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A B S T R A C T

Cyclic peptides have emerged as versatile scaffolds in drug discovery due to their stability and specificity. Here,
we present the cPEPmatch webserver (accessible at https://t38webservices.nat.tum.de/cpepmatch/), an easy-to-
use interface for the rational design of cyclic peptides targeting protein-protein interactions combined with a
semi-quantitative evaluation of binding stability. This platform also offers access to a comprehensive database of
cyclic peptide crystal structures. We demonstrate the webserver’s utility through a series of case studies
involving medically relevant protein systems, highlighting its potential to significantly advance drug discovery
efforts.

1. Introduction

Cyclic peptides are at the forefront of modern drug discovery
research. These molecules, known for their cyclic structures, offer a
unique blend of specificity, stability, and efficacy, distinguishing them
from traditional linear peptides and small-molecule drugs [1–3]. Their
unique properties have advanced the field by enabling the inhibition of
key protein-protein interactions, marking a new frontier in therapeutic
interventions [4–6]. Protein-protein interactions (PPIs) are essential to
nearly all biological processes, including intercellular communication,
cell signaling, metabolic and developmental control, and programmed
cell death [7]. Distorted regulation of PPIs can lead to diseases such as
cancers, immune disorders, and neurodegenerative conditions. Modu-
lating protein-protein interactions is highly desirable, but targeting PPIs
is challenging due to the nature of protein-protein interfaces, which
typically feature large, flat surfaces devoid of pockets [8,9]. Despite this
difficulty, cyclic peptides have shown promise in successfully modu-
lating these interactions [10–13].

Advances in computational design tools have expanded the potential
applications of cyclic peptides by helping to navigate the vast combi-
natorial space of potential peptide sequences to meet the specific re-
quirements of effective PPI modulators. Techniques like virtual
screening, pharmacophore matching, Molecular Dynamics (MD) simu-
lations, and energy calculations predict the behavior of cyclic peptides
in biological systems, providing insights into their binding modes and
efficiencies [10,14–16]. Building on this foundation, we previously

introduced the Cyclic Peptide Matching (cPEPmatch) method, which
uses detailed experimental structures of cyclic peptides to identify those
that mimic specific protein-protein interactions [17,18]. For a set of
known cyclic peptide-protein complexes we could demonstrate that the
cPEPmatch approach allowed the design of cyclic peptides that closely
matched known cyclic peptide binders [17]. Our previous efforts also
included the application to a large collection of known protein-protein
complexes (> 170) and we could identify and suggest for the majority
of complexes (> 75 %) cyclic peptides that mimic interface segments.
The approach was also already successfully used to design and experi-
mentally test cyclic peptides that interfere with the ICOS/ICOS-L
interaction, an important interaction for immune reaction modulation
[13]. The cPEPmatch webserver, which we present here, offers an
easy-to-use interface for designing cyclic peptides targeting these in-
teractions. This platform also includes a comprehensive database of
cyclic peptide crystal structures. We detail the algorithm and webserver
usage, and demonstrate its utility through case studies involving medi-
cally relevant protein systems, highlighting its potential to advance drug
discovery efforts.

2. cPEPmatch Algorithm and Webserver

The cPEPmatch algorithm matches the backbone structures of short
peptide segments at the protein-protein interface with those in a library
of known cyclic peptide backbone structures. A cyclic peptide that aligns
with the backbone structure of the segment serves as a template for a
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binder, with its amino acid side chains modified to match those found in
the target complex. The source code for cPEPmatch and its database are
publicly available on GitHub and can be accessed via the following link:
https://github.com/briandasantini/cPEPmatch. The webserver for
cPEPmatch, hosted at the Technische Universität München (TUM) web
services and accessible at https://t38webservices.nat.tum.de/cpepma
tch/, presents a user-friendly interface for researchers to utilize the
cPEPmatch tool. Developed using Django, a high-level Python web
framework, the webserver ensures a robust and scalable platform with a
queuing system that allows for multiple job submissions simultaneously.
The core functionality lies in its job submission feature, where users can
submit their protein structures and specify parameters for the cPEP-
match analysis. This section is designed to be intuitive, ensuring ease of
use even for new users. To assist users, a quick guide is provided for
rapid reference, and a comprehensive tutorial, available at https://
t38webservices.nat.tum.de/tutorial/, includes a detailed example to
demonstrate the process of using cPEPmatch.

At the time of publication, the foundational library of cPEPmatch
comprises 432 unique cyclic peptide structures sourced from the Protein
Data Bank. This database is continually updated on a yearly basis with
new cyclic peptides as they are published. The accumulated database is a
rich source of information on the sizes, secondary structures, and types
of cyclization of these peptides (Fig. 1, A-D), and it also provides clean

PDB files of the extracted cyclic peptides. The characteristic analysis
reveals a diverse range of cyclic peptides, primarily 10–20 amino acids
long, with head-to-tail cyclization being the most common. Peptide
lengths vary with cyclization types: head-to-tail often correlates with
shorter peptides, while head-to-tail with disulfide bonds or multiple
disulfide bonds correlates with the largest peptides, indicating that more
bonds within the cyclic peptide are necessary to stabilize larger struc-
tures. β-hairpin structures are more frequent, whereas α-helices are the
least common. Within the cPEPmatch algorithm, the backbone structure
of these cyclic peptides is characterized using CA carbon distance
matrices, tailored according to user-defined parameters like motif size
(ranging from 4 to 7 amino acids) and a consecutive or non-consecutive
sequence search. A set of 432 cyclic peptide structures may still be
considered as limited and of course a further extension is desirable (and
as indicated above will be continuously performed). However, in a
previous publication [17] we found that even such a limited set of cyclic
peptides is sufficient to identify and design cyclic peptides that closely
mimic interface segments in the great majority (> 75 %) of a large set of
tested known protein-protein complexes (> 170). [17].

To ensure accurate matching, cPEPmatch also characterizes protein-
protein interfaces by utilizing the same CA distance matrix method as
applied to the cyclic peptides in the database The interface cutoff dis-
tance, measured in angstroms, determines which amino acids are

Fig. 1. : Overview of Cyclic Peptide Characteristics within the cPEPmatch Database. (A) Histogram of cyclic peptide lengths by amino acid count. (B) Bar chart of
cyclization type frequencies. (C) Box plots correlating cyclization type with peptide length. (D) Stacked bar chart of secondary structure frequencies, including
β-hairpin, α-helix, and coils.
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considered part of the interface, thus influencing the matching process
with cyclic peptides. Users have two primary options for defining the
interface. (1) Proximity-Based Interface: Users can define the interface
based on proximity. By selecting a distance cutoff in angstroms, cPEP-
match identifies amino acids in the vicinity of the receptor as part of the
interface. This option is suitable for general interface identification
where specific binding hotspots are not known or not be the primary
focus. (2) Hot Spot-Based Interface: Alternatively, users can define the
interface by specifying key amino acids known as hotspots. Selecting this
option allows cPEPmatch to focus on these specific residues, enhancing
the relevance and specificity of the cyclic peptide matches and reducing
the output to more tailored matches. This dual approach in interface
characterization ensures that cPEPmatch can be adapted to a wide range
of research needs, from general exploratory studies to targeted in-
vestigations focusing on key interaction sites.

Following interface characterization, cPEPmatch executes a crucial
step by matching the CA distance motifs between the characterized
protein interfaces and the cyclic peptide database using a user-defined
fit-RMSD (Root Mean Square Deviation) threshold in angstroms to
ensure structural similarity. When dealing with many non-consecutive
hot spots, we recommend clustering hot spots into groups of 5–7 near-
est amino acids and running separate searches. This approach reduces
the complexity of distance matrices and the number of combinations to
consider, avoiding an extensive combinatorial search of irrelevant
matches. Upon identifying suitable matches, cPEPmatch superimposes
these onto the target protein structure and mutates the side chains of the
cyclic peptide to mimic the protein, employing Modeller [19] software
for this purpose. This process not only ensures functional mimicry of the
target protein interface but also places these side chains accurately using
homology modeling. Following this, a minimization step is carried out to
ensure optimal positioning of the side chains, providing a more reliable
starting structure for subsequent evaluations. This refinement is crucial
for enhancing the accuracy and effectiveness of the matched cyclic
peptides in potential binding and interaction studies. Note that Modeller
cannot process non-standard amino acids, including methylated vari-
ants, during the mutation step of the cPEPmatch process. Consequently,
when such matches are encountered, cPEPmatch outputs the matched
structure without mutating it to resemble the target protein. In these
cases, users must manually perform the mutations. Tools like pdb4am-
ber, part of the AmberTools suite, can be used for this purpose. Addi-
tionally, when a matched residue falls on a disulfide-bonded amino acid
of the cyclic peptide, it is not mutated to avoid disrupting its cyclization.

The output from cPEPmatch includes a detailed match list and all
output structures—superimposed, mutated, and minimized. The output
table provides comprehensive information, including the match num-
ber, PDB name, matched cyclic peptide residues, and fit-RMSD values.
Tools such as PyMOL or VMD are recommended for the visual analysis of
the matches. This visual inspection can be crucial for evaluating the
steric fit of the matches and deciding which structures should be further
evaluated using MD simulations and free energy calculations. A notable
aspect of using cPEPmatch is its flexibility for parameter adjustments.
Users might find that the initial recommended parameters yield too
many or too few matches for their specific system. In such cases,
adjusting parameters like Cutoff or Threshold is necessary to narrow
down or increase the number of matches.

3. Application to medically relevant case studies

In our quest to develop novel therapeutic predictions, we employed
cPEPmatch to identify cyclic peptides that could modulate critical
protein-protein interactions. These interactions are medically significant
due to their roles in various diseases such as viral infections, cancer,
autoimmune disorders, and more. We targeted several PPI complexes,
including (1) the interaction between the SARS-CoV-2 spike protein and
the ACE2 receptor, crucial for viral entry into host cells and a critical
target for COVID-19 therapeutic interventions [20]; (2) the N-terminal

oligomerization domain within the Breakpoint Cluster Region
(BCR)-Abelson (Abl) kinase fusion protein, significant in chronic mye-
logenous leukemia (CML) [21]; (3) the interaction between the Estrogen
Receptor (ER) and its coactivators, a major regulator of disease devel-
opment in breast cancer [22]; (4) the interaction between the gp120
protein of the Human Immunodeficiency Virus (HIV) and the CD4 re-
ceptor on host T-cells, critical for viral entry and infection [23]; (5) the
binding of Interleukin-12 subunit beta (IL-12β) to its receptor subunit
IL-12Rβ1, crucial for regulating inflammatory responses and thus crit-
ical in autoimmunity [24]; (6) the interaction between MDM2 and the
tumor suppressor protein p53, central in cancer biology [25]; (7) the
interaction between Programmed Death-1 (PD-1) on T cells and its
ligand PD-L1, a key immune checkpoint relevant to cancer immuno-
therapy [26]; and (8) the interaction between S100P and RAGE, sig-
nificant in tumor growth and metastasis [27]. These targeted
interactions highlight the diverse therapeutic potentials addressed using
the cPEPmatch tool.

3.1. Materials and methods

The cPEPmatch method requires structures of established protein-
protein complexes as input. For this study, we utilized structures cor-
responding to the PDB codes listed in Table 1. These structures are
critical, serving both as templates for simulation and analysis as well as
hot spot identification, guiding residue selection within the cPEPmatch
framework. Missing residues were added using MODELLER [19], except
in the BCR system, for which we performed an AlphaFold2 [28]
prediction.

For the initial assessment of our case studies binding interface hot
spots, as well as the evaluation and ranking of protein-cyclic peptide
complexes, we employed the Amber19 software package (extension of
the Amber18 tools) [29]. We prepared the structures for energy mini-
mization and molecular dynamics (MD-simulations using the tLeap
module from Amber19. Protein parameters were sourced from the
ff14SB force field [30]. To neutralize the complexes, we added either
Na+ or Cl- ions and solvated them in an octahedral box, maintaining a
minimum 15 Å distance to the box boundaries, using explicit TIP3P
water molecules [31].

For all simulation systems, we initially performed energy minimi-
zation using the steepest descent method for 2000 steps via the Amber19
Sander module. For subsequent MD simulations, we utilized the pmemd.
cuda module. We incrementally heated the systems to 310 K through

Table 1
Input parameters and configurations for cPEPmatch algorithm. This table enu-
merates the PDB codes from the Protein Data Bank representing the target and
its corresponding ligand. Listed hotspots, derived from MMGBSA analysis of MD
simulations, indicate key interface regions; a dash signifies utilization of the
entire interface. Columns ’C’, ’T’ and ‘M′ represent the cutoff, threshold, and
motif size, respectively.

Target Ligand PDB Hot Spots C T M

ACE2 Spike 6M0J 6 9 10 12 13 19 20 23
61 64 65 337

5;6 0.5;0.5 5

BCR-
Abl

BCR-Abl 1K1F/
AF2

198 201 204 218 222
223 226 259;
146 147 154 158 259
270 273 276 277

8;8 2;2 5

ER Coactivator 5DZ1 242 243 244 245 246
247 248 249 250

8 1 5

GP120 CD4 1GC1 322 324 337 339 340
341 345 356 357

8 0.7 5

IL12b IL12Rb1 6WDQ 17 19 21 62 86 88
196 197 198 199

8;8 1;2 5

MDM2 p53 4HFZ - 6 0.5 5
PD1 PDL1 3BIK 2 37 39 49 51; 96 98

104 105 106 108
5;5 1;0.5 5

S100P RAGE 2MJW 28 32 34 37 41 43 49
78 90 92

8 2 5
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three stages (100 K, 200 K, 310 K), each lasting 100 ps, while applying
positional restraints on all non-hydrogen atoms relative to their starting
conformations. Following this, we systematically reduced the positional
restraints from an initial value of 25 to 0.5 kcal⋅mol-1⋅Å-2 over the
course of five successive 100 ps simulations at a constant pressure of
1 bar and a temperature of 310 K. The equilibrated structures then
served as the starting points for the production runs, which were con-
ducted without any restraints. We employed a 2 fs time step and con-
strained all bonds involving hydrogens to their optimal lengths using the
Shake algorithm [32]. Data collection simulations were executed for
25 ns, and coordinates were saved every 30000 steps. These conditions
were found optimal in a previous publication of the cPEPmatch
approach with applications to more than 170 protein-protein complexes
[17].

For the evaluation of hot spot residues and stable cyclic peptide
binding, we examined the MD trajectories through visual inspection.
Subsequently, we applied the Molecular Mechanics Generalized Born
Surface Area (MMGBSA) methodology to quantify the mean interaction
[33,34]. This analysis was conducted using the well-validated single
trajectory approach [35], as facilitated by the MMPBSA.py module
within Amber18. We utilized 1000 snapshots extracted from the last 5 ns
of the production MD simulation for these calculations. The modified GB
model (igb=5) with mbondi2 parameters was employed, along with
specific α, β and γ values of 1.0, 0.8, and 4.85, respectively. Dielectric
constants were set to 80 for the solvent and 5 for the solute. This analysis
yielded the mean interaction energy between the cyclic peptide and its
protein partner. Per-residue decomposition allowed for a detailed

investigation of the contribution of interacting residues to identify the
hot spots.

Furthermore, we performed Repulsive Scaling - Replica Exchange
Molecular Dynamics (RS-REMD) [36] simulations for all our matches.
Simulations were conducted in explicit TIP3P water at 300 K, together
with neutralizing Na+ counterions in water and no additional salt. The
prepared system structures were placed within periodic octahedral sol-
vent boxes and a minimum distance between the peptide-protein com-
plex and boundary of 15 Å. The systems were then minimized via
steepest descent for 10000 steps, heated up step-wise to a target tem-
perature of 300 K within 60 ps and equilibrated within NVT and NPT
conditions for 1 ns each. The RS-REMD simulations were executed with
25 ns per replica and exchange attempts every picosecond. These sim-
ulations were carried out using 8 and 16 replicas, each exhibiting a
progressive increase in the bias applied to the ligand and receptor
Lennard-Jones interaction parameters as proposed by Siebenmorgen
and Zacharias, 2020 [36]. The specific bias along the replicas leads to
progressive destabilization of the ligand-receptor interactions and to
partial or full dissociation of partners in the highest replicas. From the
sampling overlap it is possible to estimate a free energy required to
dissociate (or partially dissociate) the ligand from the receptor. The
trajectories were analyzed using pytraj and the associated relative
binding free energies were calculated with the Multistate Bennett
Acceptance Ratio (MBAR) [36].

Fig. 2. : Flow chart illustrating the usage of the cPEPmatch web interface, using the S100P-RAGE system as an example target. (Left) Representation of the binding
interface of the S100P-RAGE complex with Chain A, RAGE protein, in magenta and Chain B, S100P protein, in yellow, highlighting the interaction hotspots in red.
(Middle) cPEPmatch job submission form where parameters such as cutoff, threshold, and motif are specified for the analysis, along with targeted hotspots for Chain
A binding to Chain B. (Right) Visualization of the strongest cPEPmatch predicted cyclic peptide binder, Match 3 PDB2lwt, for the S100P system. The target protein
S100P is rendered as a yellow surface, while the cyclic peptide binder is shown in licorice representation with atoms colored by element. Key hotspots on the cyclic
peptide, corresponding to matched and mutated residues essential for binding, are highlighted in red.
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3.2. Results and discussion

To illustrate the workflow of the cPEPmatch webserver, we described
the highlighted system, S100P-RAGE, in detail as shown in Fig. 2. The
first step is to download the crystal structure from the Protein Data Bank.
The PDB file was inspected and prepared, including removing unnec-
essary chains and renumbering residues. Ensuring there are no missing
residues in the binding site is crucial, and if missing residues are found
outside the binding site, tools like Modeller can be used to fill them in for
later simulations. An optional step is to identify the hotspots, specific
residues that contribute the most to the overall binding free energy, to
direct the search towards a more competitive cyclic peptide mimic,
which has proven useful in our early cPEPmatch work [13,18]. For this,
we ran MD and free energy calculations using MMGBSA. In the case of
the S100P-RAGE system, we identified residues 28, 32, 34, 37, 41, 43,
49, 78, 90, and 92 in chain A, RAGE protein, as the most contributing to
the binding to chain B, S100P protein. The next step is to choose the
input parameters to run the cPEPmatch algorithm. The cutoff parameter
defines the distance between the receptor and the interface, with resi-
dues within this cutoff distance considered part of the interface (Default:
6Å). The threshold parameter sets the fit-RMSD maximum for a match to
fit into the targeted protein interface residues (Default: 0.7Å - Recom-
mended: 0.3–1.5Å). The motif size refers to the length of the motif
residues to target (Default: 5 amino acids) and should be adjusted based
on the nature of the binding site. For our example, we selected an
interface cutoff of 8Å, a threshold of 2Å, set the motif size to 5 residues,
and chose the "target specific hot-spots" option to run a non-consecutive
search to match the identified hotspot residues.

With the provided parameters, cPEPmatch identified 16 matches of
cyclic peptides that mimic the RAGE PPI binding site. Candidates with
steric clashes were eliminated via visual inspection using VMD. Five
were selected for further simulations. To evaluate the binding affinity of

the matches, we employed a three-criteria evaluation method: assessing
stability during free MD simulations, calculating MMGBSA from the free
MD trajectories, and employing MBAR analysis of RS-REMD simula-
tions, from 8 and 16 replicas. It is important to note that in principle the
MMGBSA approach only gives an estimate of interaction energy be-
tween cyclic peptide and receptor and neglects conformational entropy
effects. Such effects are in principle included in the RS-REMD simula-
tions (full flexibility of binding partners and inclusion of explicit sol-
vent) but in this technique the dissociated state is only approximately
defined. Hence, the calculated binding free energies need to be inter-
preted with care and can only be used as qualitative indicator for
complex stability. Hence, our criteria for a stable match included sus-
tained binding during the entire free MD trajectory, an MMGBSA
interaction energy value less than − 25 kcal/mol, and an RS-REMD
derived MBAR free energy lower than − 2 kcal/mol. These criteria
were informed by previous studies: the MMGBSA threshold was based
on our initial studies examining the binding affinity of small binders
[17], and the RS-REMD free energy criterion was derived from an
evaluation of our previously validated Match 41, a recognized inhibitor
of the ICOS/ICOS-L PPI which presents values in a similar range,
− 2.6 + /- 0.14 kcal/mol [13]. All five selected matches for the
S100P-RAGE complex demonstrated stability throughout the MD sim-
ulations and exceeded the established affinity criteria (Table 2). Detailed
mutation information for these matches is available in Table 2. Notably,
Match 3 exemplifies how effective mimicry of mutated hotspots can
resemble those of the native binding site, as depicted in Fig. 2, right.

To refine our binding evaluation methods, we conducted RS-REMD
simulations using 8 and 16 replicas across all systems. A Pearson Cor-
relation coefficient of 0.85 was observed between these two setups
(Fig. 3). Typically, MBAR free energy values from 16-replica simulations
were lower compared to those from 8 replicas Table 2. A potential
explanation for this discrepancy might lie in the sampling dynamics; 16-

Table 2
Comparative assessment of approximate binding free energies change (ΔG) in kcal/mol across tested systems, calculated using MBAR from RS-HREMD trajectories,
with 16 and 8 replicas, and MMGBSA methods.

System Match 16 Replicas ΔG (kcal/mol) + /- 8 Replicas ΔG (kcal/mol) + /- MMGBSA ΔG (kcal/mol)

ACE2 match2_2ll5 − 1.81 0.74 − 1.93 0.48 − 12.17
match12_3uc7 − 3.0 0.32 − 3.31 0.4 − 32.46
match145_6ve9 − 2.36 0.2 − 2.41 0.63 − 27.41

BCR match1_1jdp − 4.81 0.9 − 4.07 0.26 − 33.69
match3_4ttl − 5.87 0.77 − 3.82 0.23 − 30.71

ER match1_3p72 − 7.42 0.4 − 3.99 0.12 − 92.82
match5_4ttl − 7.94 0.7 − 4.65 0.35 − 64.53
match6_5wtt − 8.93 0.54 − 5.95 0.35 − 77.12
match7_7m7x − 4.47 0.54 − 3.11 0.21 − 61.93
match8_7m7x − 5.87 0.34 − 5.37 0.74 − 74.50

GP120 match5_1im7 − 1.62 0.6 − 3.99 0.61 − 40.22
match9_1znu − 3.31 0.2 − 3.7 0.66 − 21.96
match18_3uc7 − 2.4 0.91 − 2.05 0.78 − 38.09
match29_4tto − 3.47 0.22 − 3.63 0.54 − 12.38

IL12 match1_1ebp − 0.64 0.38 − 1.11 0.22 − 32.92
match2_2nb6 − 1.2 0.85 − 0.88 0.61 − 24.32
match3_1im7 − 1.9 0.16 − 2.12 0.24 − 33.97
match10_2ll5 − 1.13 0.56 − 0.94 0.47 − 21.39
match14_2ndm − 0.78 0.48 − 2.21 0.52 − 17.01
match16_3pp4 − 1.52 0.13 − 1.22 0.24 − 20.23
match30_5otx − 2.85 0.49 − 1.58 0.29 − 5.36
match31_6dhr − 2.05 0.24 − 1.79 0.32 − 38.19

MDM2 match6_3p72 − 4.99 0.59 − 4.32 0.46 − 39.18
match10_3pp4 − 13.36 0.98 − 7.0 0.43 − 52.95
match13_3uc7 − 12.75 0.8 − 6.02 0.24 − 57.02

PD1 match9_2m7i − 0.17 0.18 − 0.13 0.16 − 30.10
match12_2ns4 − 5.68 0.37 − 2.49 0.26 − 52.40
match13_2ns4 − 3.57 0.4 − 3.47 0.39 − 43.12
match25_6q1u − 2.07 0.88 − 2.71 0.17 − 48.08

S100P match2_1znu − 3.31 0.41 − 2.83 0.46 − 33.93
match3_2lwt − 8.65 0.7 − 6.35 0.54 − 66.98
match5_2lwv − 2.76 0.56 − 2.31 0.21 − 43.25
match7_2lyf − 9.33 0.78 − 4.19 0.28 − 57.66
match15_7k7x − 8.59 0.79 − 5.0 0.6 − 41.60

B.L. Santini et al.



Computational and Structural Biotechnology Journal 23 (2024) 3155–3162

3160

replica simulations are more effective at sampling a broader range of
bound and unbound states between the cyclic peptide and its receptor,
due to the stronger repulsion in the higher replicas. For instance, in the
case of a strong binder like Match 3, the 16-replica simulations facili-
tated a comprehensive sampling of bound versus unbound states, while
the 8-replica simulations failed to sample any completely unbound
states, showing only the cyclic peptides in various conformations
(Fig. 4). This observation was consistent across other systems.

A similar cPEPmatch search (Table 1) and evaluation criteria (Fig. 5)
were applied to all other case study systems, resulting in the identifi-
cation of stable matches with detailed mutation information presented
in Table 3. Notably, while at least two stable matches were observed for
all systems during MD simulations, IL12 and GP120 predominantly
exhibited weak to moderate binders. These binders demonstrated lower
binding MBAR scores compared to the ICOS/ICOS-L cyclic peptides,
which are known experimentally validated binders or modulators.
However, our findings in Abdel Rahman et al., 2024 suggest that a
higher binding affinity does not invariably translate into more effective
modulation, indicating potential viability for the predicted binders in
this study [13]. In our systematic application of cPEPmatch, we iden-
tified a varying number of stable matches across systems: 2 for ACE2, 3
for BCR, 5 for ER, 2 for GP120, 2 for IL12, 3 for MDM2, and 3 for PD1
(Table 2). These results show the capability of cPEPmatch as a tool to
identify potential lead molecules for therapeutic interventions,
providing a solid foundation for further validation and optimization.

4. Conclusions

The cPEPmatch method is a computational approach developed to
identify cyclic peptide templates for protein-protein interaction modu-
lators, unique in its reliance on structural matching of protein interfaces.
The method has already been tested successfully on known cyclic-
peptide-protein complexes and has been used to identify cyclic pep-
tides that mimic interface segments in a large fraction of known protein-
protein complexes in previous publications. [13,17,18] Recently, it was
also successfully used to generate cyclic peptides that mimic a binding
site for glycosamin glycan molecules including experimental validation
of specific binding [37]. Establishing the cPEPmatch webserver repre-
sents an advancement towards making our tool more user-friendly and
accessible to a broader scientific community, thereby simplifying the
process of designing cyclic peptides. Additionally, the growing cPEP-
match database, sourced from the Protein Data Bank, offers insights into
the structural diversity and bioactivity of cyclic peptides, providing a
valuable resource for future studies. Through case studies, we demon-
strated its application in identifying promising cyclic peptides for

Fig. 3. : Correlation of RS-REMD derived Free Energy Calculations for 8 vs. 16
replicas. Comparison of 25 ns replica exchange simulations with repulsive
scaling Hamiltonian using 8 vs. 16 replicas of RS-REMD simulation.

Fig. 4. Exemplary ligand RMSD Population Histograms for RS-REMD simula-
tions of the S100P-RAGE system. Panel (A) represents the relative population
distribution of ligand RMSD (RMSD of the ligand after best superposition of
sampled structures on the receptor protein) for 8-replica simulations, indicating
the diversity of conformations sampled during the simulation. However, com-
plete dissociation is not achieved. Panel (B) indicates the corresponding dis-
tribution for 16-replica simulations alongside representative structures at key
RMSD intervals, illustrating a wider range of sampling of bound and unbound
states. The insets in Panel B depict the ligand in complex with the receptor
(left), an intermediate state (middle), and a fully unbound state (right).

Fig. 5. : Selection criteria based on RS-REMD MBAR (x-axis) and MM-GBSA
from regular MD (y-axis). Stable matches are identified as cases with an ΔG
< − 2 kcal/mol for the RS-REMD based binding free energy estimate and MM-
GBSA based estimate of ΔG < − 25 kcal/mol (green), with all other points
considered non-matches (orange).
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medically relevant systems. We used Molecular Dynamics simulations
and free energy calculations, including MMGBSA and RS-REMD/MBAR,
to evaluate the binding efficacies of the peptides. This combined
approach has been tested already on cyclic peptide-protein complexes
[17] and for evaluating docked protein-protein complexes. [36]
Combining approaches allows potentially for a more rigorous assess-
ment of their potential as binders. However, it should be emphasized
that the in silico evaluation of the cyclic peptide binding properties is
nevertheless approximate and the user is encouraged to employ alter-
native methods after downloading the designed complexes and may
ultimately test the suggested cyclic peptide binders experimentally.
Nevertheless, our findings indicate that cPEPmatch can effectively
identify lead binders for competing with protein-protein interactions,
highlighting its potential as a valuable tool in early-stage drug design
research for addressing real-world health challenges such as viral in-
fections, cancer, and autoimmune disorders.
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