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Printable and Versatile Superhydrophobic
Paper via Scalable Nonsolvent Armor Strategy
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waterproof cellulosic paper, its real world application is 5 i Printable & writable
. . . . A " oW
hindered by complicated and costly fabrication processes, B SR o superhydrophobic paper
. . . . . . o a A g
limitations in scale-up production, and use of organic solvents. o g thrdugh a | scalabrdl
Furthermore, simultaneously achieving nonwetting properties o o

q e ; . . s | o nonsolvent armor strategy
and printability on paper surfaces still remains a technical and Pl ®
chemical challenge. Herein, we demonstrate a nonsolvent L

strategy for scalable and fast fabrication of waterproofing
paper through in situ surface engineering with polysilsesquiox-
ane nanorods (PSNRs). Excellent superhydrophobicity is
attained on the functionalized paper surface with a water
contact angle greater than 160°. Notably, the engineered paper
features outstanding printability and writability, as well as
greatly enhanced strength and integrity upon prolonged exposure to water (tensile strength ~ 9.0 MPa). Additionally, the
PSNRs concurrently armor paper-based printed items and artwork with waterproofing, self-cleaning, and antimicrobial
functionalities without compromising their appearance, readability, and mechanical properties. We also demonstrate that the
engineered paper holds the additional advantages of easy processing, low cost, and mechanochemical robustness, which makes

i
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Deposition and growth of 10
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it particularly promising for real world applications.
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s sustainable and low-cost material, cellulosic paper
Aplays a vital role in our daily life due to its broad range of
applications, such as information recording and delivery,
packaging, decoration, filtration, microfluidic device fabrication,
currency, as well as use in construction and industrial
processes.' > Owing to the monosaccharide building units,
cellulosic paper features a large quantity of hydroxyl groups,
resulting in its hydrophilic nature and ultralow mechanical
strength in the presence of water.”” Water infiltration
additionally induces the migration of water-soluble ink
molecules and reduces the readability of paper print. Moreover,
prolonged outdoor use leads to accelerated decomposition
caused by exposure to moisture, dust, and microbes in the air.’
Hence, it is very desirable and useful to develop cellulosic paper
possessing waterproofing, self-cleaning, and antimicrobial
properties that do not negatively affect its innate properties,

i.e., printability, writability, and mechanical performance.
Various surface-engineering techniques, such as photo-
lithography,” chemical etching,®” plasma treatment,"® and
nanoparticulate deposition,"'~'® have been extensively re-
searched for the fabrication of superhydrophobic surfaces
based on inorganic or organic substrates (e.g, glass, metal,
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and plastic).'® However, many of those strategies cannot be
simply adopted on cellulose-based paper items because cellulose
can easily be damaged by either thermal or wet-chemical
treatments.'”

Recently, cellulosic papers with water-repellent property have
been developed through surface modification'®~>* and spraying
with fluorinated cellulose nanofibers/esters.”*> However,
printability has not yet been implemented on these function-
alized papers. The nonprintability can be attributed to the
following reasons: (i) either organic solvents or water used in
these processes could induce the rearrangement of cellulose
fibers, often leading to a wrinkled surface and reduced
mechanical performance for the treated paper, which con-
sequently negates the paper printability and writability; (ii)
conventional superhydrophobic coatings (containing fluorides
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Figure 1. Illustration of the one-step nonsolvent strategy for designing printable superhydrophobic paper. Schematics showing (a,b)
preparation of printable superhydrophobic paper via in situ surface engineering of PSNRs and (c) growth mechanism of 1D PSNRs.

or a polymer layer) feature low adhesion and wettability toward
ink; (iii) in most cases, complex fabrication processes limit
upscaling fabrication of such material for practical printing
applications. In addition, fluorinated compounds or organic
solvents involved in traditional surface modification methods are
subject to environmental and safety concerns as well as cost
issues.”* Therefore, designing superhydrophobic paper that
simultaneously features printability is, despite its high demand,
still a challenge.

In this work, we present an unconventional strategy to
fabricate printable superhydrophobic paper through surface-
engineering with polysilsesquioxane nanorods (PSNRs). Being
synthesized at room temperature and without solvent, potential
damages occurring to the engineered paper by either heat or
solvent exposure are avoided; meanwhile, environmental and
safety concerns are minimized. The introduced PSNRs provide
nanoscale manipulation on the surface texture as well as low
surface energy, endowing the engineered paper with excellent
water repellency. Importantly, unlike previously reg)orted
superhydrophobic papers or paper-like items,”*’
engineered paper features both printability and writability and
could maintain its water repellency after either printing or
handwriting. The incorporated PSNRs not only enhance the
paper strength and durability against exposure to water but also
provide the treated paper with self-cleaning and antimicrobial
properties. Furthermore, as a room-temperature and solvent-
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free strategy, the developed approach can be applied directly on
papers printed with contents, without impact on the readability
and visibility of the printed characters and images. In proof-of-
concept experiments, we also demonstrate that the surface-
engineered PSNRs can act as transparent superhydrophobic
armor for various paper-based items for outdoor use, such as
advertisements and packaging materials, offering resistance
toward water as well as dust and microbial contaminations,
which is promising in extending the lifespan of these items. This
leads to a sustainable alternative support material for outdoor
advertisement and billboards and therefore reduce crude-oil-
based plastic consumption.

RESULTS AND DISCUSSION

The printable superhydrophobic paper was prepared by in situ
growth of PSNRs on cellulosic paper surface through a one-step
nonsolvent strategy at room temperature, as shown in Figure
1a,b. The growth mechanism of the 1D PSNRs on paper surface
is illustrated in Figure lc. Under a certain humid atmosphere,
nanosized water droplets are formed due to the topographic and
chemical heterogeneities of the substrate (paper) surface as well
as surface tension.”””” These nanodroplets feature thermody-
namic stability owing to the reduced chemical potential and thus
act as confined reaction volumes across the whole reaction
process.”’ The reaction was triggered after injection of the

https://doi.org/10.1021/acsnano.2c02382
ACS Nano 2022, 16, 9442—-9451
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Figure 2. Structures and chemicals evaluation of PSNR-paper and cellulosic paper. SEM images of (a) cellulosic paper and (b,c) PSNR-paper at
different magnifications, as well as (d—f) corresponding EDX mapping images. (g) EDX spectra of PSNR-paper and cellulosic paper. (h) Single
reflection ATR-FTIR absorbance spectra of PSNR-paper, cellulosic paper, and pure PSNR. (i) Cross-sectional SEM images of PSNR-paper.

precursor (trichloroethylsilane). The volatile precursor reacts
with water in the gas phase, yielding soluble monosilanols. Since
trichloroethylsilane is more easily hydrolyzed than silanols,
further hydrolysis of monosilanols to di- or trisilanols in the gas
phase is unlikely. Therefore, the water droplets on the substrate
surface are exposed to an atmosphere consisting of chlorosilane,
water, and silanol. These silane species react progressively with
the water nanodroplets present on the substrate surface via
hydrolysis and condensation, resulting in the formation and
deposition of insoluble polysiloxanes, which leads to the growth
of one-dimensional nanorods supporting the water droplet
(reaction receptacle) at their top end. Due to the presence of
silanol and siloxanol species, the activity of water nanodroplets
decreases and more water in the gaseous phase transports from
the humid environment to the nanosized water reaction volume
to sustain further reaction of hydrolysis and condensation
(Figure 1c). The time-dependent morphology of PSNRs
(Figure S1) agrees well with the elaborated PSNRs’ growth
mechanism. The reaction formulas for the hydrolysis and
polycondensation of trichloroethylsilane are shown in Figure S2.
Owing to the presence of hydroxyl groups on the cellulose
surface, the formed PSNRs are supposed to be covalently
bonded to the cellulosic paper surface through the reactive sites
(=Si—Cl or —Si—OH) of silane and siloxanol species.31

After surface engineering with PSNRs, the functionalized
paper (PSNR-paper) demonstrates a completely different
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surface texture at the nanoscale level in contrast to pristine
cellulosic paper. To validate this, scanning electron microscopy
(SEM) was used to investigate the surface morphology of the
paper before and after treatment. Unlike the fibrous surface
texture of cellulosic paper (Figure 2a), PSNR-paper features
micro-nano hierarchical structures due to the introduced PSNR
layer (Figure 2b,c). The uniform decoration of PSNRs is further
confirmed by the homogeneous distribution of the Si element
shown in the energy-dispersive X-ray (EDX) mapping images
(Figure 2d—f).

Compared with cellulosic paper, a much higher Si content
(~27 wt %) and an obvious peak corresponding to Si were
observed from the EDX spectra analysis for PSNR-paper (Figure
2g). In the Fourier transform infrared (FTIR) spectra, the bands
at 2950 cm™! and 2900 cm ™! for the PSNR-paper are assigned to
the C—H vibration of the CH; group of the decorated
PSNRs,”>* and the same absorption bands are observed for
pure PSNRs (synthesis details are shown in Materials and
Methods section) (Figure 2h). These results further prove the
successful decoration of PSNRs on the paper surface. The PSNR
layer thickness and the average diameter of PSNRs were
determined to be 7.0 ym + 1.3 ym and 489 nm + 71 nm,
respectively, according to the analysis of cross-sectional SEM
results, as shown in Figure 2i. By measuring the weight change of
the cellulosic paper before and after functionalization, the
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and images of bending tests.

grafting weight percentage of PSNRs was calculated to be 19.8
wt % + 1.1 wt %.

Due to its inherent hydrophilicity, cellulosic paper can be
easily wetted and infiltrated by water (Figure S3). However, the
as-prepared PSNR-paper exhibits excellent water repellency; for
instance, a water jet can easily bounce off (Figure 3a and Movie
S1) and water droplets show a contact angle of 162° + 2° over its
surface (Figure S3). The introduced superhydrophobicity was
also demonstrated by the mirror-like plastron layer when PSNR-
paper was immersed in water (Figure 3a), and the surface
remained nonwetting after being taken out. This indicates the
existence of a trapped air cushion between the solid paper
surface and water.”* The excellent water repellency can be
ascribed to the synergic effect of the low surface energy along
with the nanoscale surface roughness (Figure 2b) of the
decorated PSNR layer.***

The water-repellent durability of superhydrophobic materials
is an important property to be considered in practical
applications. Therefore, the prepared PSNR-paper was kept
under various test conditions for a predetermined time, and its
wettability was periodically examined through static contact
angle (Oc,) measurements (Figure 3b). No obvious change in
Ocys was observed after 12 h exposure to (i) intensive UV
illumination, (ii) ultrahigh humidity (90% RH), and (iii)
extreme temperatures (200 °C and —196 °C), demonstrating
excellent durability of the engineered PSNR-paper. Moreover,
the PSNR-paper showed outstanding stability when subjected to
harsh chemical conditions. For instance, after 90 min exposure
to either 0.1 M HCI or 0.1 M NaOH aqueous solution, the
PSNR-paper could maintain its superhydrophobicity with 8¢,
above 150° (Figure 3c), despite slight decreases. Interestingly,
unlike most superhydrophobic surfaces,">>® the achieved
PSNR-paper shows stable water repellency under long-term
exposure to organic solvents, maintaining a final 6, of around
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160 °C even after 24 h of immersion (Figure 3d). The sustained
superhydrophobicity of the solvent-treated PSNR-paper was
further revealed by water droplets bouncing and rolling off from
the slightly titled (5°) surface (Figure S4 and Movie S2). The
ultradurable water repellency of the PSNR-paper can be
assigned to the physicochemical stability of the PSNR layer
with which the paper surface is armored. The chemically inert
low-energy surface together with the cross-linked structure of
polysilsesquioxane nanorods provides excellent resistance
toward chemical perturbations.””*® This is further demon-
strated by the SEM results of the surface topology of PSNR-
paper after exposure to HCl, NaOH, DMF, and toluene, as
shown in Figure SS. Clearly, the PSNR layer remains intact with
the paper surface after being exposed to these corrosive liquids.
The collapse of the PSNRs after organic solvent treatment is
ascribed to the induced capillary force during the drying
process.””*" The retained PSNRs on the paper surface well
explains the durable superhydrophobicity.

Mechanical durability of PSNR-paper was examined by
abrasion and cyclic bending tests. After 20 abrasion cycles, the
PSNR-paper maintained its O, of above 150° and remained
completely dry after immersion in water, indicating the
sustained water repellency (Figure 3e and Figure S6).
Additionally, a cyclic bending test was conducted to evaluate
the flexibility and mechanical durability. Figure 3f shows the
water repellency of PSNR-paper as a function of bending cycles.
No visible change in fc, was observed despite 500 bending
cycles. The preserved water repellency after mechanical
damages can be ascribed to the maintained PSNRs protected
by the microcellulose fibers during abrasion,*' along with the
residual polysilsesquioxane layer remaining on the cellulose
microfibers, which is evidently revealed by the SEM images
(Figure S7). These results demonstrate the mechanical
durability and flexibility of PSNR-paper.
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Notably, our strategy can be easily applied for scale-up
fabrication of superhydrophobic cellulosic paper. We took
commercially available paper of A4 size (297 mm X 210 mm) as
the examined model. As shown in Figure S8 and Movie S3, the
A4 paper armored with PSNRs exhibits excellent water
repellency, as demonstrated by a water jet bouncing off its
surface, whereas unmodified paper can be easily wetted and
infiltrated by the water jet. Strikingly, no change was observed to
the paper appearance after being engineered with PSNRs. On
the contrary, a significant wrinkled surface feature was observed
for the paper treated with a commonly adopted wet-chemical
method (Figure S9). This is mainly caused by the stretching of
cellulose fibers. When paper is soaked with the involved liquid
(ethanol), the adhesion between cellulose fibers would be
reduced due to liquid infiltration, causing the paper to swell,
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which consequently leads to the wrinkled and curled paper
surface after liquid evaporation.

Unlike superhydrophobic papers reported elsewhere, the as-
prepared PSNR-paper can be used directly for printing, owing to
its sustained appearance and integrity after functionalization. To
evaluate the printing performances, both PSNR-paper and
cellulosic paper of A4 size were printed with the same content.
No visible difference between the prints on PSNR-paper and
cellulosic paper was found (Figure S10), indicating the
outstanding printability of PSNR-paper. Importantly, the
PSNR-paper even maintains its water repellency after being
printed. A muddy water (10 g of soil dispersed in 200 mL of
water) jet can easily bounce off the PSNR-paper printed either
with pattern or text content (Figure 4a, Figure S11a, and Movie
S4) and water droplets maintained nearly spherical contact on
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armored with PSNRs. (e) 0, and tensile strength for the prints (with and without PSNR-armoring) before and after water exposure. Prints
armored with and without PSNRs after water exposure are indicated as print-PSNR-W and print-W, respectively. (f) Durability of the water
repellency for PSNR-armored print under ambient conditions. The inset photograph shows the spherical contact of water droplet after 100
days. (g) Time-resolved images showing the self-cleaning property of PSNR-armored print after 100 days storage under ambient conditions.
Comparison of antimicrobial property between (h) PSNR-armored paper and (i) cellulosic paper. Photographs in panels c and d are used with
permission from University of Zurich.*” Copyright 2010 UZH Ursula Meisser.

the printed surface (Figure S12), demonstrating the sustained
waterproof functionality of the PSNR-paper after printing. In a
sharp contrast, the water jet spread and infiltrated easily while it
contacted the printed cellulosic paper (Figure 4b, Figure S11b,
and Movie S4).

Moreover, the PSNR-paper enables handwriting as well.
Figure 4c visually shows the writability and preserved water
repellency of PSNR-paper. The waterproof property of the
handwritten PSNR-paper was further evaluated with ink
diffusion tests. Both PSNR-paper and cellulosic paper were
written with water-soluble ink (200 mg of Rhodamine B
dissolved with 10 mL of ethanol) and exposed to water for a
same time period (12 h). The ink on the PSNR-paper stayed
intact even after long-term contact with water, whereas it
dissolved into water from unmodified paper within a few
seconds, as shown in Figure 4d,e, respectively.

The above results demonstrate that the PSNR-paper
simultaneously possesses excellent printability, writability, as
well as waterproof functionality either before or after printing
and handwriting. These features can be ascribed to the
introduced oleophilic and hydrophobic polysilsesquioxane
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nanorods on the PSNR-paper surface. The oleophilicity of
PSNRs (attributed to the surface-exposed ethyl groups)
together with their micro-nano rough structure results in the
formation of capillary wetting and air cushion toward (oily) ink
and water, respectively, which endows the PSNR-paper with
both excellent ink adhesion and outstanding water repellency.
The excellent affinity and adhesion of the ink toward PSNR-
paper is further demonstrated by the rapid absorption and
complete wetting (contact angle of 0°) of the ink on the paper
surface (Figure S13). Interestingly, after handwriting/printing,
the polysilsesquioxane nanorods entangled with each other (due
to the capillary action of the ink) and adhered to the paper
surface instead of breaking off (Figure S14). The nanorods
retained on the paper surface, together with the hydrophobicity
of the loaded oily ink, further confirm the waterproofing
properties of the handwritten/printed PSNR-paper. The
sustained superhydrophobicty of the printed and handwritten
PSNR-papers was also demonstrated by the measured water
contact angles above 150° (Figure 4f).

Cellulosic paper can easily get wetted by water absorption due
to its hydrophilic nature and strong capillary action, thereby
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affecting its integrity and functionality. Figure 4g shows the
integrity tests for printed PSNR-paper and cellulosic paper after
identical immersion time in water. PSNR-paper remained totally
dry and showed high resistance toward tearing force, whereas
cellulosic paper was wetted by water and was easily destroyed.
To quantify the mechanical properties, tensile measurements
were performed with the papers before and after water treatment
(Figure 4h,i). PSNR-paper exhibits comparable tensile strength
(~9.0 MPa) and stain (~4.5%) compared to pristine cellulosic
paper, demonstrating that the surface-engineered PSNR layer
did not compromise the mechanical properties. After exposure
to water, cellulosic paper showed a significant reduction in both
tensile strength and strain, indicating poor integrity. As a sharp
contrast, the mechanical strength of PSNR-paper did not
change, even after long time exposure to water. These results
suggest the excellent nonwettability and enhanced integrity of
PSNR-paper toward water infiltration even after printing. This is
of great significance for the use of PSNR-paper in practical
applications.

Endowing paper prints with superhydrophobicity is of great
interest in real world applications. However, most conventional
superhydrophobization methods cannot be used directly on
paper-based prints. This is mainly because of the following: (i)
the solvents used in a hydrophobization process would destroy
the printed contents on paper surface due to dissolution of ink
molecules; (ii) the opaque micro/nanotopographic features
(i.e., surface roughness required for superhydrophobicity)
reduce the readability/visibility of the printed content.

In this section, we demonstrate the feasibility of our strategy
for waterproofing cellulosic papers preprinted with contents.
Proof-of-concept experiments are shown in Figure 5. Interest-
ingly, no observable change was inspected for the visibility and
readability of the print (Figure Sa,b), which indicates the visible
light transparency of the decorated PSNR layer. Further, the
functionalized print appearance remains unchanged. However,
the print treated with a conventional wet-chemical method
showed unacceptable damage on both its exterior (curled
surface) and the printed content (ink diffusion), caused by the
used solvent during treatment (Figure S15).

The paper prints armored with PSNRs exhibit excellent
waterproofing and self-cleaning functionalities; for example,
muddy water jets bounce off easily from its surface without
leaving any trace, whereas unmodified paper print was easily
wetted and contaminated by the muddy water (Figure Sc,d and
Movie SS). The static contact angle of a water droplet over
PSNR-armored print surface was measured to be around 160°,
and it remained unchanged after long-term exposure to water
(Figure Se). The ., of the unmodified print was tested to be
~120°, and it instantly decreased to 0° after water exposure. The
excellent waterproofing of the print armored with PSNRs can be
attributed to the induced micro-nano surface morphology
(Figure S16) as well as the low surface energy of PSNRs.”'

The impact of PSNR armor on the print mechanical
properties was investigated, as well, as shown in Figure Se.
Tensile measurements show that print armored with a PSNR
layer features tensile strength comparable to that of the one
without any modification, again confirming that the strategy
employed does not affect the mechanical properties. The
armored print exhibits significantly enhanced integrity and
strength toward water exposure when compared with the
untreated one, which is ascribed to its waterproof functionaliza-
tion that prevented cellulose fibers from detaching due to water
infiltration. The longevity of water repellency for the PSNR-

9448

armored print was evaluated under ambient conditions, as well.
It was periodically examined through static contact angle
measurements, and the 0, remains around 160° after 100 days
of exposure (Figure 5f). Meanwhile, the self-cleaning properties
were preserved as the dirt and dust contaminations can be easily
removed from the print surface by rolling water droplets (Figure
Sg). Notably, the decorated PSNR armor offers the function-
alized paper items with excellent antimicrobial functionality. No
microbial growth was observed over the PSNR-armored surface
when it was exposed to the bacterial species under favorable
growing conditions for 24 h (Figure Sh). On the contrary,
bacterial colonies can be clearly observed on both the perimeter
and surface of unmodified paper (Figure 5i), highlighting a large
amount of microbial growth. The antimicrobial functionality can
be attributed to the intrinsic superhydrophobicity of the PSNR-
decorated surface, which prevents the microorganisms from
accessing the moisture and nutrients that are required for
growth. Moreover, the hierarchical structured surface resulting
from the decorated PSNRs decreases the contact area between
microbes and the solid substrate, which plays a vital role for
reducing the adhesion of bacteria on the surface.® In addition,
we also showed that the PSNR-armoring protocol can be applied
to waterproof other cellulose-based products, such as packaging
materials (Movie S6) and letter envelopes (Figure S17).

The above results have demonstrated the robustness of the
engineered PSNRs for armoring cellulose-based items, i.e.,
endowing cellulosic objects with multifaced functionalities but
without compromising their appearance and properties, which is
promising for enhancing the usability of cellulosic items and
providing great advantages in paper-based technologies.

CONCLUSION

In summary, we have demonstrated a one-step strategy to
fabricate printable superhydrophobic paper through in situ
surface engineering with PSNRs. The PSNR-paper exhibits
durable water repellency toward harsh external perturbations
and shows significantly enhanced strength and integrity
compared with traditional cellulosic paper after exposure to
water. Importantly, the PSNR-paper features excellent print-
ability toward widely used inkjet printing techniques and could
sustain its water repellency after either printing or writing, due to
the delicately designed oleophilic and hydrophobic PSNRs on
its surface. Furthermore, the developed nonsolvent strategy can
be directly applied on paper-based prints without compromising
their readability and functionality, yet conventional wet-
chemical methods cause irreversible damages to both the
printed content and the cellulosic backbone. The PSNR
provides the armored paper items with self-cleaning property
and antimicrobial functionality, which could potentially mitigate
aging and decomposition processes and extend the lifespan of
paper-based items. This is of practical interest for the protection
of paper-based items for outdoor use, as well as printed paper
objects, such as historic papers, books, paintings, etc. Moreover,
the PSNR armor strategy takes advantage of easy implementa-
tion, scalability, and the absence of organic solvents, which
minimizes environmental and safety concerns and, in turn,
provides opportunities for developing waterproof functional
papers from sustainable natural resources.

MATERIALS AND METHODS

Materials. Trichloroethylsilane (TCES, 98%) was purchased from
ABCR GmbH (Germany). Cellulosic papers were purchased from
Refutura (Germany). Toluene (99.8%), tetrahydrofuran (THF, >
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99.5%), dimethylformamide (DMF, > 99.8%), Rhodamine B (> 95%),
hydrochloric acid (37%), and sodium hydroxide (> 97%) were
purchased from Sigma-Aldrich. Ethanol and acetone (absolute for
analysis) were purchased from Merck Millipore. Milli-Q water was
produced by a Millipore Simplicity system (Billerica, MA, USA). Unless
otherwise mentioned, all other chemicals were used as received.

Sample Preparation. To prepare the superhydrophobic paper
engineered with polysilsesquioxane nanorods, the impact of reaction
time, humidity, and TCES amount on PSNR morphology was
investigated (Figures S1 and S18). In order to successfully grow
PSNR on a cellulosic paper surface, we selected a humidity of 50%,
reaction time of 2 h, and TCES usage of 800 L for the reaction. Briefly,
cellulosic paper with a size of 10 cm X 10 cm was placed into a custom-
built glass desiccator (with a volume of 6 L) and equilibrated for 2 h
under a controlled humidity of 50% + 1%. The humidity inside the
desiccator was monitored with a EE23 (E+E Elektronik, Austria)
hygrometer and adjusted using a mixture of dry and humidified N,.
Subsequently, to initiate the growth of PSNRs on the paper surface, 800
uL of TCES was injected into the desiccator and the reaction was
conducted at room temperature (~22 °C) for 2 h. The obtained PSNR-
decorated paper was cleaned with a nitrogen gun and placed under
ambient conditions for 4 h before any further characterizations. The
pure PSNR was obtained through scraping the surface of PSNR-
decorated glass slides. For this purpose, 8 pieces of glass slides (75 mm
X 25 mm X 1 mm) were decorated with PSNRs, with the same reaction
conditions as those used for preparation of PSNR-paper. To prepare the
PSNR-decorated paper with A4 size, a glass desiccator of 12 L was used.
Two milliliters of TCES was injected into the desiccator, and the
reaction was conducted at a relative humidity of 50% + 1% (room
temperature) for 6 h. The same reaction conditions were employed to
armor the paper prints with PSNRs. The printing performed on the
PSNR-paper or cellulosic paper of A4 size was conducted exclusively
with an inkjet printer (Expression Premium XP-6100 color inkjet
printer with Claria Premium Ink).

Characterizations. A high-resolution SEM combined with EDX
(Zeiss Supra S0 VP, German) was used to characterize the surface
structures of the samples. The electron acceleration voltage was set to
10 keV. Prior to SEM-EDX analysis, all samples were sputter-coated
with a § nm layer of platinum. The contact angle and sliding angle
measurements were performed using a contact angle goniometer
OCAL1S plus (Dataphysics, Stuttgart, Germany). The water droplets
used for waterproof measurements are all with a volume of 10 uL. FTIR
spectra were obtained with a Bruker vertex 70 attenuated total
reflection (ATR) FTIR spectrometer equipped with an ATR single
reflection crystal (Bruker Optic GmbH, Germany). The spectra were
collected in the range of 400 cm™ to 4000 cm™" (64 scans), and the
background spectra were recorded against air. An RPR-200 model
reactor (SNE Ultraviolet Co., USA) equipped with eight UV lamps
(SNE Ultraviolet Co., USA) with an emission wavelength at 350 nm
was used to assess the UV resistance of the tested samples.

Durability Test. The durability of water repellency for the PSNR-
paper under exposure to external perturbations was evaluated by
measuring the static contact angle of water droplets on the tested paper
surface. We applied various external perturbations, such as exposure to
UV illumination, extreme temperatures (—196 °C and 200 °C),
ultrahigh humidity (90% RH), strong acidic and basic liquids, as well as
various polar and nonpolar organic solvents, to evaluate the durability
of the paper surface. After each solvent treatment, the paper samples
were dried under vacuum at room temperature for 6 h, and static water
contact angles were measured. To access the water repellency
durability, the PSNR-armored paper prints were kept in an ambient
environment for 100 days, and the wettability was periodically
examined through static contact angle measurements. To evaluate the
superhydrophobicity of the PSNR-paper toward mechanical abrasion,
an AB5000 Washability Tester (TQC, Germany) was used. The friction
partner (polyurethane sponge) was mounted on a reciprocating sled
oscillated with a certain stroke speed. The stroke distance, speed, as well
as the applied load were 30 cm, 10 cycles min~", and S0 g, respectively.
The contact angles of the abraded samples were investigated as a
function of abrasion cycles.

Mechanical Performance Tests. The tensile measurements were
performed with an Instron 3345 universal testing device (US). A gap of
40 mm was used in the tensile measurements, and the typical sample
(paper) dimensions were 100 mm X 10 mm. The applied testing rate
was 1 mm min~". For average values of the maximum stress and strain,
at least three specimens were measured.

Antimicrobal Activity Test. Antimicrobial activity test was
performed using Escherichia coli BL21 strain. Bacteria were grown in
LB (Luria-Bertani) medium at 37 °C overnight. This bacterial culture
was diluted with LB to the optical density at A = 600 nm of 0.02 (ODy,
= 0.02). Presterilized superhydrophobic and control materials were
immersed in the respective bacterial cell culture dilution for 50 s and
subsequently rinsed with 100 xL of ddH,O. All samples were placed in
the middle of the LB agar plates and incubated overnight at 37 °C.
Pictures were taken under Leitz Laborvert light microscope (Ernst Leitz
Wetzlar GmbH, Germany) with 100X magnification.
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