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Sample‑efficient parameter 
exploration of the powder 
film drying process using 
experiment‑based Bayesian 
optimization
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Yoshiyuki Kuroda6, Morio Tomizawa1 & Keisuke Nagato1*

Parameter optimization is a long-standing challenge in various production processes. Particularly, 
powder film forming processes entail multiscale and multiphysical phenomena, each of which is 
usually controlled by a combination of several parameters. Therefore, it is difficult to optimize 
the parameters either by numerical-model-based analysis or by “brute force” experiment-based 
exploration. In this study, we focus on a Bayesian optimization method that has led to breakthroughs 
in materials informatics. Specifically, we apply this method to exploration of production-process-
parameter for the powder film forming process. To this end, a slurry containing a powder, polymer, 
and solvent was dropped, the drying temperature and time were controlled as parameters to be 
explored, and the uniformity of the fabricated film was evaluated. Using this experiment-based 
Bayesian optimization system, we searched for the optimal parameters among 32,768 (85) parameter 
sets to minimize defects. This optimization converged at 40 experiments, which is a substantially 
smaller number than that observed in brute-force exploration and traditional design-of-experiments 
methods. Furthermore, we inferred the mechanism corresponding to the unknown drying conditions 
discovered in the parameter exploration that resulted in uniform film formation. This demonstrates 
that a data-driven approach leads to high-throughput exploration and the discovery of novel 
parameters, which inspire further research.

Background.  The examination of production processes is necessary for attaining the inherent characteris-
tics of any novel material and for realizing the desired performance of products. Among such processes, powder 
film forming is a fundamental process that must be used in either prototyping or mass production to fabricate 
functional devices such as rechargeable batteries1, fuel cells2–4, solar cells5, and water electrolysis systems6.

The powder film forming process is a production process that is used to manufacture thin-film products 
from powdery materials, such as carbon or ceramic powders. It consists of several major subprocesses (typically 
dispersion, mixing, coating, and drying), all of which have a significant impact on the performance of the final 
product. However, similar to most production processes, the powder film forming process is controlled by a 
number of parameters, and the phenomena entailed in the process are complex. Efforts to elucidate the details 
are still ongoing7–9. Given the complexity of the phenomena, it is almost impossible to build an adequate model 
that describes the entire process10, which indicates that numerical approaches are impractical. In addition, 
the large number of parameters hinder the evaluation of all combinations of parameters using a brute-force 
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approach. Determining the parameters of the process depends on empirical rules and the extensive effort and 
skill of engineers and researchers; therefore, it cannot be guaranteed that any adopted parameter set would be 
optimal. Therefore, a non-parametric, sample-efficient parameter exploration method should be developed for 
the powder film forming process.

Related work.  A similar problem has persisted in the field of materials science. However, in recent years, the 
application of machine learning to materials exploration has achieved some success11–14, enabling high-through-
put exploration of, particularly, alloy compositions15, which was previously based on empirical or brute-force 
methods. In particular, in previous studies using active learning, including Bayesian optimization (BO), efficient 
searches were performed with a small number of samples (a few percent of the entire candidates)16–18. BO is a 
powerful optimization method that often uses Gaussian process regression (GPR) to predict the relationship 
between parameters and performance19,20. GPR can estimate a model considering uncertainty, and BO using 
GPR is effective for the efficient exploration of a large parameter space17. The application of BO has produced 
remarkable results in a wide range of fields. For example, in the fields of robotics, BO has been applied to learn a 
controller for a bipedal robot21 and robotics grasping22,23. Prior work also demonstrated that BO is effective for 
transfer learning in natural language processing24. More recently, BO was applied to optimize the hyperparam-
eters of deep learning for AI, which beat a professional human Go player25. Therefore, BO is also expected to be 
a suitable approach for production processes, in which it is challenging to search for the optimal process param-
eters manually and heuristically. In fact, BO has been applied to search for parameters in processes such as poly-
mer fiber synthesis26, TiO2 film depositions27, and gas atomization of alloy powders28. However, there were some 
challenges that needed to be addressed, e.g., the explored parameter space was not large enough for practical 
use and the product evaluation was subjective and not sufficiently reliable. When applying BO to a production 
process that does not have any suitable numerical model, it is necessary to repeat the experiments (fabrication 
and evaluation of the test specimens) during the optimization. Because the exploration in BO progresses based 
only on the results of the experiments conducted without assuming any prior knowledge, the experiments used 
to train the optimization system must be reproducible and quantitative. Therefore, most attempts to apply BO 
methods to materials development have used numerical simulations instead of experiments29–32. Nevertheless, 
pioneering research using industrial robots to overcome the problem of reproducibility and to conduct searches 
autonomously are being conducted for catalytic33, organic34, and inorganic materials27.

Aim of this study.  Film manufacturing processes that utilize raw materials in powder form are often used 
in the fabrication of polymer electrolyte fuel cell (PEFC) electrodes35–37. A PEFC is a type of fuel cell that has 
attracted considerable attention as a power source for automobiles and for portable use because of its low operat-
ing temperature. The catalyst layer in PEFC electrodes consists of carbon particles with Pt loaded on the surface 
and a polymer. The polymer acts as an ionomer that provides a conduction pathway for protons during power 
generation; Nafion™ is generally used as the polymer. In the dispersion step, these materials are dispersed in 
water and alcohol. Carbon particles that are several tens of nanometers in diameter are widely used, and the 
particles agglomerate in the solvent to form secondary particles that are several hundreds of nanometers in 
diameter38. The ionomers are generally well dispersed in alcohol; however, similar to carbon particles, the iono-
mers agglomerate and become stable in a colloidal state. The ionomers also agglomerate around the secondary 
particles of carbon to form shells39,40. The degree of dispersion and agglomeration of the materials depend on 
the fabrication steps used. This ultimately affects the microstructure and distribution of components after dry-
ing. Notably, these features affect the power generation performance of PEFCs depending on electrochemical 
reaction activity, gas diffusivity and proton conductivity; therefore, improvements to the fabrication process of 
electrodes are essential for increasing the efficiency of PEFCs36,41,42. The dispersion and agglomeration of mate-
rial particles also cause surface defects like cracks on the fabricated film43. It is possible to evaluate the power 
generation performance indirectly by evaluating the easily observable defects like cracks44. Therefore, in this 
study, cracks in the film are selected as targets for optimization. In the industry, PEFC catalyst layers are fabri-
cated by brush coating, doctor blade, inkjet printing, or other methods45,46; however, we conducted experiments 
using drop casting, which can easily produce multiple samples with a small amount of slurry. Prototyping with a 
small amount of material is also meet the demands of the product development stage. Drop casting also suffers 
from the aforementioned problems of film forming and is appropriate for use in a case study as a simple and 
fundamental example of film forming47.

In this study, we demonstrate the optimization of the drying process in PEFC electrode fabrication. Figure 1 
shows a conceptual diagram of the proposed experiment-based BO. The material slurry was dried while control-
ling the heating temperature, and the homogeneity of the resulting electrode film was quantitatively evaluated. 
Based on the obtained datasets of temperature profiles and electrode film states, the machine learning system esti-
mated a surrogate model and proposed the parameters under which more homogeneous films were expected to 
be formed. Then, experiments were conducted accordingly. By repeating the experiment cycles, we could explore 
the parameters with a smaller number of experiments than that required in conventional methods. Moreover, 
the detailed mechanism of the drying phenomenon could be determined. In our previous study48, we confirmed 
that the parameters determined by BO were partially applicable for this process. However, the effectiveness of the 
parameter exploration system was not evaluated. In this study, we further discuss the process phenomena using 
the exploration results and evaluate the performance of the parameter exploration system to demonstrate its 
effectiveness using BO. This approach is useful for improving the efficiency of parameter exploration of produc-
tion processes, and it is the first step towards elucidating the complicated phenomena entailed in such processes.
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Experimental procedure
To estimate the surrogate model for the first iteration of the search, we conducted 30 experiments using random 
temperature profiles (see “Methods” section for details). Although a difference in the initial states has some 
effect on the number of experiments required for convergence26, the random profiles were adopted to evaluate 
the exploration from an initial state without bias. Thirty microliters of the slurry were dropped onto a glass slide 
placed on a heater and dried while controlling the temperature of the heater. The temperature profile had five 
time steps, and each time step was assigned one of the eight temperature levels. There were 85 = 32,768 candidate 
combinations in the exploration space. In the initial dataset preparation phase, experiments were conducted 
with 30 temperature profiles that were randomly selected from all the possible combinations. For each fabricated 
electrode, cracks and exceedingly thin regions were extracted based on the brightness values of the surface 
images, and the proportion of the detected areas to the total area where the dropped ink spread was evaluated 
as the “defect ratio”.

Using the obtained initial data as a starting point, we conducted parameter exploration via BO. To predict 
the defect ratio, we built a surrogate model using GPR49, which is commonly used in BO17,29. After each fabrica-
tion, an acquisition function was calculated for each temperature profile using the predicted values of the sur-
rogate model, and the temperature profile with the highest score was adopted as the subsequent experimental 

Figure 1.   Overview of our process parameter exploration system using BO. First, the experiments were 
conducted under random parameters to collect data. The model was estimated with uncertainty, performance 
was predicted, and parameters for the next experiment were determined. The experiments were conducted 
using the proposed parameters, and we added the observed performance to the database. This loop was repeated 
to progress the exploration.
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parameter set. The acquisition function was set to the upper confidence bound (UCB)50–52. The UCB strategy 
balances exploration and exploitation during optimization. In BO, the superiority of the UCB strategy over other 
strategies, such as expected improvement and probability of improvement has been reported21,53. Although the 
advantages of other acquisition functions have been suggested54, investigating the best acquisition function is 
out of the scope of this study. We performed the fabrication process ten times to evaluate the defect ratio, and 
the experimental parameter set for this procedure was selected each time.

Results
Observation of the fabricated electrodes.  For most of the temperature profiles, defect ratios of 30% to 
50% were observed; however, in rare samples (3 out of 30 samples), the defect ratios were below 15% (Fig. 2a). 
In the samples with high defect ratios, clear radial cracks at the center of the electrodes and an exceedingly 
thin region at the periphery were typically observed, and carbon was unevenly deposited in concentric circles 
(Fig. 2b). By contrast, the samples with a low defect ratio had no thin regions at the periphery, and sparse cracks 
were observed; however, they were not clearly radial (Fig. 2c). The diameter of the fabricated films was approxi-
mately 13 mm and the thickness was approximately 30 μm at the thickest area.

Parameter exploration.  Figure 3 shows the relationship between the temperature profiles and the defect 
ratios predicted by GPR during the exploration, using two of the five parameters for visualization. From the 

Figure 2.   Results of the experiments under random parameters. (a) Distribution of the observed defect ratios 
and typical appearances of samples with (b) high defect ratio and (c) low defect ratio. In (b) and (c), the raw 
images are shown on the left side, and the images with the defect areas detected by binarization are shown on 
the right side (adapted with permission from ref. 48 Copyright (2021) the Electrochemical Society).

Figure 3.   Prediction maps of the relationship between the temperature profiles during drying and defect ratios 
(a) before exploration, (b) after five experiments, and (c) after ten experiments of exploration. To visualize this, 
the second and third temperature profiles have been extracted and shown. Moreover, the uncertainty σ is shown 
by hatching. Since the prediction range of the defect ratio was not restricted, negative defect ratios are seen in 
(a), which can be interpreted as corresponding to parameter spaces where lower (closer to 0%) defect ratios are 
more likely to be obtained.
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figures, it can be confirmed that as the search progresses, the regions wherein low defect ratios are predicted 
become more limited, while the variance of the predictions become smaller. The temperature profiles and 
observed defect ratios in each experiment are shown in Fig. 4, and the comparison of the defect ratio distribu-
tion with the initial data is shown in Fig. 5. In the exploration phase, the defect ratios were less than 10% for 
all the tested parameter sets, and the lowest value was 2.8%, which was obtained in experiments four and nine. 
Moreover, a lower defect ratio was observed as the exploration progressed. These results suggest that the applica-
tion of BO makes parameter exploration more efficient than iterations of random experiments. During the initial 
data preparation phase, wherein the process parameters are selected randomly, even if a temperature parameter 
that achieves a relatively low defect ratio is found, it is challenging to guarantee the optimality of the temperature 
profile because of the large search space. However, exploration using the combination of GPR and UCB strategy 
found the temperature profile that outperforms other temperature profiles, and the convergence of the defect 
ratio can be a criterion for stopping the exploration in practice. Performance prediction maps obtained during 
the exploration, such as the one shown in Fig. 3, provide a basis for the relative usefulness of the proposed pro-
cess parameters. Moreover, the maps are clues that lead to the elucidation of the phenomena occurring in the 
process of interest, as discussed in the subsequent section.

Figure 4.   Temperature profiles and defect ratios for each experiment in the (a) initial data preparation and (b) 
exploration steps.

Figure 5.   Comparison of the defect ratios observed in the exploration with the defect ratios in the initial 
data. The latter are shown in blue on the left side of the plot. The typical binarized appearances of the samples 
obtained in the exploration are shown in the plot.
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Examination of the drying mechanism based on knowledge extracted from the regression 
results.  Upon examining the relationship between the temperature profiles and defect ratios, presented in 
Fig. 4, low defect ratios tended to be observed in the temperature profiles wherein the temperature of the first 
step was low (30 °C), that of the second step was relatively high (above 60 °C), and that of the third step was also 
relatively low (below 60 °C). This trend is also confirmed by the performance prediction map obtained after ten 
experiments (Fig. 3c). Comparing experiments five and six, it seems that raising the temperature after lower-
ing it once has the effect of reducing the defect ratio. In industrial powder drying processes, it is common to 
employ a single drying temperature, rate of temperature increase, and holding time, without finely controlling 
the temperature profile. Therefore, it is likely that the low–high–low (–high) temperature profile proposed and 
validated based on the machine learning system cannot be discovered via trials following conventional methods. 
The phenomena occurring in the drying process are discussed as follows (Fig. 6).

Immediately after the drop, the slurry had a low solid phase ratio, and maintaining a low temperature caused 
the solvent to evaporate gently, leading to an increase in the solid phase ratio. If the slurry was heated to a high 
temperature immediately after the drop, the carbon particles would have flowed outward, forming an uneven 
distribution, and the final film would have had an uneven thickness. In addition, concentric and uneven precipita-
tion of carbon particles is observed in the samples heated rapidly immediately after dropping (Fig. 6a), and this 
non-uniformity is commonly observed upon the drying of dilute solutions55–57. Once the solid phase ratio is suf-
ficiently increased by drying at a low temperature, accelerated evaporation by increasing the temperature would 
not cause uneven precipitation. Nonetheless, it was possible for the evaporation of the solvent to progress on 
the surface of the liquid film, forming a skin of carbon particles bonded to each other and suppressing intensive 
evaporation. During the drying of colloidal solutions, the packing of particles on the surface generally lowers 
the evaporation rate58. A low evaporation rate may be realized if a low temperature is maintained throughout the 
drying process; nevertheless, the evaporation rate can be lower if the aforenoted skin is formed by heating once. 
Moreover, the defect ratio was not substantially low under the continuous-low-temperature profiles (Fig. 6c). 
After the skin is formed, the temperature is decreased, and the remaining solvent is gently evaporated from 
the inside of the film, followed by complete drying of the film. This results in a crack-free film with a uniform 
thickness (Fig. 6d). The effect of heating on the formation of the skin and the subsequent defect reduction was 
confirmed in our previous study48. In the samples that continued to be heated at high temperatures even after 
the skin was formed, radial cracks were observed. This can be attributed to the rapid evaporation of the solvent, 
inevitably leading to the fixing of the position of the carbon particles and causing residual stress in the film 
(Fig. 6b). Heating at the last stage of drying reduces the defect ratio, likely because precipitated Nafion™ can 
deform near the glass-transition temperature and relax the stress (Fig. 6e)59. Considering the drying mechanism 
discussed above, the temperature profile, which enabled low defect ratios, discovered by the machine learning 
system was in an exceedingly limited process window and was not expected to be found as an extension of the 
traditional drying methods.

Figure 6.   Illustration of the hypothesis of the mechanism of how a low–high–low temperature profile reduces 
defects during drying. The temperature profile discovered may correspond to a very limited process window.
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Discussion
We demonstrated that appropriate process windows can be discovered with a high throughput and a small 
number of samples by repeating experiments using the parameters provided by the machine learning system. 
The total number of experiments conducted in this study was 40, corresponding to approximately 0.1% of all 
the possible parameter combinations. Therefore, the exploration was 1,000 times more efficient than evaluating 
all the parameters individually. Even if a researcher or an engineer, rather than a machine learning system, was 
to consider previous results and propose subsequent experimental parameters for each experiment, it would be 
almost impossible for a human to understand the distribution of the predicted performance in a five-dimensional 
(in this study) parameter space. Thus, such an efficient exploration would not be possible. Furthermore, while 
conventional parameter adjustments in trial-and-error methods require experts to analyze the results for each 
experiment, in our method, human intervention is required only for setting the search space and for the analysis 
of the entire exploration result. Thus, in addition to the time cost, the human cost can be significantly reduced. 
The advantage of machine learning systems becomes even more significant when the number and/or range of 
parameters is expanded. However, this does not undermine the value of specialists who have a deeper under-
standing and keen insight into the processes and phenomena involved, and their focus remains downstream. 
The map of the relationship between process parameters and performances, obtained via exploration using BO, 
contains a large amount of useful information. By examining this map closely, specific inferences regarding the 
phenomena that govern a process can be made, as we have done in this study. Such analyses are expected to lead 
to subsequent higher-throughput explorations. This study is a pioneering example of a “human-in-the-loop” 
system, wherein artificial intelligence sensitizes human intelligence to repeat high-throughput explorations.

Another highlight of this study is the application of existing powerful machine learning methods to process 
exploration by setting up appropriate optimization parameters and experimental/evaluation techniques for the 
target process. Although simultaneous exploration of numerous parameters is acceptable, parameters that do 
not affect the process or are difficult to control may increase the cost of the experiments. This contradicts the 
original purpose of a highly efficient search and makes the interpretation of the proposed parameter sets and 
the resulting maps difficult. In addition, if the evaluation criterion is not set appropriately, the experiments 
become more difficult and the measurement error may crucially affect the prediction results. We address these 
limitations by devising experimental equipment and using image processing, which are also areas that require 
the knowledge of specialists.

The experiment-based process parameter exploration demonstrated in this study based on PEFC electrode 
film-forming is a pioneering example of the “process informatics” methodology that follows materials informat-
ics. Process informatics methods can be developed in various directions, such as by expanding the number and/
or range of parameters, applying such methods to slightly different conditions, and applying such methods to 
processes in other fields. In this study, we used five-dimensional parameters and a single evaluation criterion. 
However, considering the demonstrated exploration efficiency, it is acceptable to explore larger parameter spaces 
and adopt more complex evaluation criteria. Moreover, even if the process preconditions that are not used for 
exploration change slightly, the trends of the performance maps are presumed to have a commonality. There-
fore, more efficient exploration can be performed by referring to the results of previous explorations in similar 
processes60. The application of process informatics is not limited to powder film forming, and this method can 
be applied to other industrial processes to obtain outstanding results. This study is only a case study of a specific 
process for a certain material, and is insufficient to examine the robustness of the method for other materials 
and processes or the influence of the properties of the input data (such as number, error, and density of the data). 
Nevertheless, process informatics is useful as a method for the rapid optimization of processes associated with 
novel materials proposed in materials informatics. Once a sufficiently high-throughput process informatics 
method is established, the bottleneck in materials development may become the prototyping of the materials.

Methods
Preparation of slurry for dropping and fabrication of samples.  The specimen slurry comprised car-
bon particles (Vulkan® XC-72R, Cabot) and 5% Nafion™ dispersion solution (DE520 CS type, FUJIFILM Wako 
Chemical Corporation). These materials were added to water and 2-propanol at an ionomer/carbon weight 
ratio of 0.8, solid phase ratio of 0.1, and water ratio of 0.3. In this study, we did not conduct a power generation 
evaluation; therefore, carbon particles without Pt catalyst were used. Just before the experiments, this slurry was 
diluted three times with IPA and was subsequently subjected to 10 min of stirring using a planetary centrifugal 
mixer (mixing at 2,000 rpm for 5 min and defoaming at 2,200 rpm for 5 min) and 10 min sonication at 45 kHz.

The slurry was dropped onto a glass slide on a heater using a motorized pipette (dPette 30–300, DLAB) 
handled by a robot arm (DOBOT Magician, Shenzhen Yuejiang Technology). We used an automated dropping 
system for reproducible dropping. In each experiment, 30 μL of the slurry was dropped and dried. The heater 
temperature was maintained at 30 °C even before the drop, and one of eight temperature levels, with equal 
intervals from 30 to 100 °C, was applied every 120 s for 600 s in the range of 30–630 s after the drop. After 630 s 
of drying following the drop, the fabricated electrode was removed from the heater and observed using transmit-
ted light. Regarding the quantitative evaluation, sample images were processed using OpenGL. The films were 
photographed at 504 × 504 pixels using transmitted light. The captured area corresponded to approximately 
16 mm2. The defect ratio was calculated by separating the area where the dropped ink spread (droplet area) from 
the background and the detection of the defect areas in the droplet area. First, the raw images were binarized, and 
the contour of the droplet was detected according to the brightness values. To prevent cracks reaching the outer 
edge of the droplet from being treated as background, the contour was smoothed by expanding the contour line 
width once and then shrinking the width. The interior area of the resulting contour was evaluated as the droplet 
area. The black regions in Fig. 2b and c were excluded as background by the above process. The droplet areas 
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were binarized again, and the areas with high brightness values, that is, areas where the formed electrode layer 
was thin or almost absent and most of the reference light was transmitted, were detected as defects, as demon-
strated by the gray regions in Fig. 2b and c. All samples were captured and analyzed under the same conditions, 
and the binarization thresholds were set at 150 out of 256 shades for background separation and 50 out of 256 
shades for defect detection. The proportion of the defect area to the droplet area was defined as the defect ratio.

Gaussian process.  We used GPR to estimate the relationship between the temperature profiles and defect 
ratios. The GPR algorithm used in this study is available in scikit-learn61.To estimate the relationship, we have 
to find the model p(y|x,D) , given a dataset D =

{

xi , yi
}n

i=1
 , where x is the parameter of the temperature profile 

and y is the resulting defect ratio. Because the fabricated samples are observed with noise, the regression prob-
lem to solve is given by

where we assume a zero mean Gaussian noise. By using GPR:

where µ(x) is the mean function and k(x, x′) is the covariance function of the Gaussian process. In this study, 
the covariance is modeled by the radial basis function (RBF):

where C is a constant and l  is the length-scale parameter. Considering the initial conditions, we set µ(x) = 0 
as the mean function. The set of hyper parameters θ = {C, l,β} can be optimized by maximizing the marginal 
likelihood given by

In scikit-learn, the optimization of θ is implemented using the L-BFGS-B algorithm62 and executed for each 
regression. Given the dataset D , the covariance matrix between the previously observed x and y is given as

The joint Gaussian probability of the dataset D and the prediction of y+ , which is expected to be observed 
with a new parameter x+ , is, assuming a zero mean prior, given by

with

Then, conditioning the Gaussian process on x+ , the predictive posterior p
(

y+|x,D
)

 of x+ is given by the 
Gaussian:

with the mean and variance calculated by

The obtained means µ
(

x+
)

 and variance σ
(

x+
)

 were used to calculate the acquisition function.

Acquisition function.  In this study, since the objective is to minimize the defect ratio, the objective func-
tion R(x) is given as follows:

where D(x) , which is an unknown function, is the value of the defect ratio in the experiment with parameter x . 
The UCB strategy was used to determine the temperature profiles of the experiments. The acquisition function 
U(x) for the UCB strategy is given by

(1)y(x) = f (x)+ η, η ∼ N (0,β),
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where µ(R(x)) is the mean value and σ(R(x)) is the standard deviation of R(x) . The coefficient c of σ(R(x)) is 
a constant that determines the balance between exploration and exploitation. The UCB strategy shows good 
performance for various tasks when c is in the range of 0.1 to 154. In this study, we set c = 0.5.

Data availability
The data that support the findings of this study are available from the corresponding author on request.
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