affected by LUMS1 at a concentration as high as 10 µM, while it was
significantly inhibited by sofosbuvir, a known inhibitor of HCV replication (Figure 4c). This suggested
that LUMS1 interfered with HCV entry rather than HCV replication. Results of the HCVcc and replicon
assays are summarized in Table 1. To further confirm that LUMS1 interferes with HCV E1/E2-mediated
viral entry, the HCV pseudoparticle (HCVpp) system was employed [22]. LUMS1 inhibited the HCVpp
with EC50 of 142.1 ± 23 nM demonstrating that LUMS1 specifically inhibited viral entry (Figure 4d).

Table 1. Overview of antiviral activity of LUMS1 and compounds used as positive control.

Assay System Inhibitor EC50 (nM)

HCVcc
LUMS1 45.3 ± 18.6
MVN # 35.6 ± 3.98

HCV replicon LUMS1 n.d.
Sofosbuvir 54.0 ± 32.8

HCVpp LUMS1 142.1 ± 23.0

HIV-1 single
round infectivity

LUMS1 37.2 ± 4.4
MVN 8.0 ± 1.4

# Dose response curve is given in Figure S3, Supplementary Material.
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Figure 4. Hepatitis C virus (HCV) inhibition by LUMS1: (a) Anti-HCV activity in Huh-7.5 cells. Cells
were pretreated with increasing concentrations of LUMS1 for 2 h followed by infection with HCVcc
(JFH1) for 72 h in the presence of proteins. (b) HCV infectivity and total cell number were assessed by
determining the number of GFP-positive cells (green) and nuclei (red), respectively, for 3 days in the
presence of LUMS1). Images were acquired by confocal microscopy. (c) HCV subgenomic replicon
cells were treated with LUMS1 and sofosbuvir. (d) HCVpp was mixed with different concentrations of
LUMS1 and subsequently added to Huh-7.5 cells. After 72 h incubation, cells were lysed and percent
infection was measured through luciferase activity (BrightGlo, Promega, USA) for each dilution of
inhibitor with respect to control containing no inhibitor.

3.4. LUMS1 Does Not Stimulate Cellular Activation Markers and Shows Negligible Cytotoxic Effect

In the context of evaluating immunogenic effects of a protein in vitro, activation of Th and B cells is
considered an important marker of immunogenicity as these cells are involved in inducing monoclonal
antibody-based immunogenicity [26,27]. In this regard the effect of LUMS1 and in parallel of MVN,
was analyzed on the expression of CD4, CD25, and CD20 activation markers through flow cytometry
(FACS) using freshly isolated PBMCs from healthy individuals. CVN was used as a positive control for
the expression of CD4 and CD25 as its effect on these cellular activation markers have already been
reported [28]. Both LUMS1 and MVN did not increase the population of CD4+ and CD25+ cells (Th

cells), while CVN in this case showed significantly high activation even at a concentration of 50 nM
(Figure 5).
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However, LUMS1 showed more a pronounced difference with MVN on the activation of CD20+ 
cells. Treatment of LUMS1 at a concentration as high as 4 µM did not significantly increase the 
population of CD20+ cells, while the effect of MVN in this regard was significantly high even at 2 µM 
concentration (Figure 6a). In addition to evaluating the cytotoxicity of LUMS1 against Huh7.5 cells 
(Figure 4a,c) we also determined the effect of LUMS1 on the viability of TZM-bl cells, PBMCs, and 
HepG2 cells using MTT assay. LUMS1 did not show a cytotoxic effect on Huh7.5 cells, HepG2 cells, 

Figure 5. Effect of LUMS1 on the activation of Th cells: (a) Flow cytometry analysis of PBMCs
to determine the population of CD4+ and CD25+ cells in freshly isolated PBMCs in response to
treatment with LUMS1, MVN, cyanovirin-N (CVN). After treating PBMCs (106 cells/mL) with varying
concentrations of LUMS1, MVN, and CVN for 72 h at 37 ◦C and 5% CO2, cells were washed with PBS
and incubated with APC-conjugated anti-CD4 and PE-conjugated anti-CD25 antibodies for 30 min at
4 ◦C. Finally, cells were washed with PBS (2% FBS), fixed with 1% formaldehyde, and analyzed by
FACS, using CellQuest software for data acquisition. Data were statistically analyzed using GraphPad
Prism software. (a) Left panel, representative dot plots of forward scatter (FSC) and side scatter (SSC)
indicating the subpopulation of cells in PBMCs; right panel, dot plots showing the relative population
of cells with CD4 and CD25 activation markers. (b) Plot showing the percent population of CD4+ and
CD25+ cells after treating with LUMS1, MVN, and CVN separately. The data represent the mean of
three independent experiments and one-way ANOVA was used to compare different groups. ** p ≤ 0.01;
*** p ≤ 0.001.

However, LUMS1 showed more a pronounced difference with MVN on the activation of CD20+

cells. Treatment of LUMS1 at a concentration as high as 4 µM did not significantly increase the
population of CD20+ cells, while the effect of MVN in this regard was significantly high even at 2
µM concentration (Figure 6a). In addition to evaluating the cytotoxicity of LUMS1 against Huh7.5
cells (Figure 4a,c) we also determined the effect of LUMS1 on the viability of TZM-bl cells, PBMCs,
and HepG2 cells using MTT assay. LUMS1 did not show a cytotoxic effect on Huh7.5 cells, HepG2
cells, and PBMCs at a concentration as high as 10 µM whereas its CC50 value against TZM-bl cells was
calculated as 4.9 ± 0.166 µM (Figure 6b and Table 2).
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Figure 6. Evaluation of B cells activation by LUMS1 and its cytotoxicity: (a) graph presenting the flow
cytometry analysis to determine the population of CD20+ cells in freshly isolated PBMCs. PBMCs were
isolated from freshly collected blood using density gradient centrifugation and washed with PBS. After
treating PBMCs (106 cells/mL) with varying concentrations of LUMS1 and MVN for 72 h at 37 ◦C and
5% CO2, cells were washed with PBS and incubated with percp cy5.5-conjugated anti-CD20 antibodies
for 30 min at 4 ◦C. Finally, cells were washed with PBS (2% FBS), fixed with 1% formaldehyde and
analyzed by FACS, using CellQuest software for data acquisition. Data were statistically analyzed
using GraphPad Prism software. Analyses were performed in triplicate and one-way ANOVA with
multiple comparisons was used to compare different groups. * p ≤ 0.05, ** p ≤ 0.01; *** p ≤ 0.001. (b) The
plot showing concentration dependent cytotoxic effect of LUMS1 on PBMCs, HepG2, and TZM-bl cells.

Table 2. Overview of the cytotoxicity of LUMS1 against different cell lines.

Cell Types CC50 of LUMS1 (nM)

Huh7.5 >10,000
PBMCs >10,000
TZMbl 4900 ± 166
HepG2 >10,000

4. Discussion

In this study, we engineered a lectin, LUMS1, by modifying MVN to incorporate two
carbohydrate-binding sites and reduce chemical heterogeneity, a major factor in potential
immunogenicity of a protein. The NMR analysis of the carbohydrate binding of LUMS1 suggested that
it exhibited two carbohydrate-binding sites, and it has the same carbohydrate specificity as MVN—both
recognize the α(1-2)mannobiose glycan as the minimum epitope.

MVN has been reported to inhibit HIV-1 entry with EC50 values ranging from 2 to 12 nM against
HIV-1, and we reproduced the reported EC50 against HXB2 strain of HIV-1. LUMS1, however, inhibited
the same strain with ≈4.5-fold lower potency (EC50 37 nM). LUMS1 contains two carbohydrate-binding
sites and is expected to exhibit higher avidity as compared to MVN by engaging more than one glycan
or glycan branches at the surface of the virus. Lower potency of LUMS1 against HIV-1 as compared
to MVN could be attributed to the different possible mechanism by which these lectins attain high
avidity of interactions with the viral envelope; multivalent recognition in the case of LUMS1 and the
bind-and-hop mechanism through single site interactions in the case of MVN [19], although these
mechanisms remain to be experimentally validated. Binding studies of these lectins with the stabilized
HIV-1 gp120 trimer, the form of the envelope protein exists on the viral spike, through isothermal
titration calorimetry (ITC) or fluorescence resonance energy transfer (FRET) measuring microevents
of binding could illustrate the detailed mechanism [29,30]. Moreover, multivalent recognition can
be identified by solving the structure of the complex of lectin and gp120-trimer through X-ray or
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cryo electron microscopy. While comparing the carbohydrate binding of these lectins, the cross-peaks
of carbohydrate-binding site amino acids of MVN in 1H-15N correlation NMR spectra experienced
chemical shift changes on the addition of ligand suggesting slow exchange on the NMR time scale [19].
On the other hand, in the case of LUMS1, chemical shift perturbation in most of the cross-peaks
were in the form of line broadening suggesting intermediate exchange on the NMR time scale. Slow
exchange on the NMR time scale is related to higher binding affinity (lower KD values) as compared
to intermediate exchange [31]. The two lectins, therefore, demonstrate the difference in binding to
carbohydrate in terms of affinity. The apparent lower carbohydrate-binding affinity of LUMS1 as
compared to MVN indicates that its carbohydrate-binding sites may not be structurally optimal, which
could be understood only after the structure of the complex of LUMS1 and carbohydrate is available.
However, one of the significant aspects of LUMS1 was found to be its ability to potently inhibit HCV
infection with an EC50 of 45 and 142.1 nM as determined in HCVcc and HCVpp assays, respectively.
HCV inhibition by different oligomeric forms of MVN has been reported but only qualitatively [32]. By
testing LUMS1 in HCVpp and replicon system, in addition to HCVcc assay, we clearly demonstrated
that exclusively HCV E1/E2-mediated viral entry was inhibited. Many HIV-1 entry inhibitor lectins
have been reported also to inhibit the entry of HCV [33–35], which could be attributed to likely
similar glycan density on the surface of both viruses [8,36]. This apparent similarity potentiates the
development of universal therapy against both viruses. Moreover, LUMS1 demonstrated its specificity
for HIV-1 and HCV, as it did not inhibit an amphotropic virus VSV.

The major obstacle in the advancement towards clinical application of anti-viral lectins is their
potential cytotoxicity and immunogenicity [17,27]. In cell viability assays using four different types of
cells, LUMS1 demonstrated negligible cytotoxic effects with CC50 > 10 µM against Huh7.5 cells, HepG2
cells and PBMCs, and 4.9 ± 0.166 µM against the TZM-bl cells with a selectivity index (SI) value of 108,
calculated by the ratio of the smallest CC50 value (4.9 µM) and the EC50 value (45.3 nM, against HCVcc)
indicating its promising safety profile. As foreign peptides are prone to induce immunogenicity in
patients, we tested LUMS1 for its effect on the activation of B and Th cells in vitro and observed that
LUMS1 demonstrated no significant increase in the expression of activation markers for these cells
at a concentration as high as 4 µM. LUMS1 demonstrated significantly lesser effect in inducing the
CD20 activation marker however its effect on the induction of CD4 and CD25 activation markers was
comparable to MVN but slightly less. The detailed safety profile of LUMS1, however, remains to be
investigated in animal models in the follow-up study. Taken together, LUMS1 represents an attractive
potential therapeutic candidate against HIV-1 and HCV, as it potently inhibits both of these viruses,
demonstrates lack of cytotoxicity and negligible activation of B and Th cells. With the emerging trend
of protein drugs, further optimization of LUMS1 to enhance its carbohydrate-binding affinity leading
to increase anti-viral potency, and its detailed investigation in vitro and in vivo are the further aspects
to be considered.
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