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Abstract
HIV-1 Vpu prevents incorporation of tetherin (BST2/ CD317) into budding virions and tar-

gets it for ESCRT-dependent endosomal degradation via a clathrin-dependent process.

This requires a variant acidic dileucine-sorting motif (ExxxLV) in Vpu. Structural studies

demonstrate that recombinant Vpu/tetherin fusions can form a ternary complex with the cla-

thrin adaptor AP-1. However, open questions still exist about Vpu’s mechanism of action.

Particularly, whether endosomal degradation and the recruitment of the E3 ubiquitin ligase

SCFβTRCP1/2 to a conserved phosphorylated binding site, DSGNES, are required for antag-

onism. Re-evaluation of the phenotype of Vpu phosphorylation mutants and naturally occur-

ring allelic variants reveals that the requirement for the Vpu phosphoserine motif in tetherin

antagonism is dissociable from SCFβTRCP1/2 and ESCRT-dependent tetherin degradation.

Vpu phospho-mutants phenocopy ExxxLV mutants, and can be rescued by direct clathrin

interaction in the absence of SCFβTRCP1/2 recruitment. Moreover, we demonstrate physical

interaction between Vpu and AP-1 or AP-2 in cells. This requires Vpu/tetherin transmem-

brane domain interactions as well as the ExxxLV motif. Importantly, it also requires the Vpu

phosphoserine motif and adjacent acidic residues. Taken together these data explain the

discordance between the role of SCFβTRCP1/2 and Vpu phosphorylation in tetherin antago-

nism, and indicate that phosphorylation of Vpu in Vpu/tetherin complexes regulates promis-

cuous recruitment of adaptors, implicating clathrin-dependent sorting as an essential first

step in tetherin antagonism.

Author Summary

Counteraction of tetherin, a host antiviral protein that blocks viral release from infected
cells, is an essential attribute of HIV-1 and its related viruses. The HIV-1 accessory protein
Vpu binds to tetherin, preventing its incorporation into viral particles, and targets it for
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ubiquitin-dependent degradation. This involves mis-trafficking of tetherin by a Vpu-
dependent mechanism through the engagement of clathrin adaptor proteins. Although
structural evidence exists for Vpu and tetherin interacting with clathrin adaptor 1 (AP-1),
evidence that it is required for Vpu-mediated tetherin counteraction is still lacking.
Tetherin degradation by Vpu also requires an E3 ubiquitin ligase, SCFβTRCP1/2 that binds
to phosphorylated serine residues in the Vpu cytoplasmic tail. Again, discrepancies exist
about the importance of this interaction in tetherin’s counteraction. Here we show that
Vpu phosphorylation, in combination with its physical interaction with tetherin, regulates
interaction with both AP-1 and the other major cellular clathrin adaptor, AP-2. These
interactions can be decoupled from SCFβTRCP1/2 recruitment, thus indicating clathrin-
dependent mis-trafficking as a critical step in tetherin antagonism by Vpu. Additionally,
the ability to interact both with AP-1 and AP-2 in a tetherin-dependent manner indicates
a redundancy in host cofactors used by Vpu that explains disparate previous observations
of its mechanism of action.

Introduction
Counteraction of the antiviral membrane protein tetherin (BST2/ CD317) is an essential attri-
bute of primate lentiviruses, and is mediated by either the Vpu or Nef accessory proteins, or
occasionally the viral envelope glycoprotein (reviewed in [1]). In their absence, tetherin
restricts the release of virions assembling at the cell surface [2–6]. By virtue of its N-terminal
transmembrane (TM) domain and C-terminal GPI anchor, partitioning of tetherin dimers into
budding virions allows them to simultaneously span host and viral membranes resulting in
accumulation of cross-linked virions on the plasma membrane (PM) [7,8]. In addition to phys-
ically limiting virion release, tetherin’s activity sensitizes infected cells to antibody-dependent
cellular cytotoxicity [9–12], targets virions for endosomal degradation, and in the case of great
ape tetherins, can directly induce the activation of proinflammatory NF-κB signaling [13–16].

Tetherin recycles to the PM via the trans-Golgi network (TGN) [17]. This requires a dual
tyrosine-based sorting signal (YDYCRV in humans), which can interact with the clathrin adap-
tor AP-1. Lentiviral countermeasures physically interact with tetherin, often in a highly spe-
cies-specific manner [1]. Through their action, tetherin incorporation into virions is blocked,
and this is associated with its reduced cell surface levels. In the case of HIV-1 Vpu, a small
membrane phospho-protein, physical interaction is mediated by the TM domains themselves
[18–20]. HIV-1 Vpu targets human tetherin into an ESCRT-dependent endosomal degrada-
tion pathway [21,22]. This is an ubiquitin driven process and requires a highly conserved
DSGNES motif in the Vpu cytoplasmic tail [23–25]. Phosphorylation of the serine residues
(S52/53 and S56/57 in subtype B depending on the isolate) by casein kinase II (CKII) [26,27]
recruits the β-TrCP1/2 subunits of a Skp1-Cullin1-F-Box (SCF) E3 ubiquitin ligase [28] that
mediates direct ubiquitination of various residues in the tetherin cytoplasmic tail including an
STS motif [29]. However, there is still debate as to whether the recruitment of the SCFβTRCP1/2

to the DSGNES motif in Vpu is required for counteraction of physical retention of virions by
tetherin (hereafter also termed antagonism) as well as its final endosomal degradation. Much
of this discrepancy may be attributable to whether assays are performed in virally infected cells
or those transiently transfected with Vpu, tetherin or both [30]. While ESCRT-I appears to be
dispensable in infected cells [21], evidence that the ESCRT-0 component HRS is required for
tetherin antagonism suggests targeting to endosomal degradation plays a role [22]. Further-
more, mutations of the Vpu serine residues (so called 2/6 mutations) have intermediate

Vpu Phosphorylation Regulates Clathrin Adaptor Interaction

PLOS Pathogens | DOI:10.1371/journal.ppat.1005141 August 28, 2015 2 / 26



phenotypes in tetherin antagonism suggesting degradation does not fully explain Vpu function
[24,25,31]. Moreover this defect in antagonism is not recapitulated by siRNA depletion of β-
TrCP1/2 [32]. Indeed evidence that the DSGNES motif might have a dual function in tetherin
trafficking has been proposed [33]. This is consistent with our recent study of Vpu variation in
patients where we found that naturally occurring variants in the NE of the DSGNES imparted
tetherin-specific defects to Vpu without blocking its other SCF-dependent activity, dislocation
of CD4 from the endoplasmic reticulum [34].

Vpu has been shown to block newly synthesized and/or recycling tetherin from trafficking
to the cell surface [33,35]. This requires a variant of an acidic dileucine motif, ExxxLV, in the
second alpha helix of the cytoplasmic tail of most HIV-1 group M clade Vpu [36]. Acidic dileu-
cine sorting signals bind to the σ subunits of the major cellular clathrin adaptors AP-1 (traffick-
ing from TGN to endosomes and vice versa) and AP-2 (clathrin-dependent endocytosis from
the PM) (reviewed in [37]). In keeping with this, Vpu-mediated tetherin antagonism is entirely
clathrin-dependent [36,38]. Mutation of the ExxxLV motif does not block Vpu/tetherin inter-
actions, but reduces the efficiency of counteraction and inhibits degradation [36]. In particular
ExxxLV is essential for counteraction of tetherin in CD4+ T cells upon interferon upregulation,
and mutant phenotypes are exacerbated when tetherin lacks the YDYCRVmotif [36]. A recent
structural and biochemical study has demonstrated that the ExxxLV motif can bind canoni-
cally to the σ subunit of AP-1, whereas the YXXθmotif of tetherin can bind to the μ subunit of
AP-1 [39]. In fusions of Vpu and tetherin cytoplasmic tails both motifs can occupy their
respective binding sites simultaneously [39]. Some density in the structure also indicated other
contacts between Vpu and AP-1μ, and together implied a mechanism whereby the formation
of this ternary complex would modulate AP-1-dependent trafficking of tetherin to endosomes.
However, whilst the localization of Vpu to the TGN suggested AP-1 as the major target,
siRNA-mediated knockdown of AP-1 or expression in AP-1 -/- murine fibroblasts did not
inhibit Vpu function [36]. Neither has physical interaction between AP-1 and the wild-type
Vpu protein been demonstrated in living cells. Expression of tetherin fused at its N-terminus
to the second helix of Vpu is excluded from budding virions at the PM in an ExxxLV-depen-
dent manner [18]. Added to this, tetherin can be expressed as two isoforms, one of which lacks
the YDYCRVmotif and can be antagonized by Vpu to a certain extent without cell surface
downregulation [13,40]. Likewise, Vpu has only a modest effect on tetherin endocytosis
[25,35], and AP-2 knockdown also has little impact on antagonism, contrasting sharply with
SIV Nef and HIV-2 envelopes [38,41,42].

AP1 binding to a non-canonical acidic dileucine motif in CI-M6PR has been associated
with upstream serine phosphorylation by CKII previously [43]. Thus we hypothesized that the
DSGNES in Vpu might regulate clathrin adaptor interaction independently of SCF recruit-
ment. Here we provide evidence that this is indeed the case.

Results

Vpu does not require ESCRT-I, HRS or β-TrCP to counteract tetherin in
HIV-1 infected cells
The importance of the SCFβTRCP1/2 E3 ligase and the ultimate degradation of tetherin to the
counteraction of its physical antiviral activity by Vpu has been controversial. Since the discrep-
ant studies were mostly performed under conditions of transient transfection of tetherin, provi-
rus or both, and which have been shown previously to lead to artifactual effects on tetherin
degradation [30], we re-examined these issues in HIV-1 infected 293T cells stably expressing
surface tetherin at levels similar to those induced by type 1 interferon (Fig 1A). We have previ-
ously shown that an endosomal sorting-specific subunit of ESCRT-I, UBAP1, is essential for
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Fig 1. Vpu does not require ESCRT-I, HRS or βTRCP to counteract tetherin in HIV-1 infected cells. (A) The graph indicates the median fluorescence
intensity of tetherin surface expression for 293T cells, 293T cells treated with 1000 U/ml universal type-I interferon for 24h or the same cells stably expressing
tetherin. (B) 293T tetherin cells were transfected twice over a 48 hour period with siRNA oligonucleotide directed against HRS, UBAP1, TSG101 or non
targeting control. Cells were then infected with NL4.3 HIV-1WT or HIV-1 ΔVpu at an MOI of 0.8. Cell lysates and sucrose purified viral supernatants were
subjected to SDS-PAGE and analyzed byWestern blotting for HSP90, HIV-1 p24CA and Vpu, and analyzed by LiCor quantitative imager. (C) Infectivity of
viral supernatants from (B) was assayed on HeLa-TZMbl reporter cells. Infectious virus release was plotted as β-galactosidase activity in relative light units
(RLU). Error bars represent the standard deviation of three independent experiments. (D) Cells were treated as in (B), but infected with an MOI of 2. Cell
lysates were subjected to SDS-PAGE and analyzed by Western blotting for HSP90 and tetherin, and analyzed by LiCor quantitative imager. (E) Percent of
tetherin in cells transfected with HRS or non-targeting siRNA oligonucleotides and infected with NL4.3 HIV-1WT or HIV-1 ΔVpu. Error bars represent the
standard deviation of three independent experiments. (F-H) 293T or 293T tetherin cells were transfected as in (B) with siRNA oligonucleotide directed
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tetherin’s degradation but not for antagonism [21,36]. Despite efficient levels of knockdown,
similarly efficient siRNA knockdowns of HRS (ESCRT-0) or UBAP1 had only minor effects on
one-round yield of wild-type HIV-1 (HIV-1 wt) from 293T tetherin cells at an MOI of 0.8 (Fig
1B and 1C). As expected, knockdown of the core ESCRT-I subunit TSG101 destablized
UBAP1 [44] and blocked all virion release because of its essential late-domain function [45],
and all siRNA treatments also stabilized Vpu expression (Fig 1B). In keeping with this, cells
infected at an MOI of 2, to ensure at least 90% infection, demonstrated that Vpu-induced deg-
radation was blocked by all siRNA knockdowns (Fig 1D and 1E). These data therefore indicate
that in infected cells expressing physiological levels of Vpu from an integrated HIV-1 provirus,
the core ESCRT pathway and HRS are essential for Vpu-mediated tetherin degradation, but
dispensable for counteraction of tetherin’s physical antiviral activity.

A previous study indicated that HRS interacted with Vpu in immuno-precipitates [22]. We
confirmed this in transfected cells using myc-tagged HRS, and found that HRS truncations
that removed its double-ubiquitin interaction motif (DUIM) inhibited this interaction (S1A
and S1B Fig). Furthermore, point mutations in the DUIM that abolish ubiquitin-interaction
(A266Q/ A228Q) [46], not putative ubiquitin-binding mutants in the VHS domain, completely
abolished HRS/Vpu interactions in co-IPs (S1C Fig). Whilst formally possible that the DUIM
is a direct binding site for Vpu, these data likely suggest that Vpu interactions with HRS are
mediated indirectly through ubiquitination either of cargo, or associated factors in the degrada-
tion pathway.

We next similarly re-evaluated the effect of simultaneously knocking down β-TrCP1 and 2
on Vpu-mediated tetherin-degradation and tetherin-counteraction in infected cells. Again
despite efficient knockdown, we saw little effect of this treatment on HIV-1 WT release (Fig
1F–1H). Of note, there was no evidence that β-TrCP1/2 knockdown reduced wild-type release
to that of a viral mutant lacking the phosphorylated serines at positions 52 and 56 that are
essential for β-TrCP1/2 recruitment (HIV-1 Vpu 2/6A). This was in contrast to a complete
reversal of Vpu-mediated tetherin degradation by β-TrCP1/2 siRNAs in cells infected at an
MOI of 2 (Fig 1H). Therefore whilst tetherin degradation by Vpu requires the SCFβTRCP1/2

complex, under conditions when it is sufficiently depleted to block this, there is no effect on
Vpu-mediated tetherin antagonism.

Phosphorylation-defective Vpu phenocopies trafficking mutants
Since the phospho-mutant of Vpu, Vpu 2/6A, has been shown to be partially defective for
tetherin antagonism [23–25], we revisited whether this impairment could be uncoupled from
the ubiquitin ligase. We recently showed that mutants of clade B Vpu lacking a conserved
ExxxLV sorting signal (Vpu ELV) were also partially defective for tetherin antagonism because
they could not traffic tetherin/Vpu complexes for endosomal degradation [36]. Notably, ELV
mutant Vpu loses all residual activity against tetherin lacking the dual-tyrosine recycling motif,
and a recent study demonstrated that the tetherin and Vpu cytoplasmic tails can assemble into
a ternary complex with clathrin adaptor AP-1 [39]. In addition, hints in the structure suggested
that residues 42 and 43 of the first helix of the cytoplasmic tail make a non-canonical contact
with AP-1μ. We found similar Vpu mutants with tetherin-defective phenotypes in our patient
cohort [34], and mutation of conserved L41I42/L45I46 in the first alpha helix to alanines in the
NL4.3 provirus led to a profound defect in tetherin antagonism and degradation without

against β-TrCP1 and 2 or non-targeting control. Cells were infected with VSV-G pseudotyped NL4.3 HIV-1WT, ΔVpu or Vpu 2/6A mutant at an MOI of 0.8
and processed as in (C) and (D). (H) Cells were treated as in (F) but infected at an MOI of 2. Cell lysates were subjected to SDS-PAGE and analyzed by
Western blotting for HSP90 and tetherin.

doi:10.1371/journal.ppat.1005141.g001
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preventing interaction (S2A–S2E Fig). Since the DSGNES motif is located in an acidic patch
between helix 1 and the ExxxLV site, we hypothesized that Vpu phosphomutants may also be
similarly defective for mis-trafficking tetherin. In one round virus infection assays in 293T/
tetherin cells, LI/LI, ELV and 2/6A mutants all had similarly defective phenotypes for tetherin
antagonism (Fig 2A and 2B). Interestingly, like the ELV mutant [36,39], both LI/LI and 2/6A
mutants lost all their residual activity in cells expressing tetherin Y6,8A whereas release of the
wild-type virus was only slightly affected. Moreover, as expected, all mutants were defective for
tetherin degradation (Fig 2C). Examination of the localization of the three mutants in trans-
fected HeLa cells revealed that, unlike the wild-type, 2/6A and LILI localized prominently to
peripheral endosomal structures as well as the TGN (Fig 2D). This was similar to the localiza-
tion expected for the ELV mutant [36], and quantification of coincidence with TGN46 revealed
that all three mutants had a significantly reduced localization to the TGN consistent with a
trafficking defect (Fig 2E). Importantly there was no significant additive effect of combined 2/6
and ELV mutations in full-length virus release from either the 293T/tetherin cells or primary
CD4+ T cells (S3A–S3C Fig). Also these data could be recapitulated using a highly active pri-
mary Vpu (Vpu 2_87) isolate from our previous patient study [34] (S4A–S4D Fig). Treatment
of 293T tetherin cells infected with wild-type HIV-1 with a CKII inhibitor, Tyrphostin, to
mimic the 2/6A mutation showed a reduction of virus release only in the presence of tetherin,
or more prominently, the Y6,8A mutant (Fig 2F and 2G). Western blot analysis of cell lysates
transfected with HA-tagged Vpu expression vectors and run on an 8% PhosTag gel showed
that in the presence of Tyrphostin, the smear of phosphorylated Vpu was reduced indicating
inhibition of Vpu phosphorylation (Fig 2H). Together, these data therefore suggested that the
defective tetherin antagonism of Vpu 2/6A may be due to phosphorylation-regulated traffick-
ing of Vpu rather than ubiquitin ligase recruitment and degradation.

Functional rescue of Vpu phospho- and trafficking mutants by direct
interaction with clathrin
The current model for Vpu function is that it prevents tetherin trafficking to the PM from the
TGN and sorts it into a clathrin-dependent endosomal trafficking pathway [1,47]. If our above
hypothesis was the case, we reasoned that bypassing clathrin adaptors and linking Vpu directly
to clathrin itself could functionally rescue all ELV, LI/LI and 2/6A mutants. To do this we
appended the AQLISFD clathrin box (CB) from HRS or a mutated sequence, AQAASFD, lack-
ing the leucine and isoleucines essential for clathrin interaction, to the C-termini of Vpu and
the respective mutants (Fig 3A). Transient transfection of increasing doses of Vpu into 293T
tetherin cells effectively rescued Vpu-defective HIV-1 viral release, and neither the clathrin
box nor its mutant impaired wild-type Vpu function (Fig 3B and 3C). Remarkably, however,
Vpu 2/6A, Vpu ELV or Vpu LI/LI function was almost fully restored by fusion of the clathrin
box, whereas grafting the mutated sequence had no effect. All Vpu chimeras were well
expressed, although as shown in Fig 3C, the apparent molecular weight of Vpu and its chimeras
in SDS-PAGE did not reflect amino acid length. Similar results were obtained for a heterolo-
gous clathrin box (RNLLDLL) derived from GGA2 (available on request). The clathrin
box also fully restored downregulation of tetherin from the surface of transiently transfected
HeLa-TZMbl cells to all the mutants (Figs 3D and S5A–S5D). To show that this rescue of func-
tion was clathrin-dependent, we depleted clathrin membrane binding with the C-terminal frag-
ment of the neuronal clathrin-adaptor AP180 (AP180c). As expected, rescue of wild-type Vpu-
dependent virus release was inhibited by AP180c whereas residual viral release in the presence
of tetherin was not [36]. In all cases, the same held true for clathrin box fusions (Fig 4A). Thus,
direct linkage to the clathrin machinery was sufficient to rescue both Vpu 2/6A and the
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Fig 2. Phosphorylation-defective Vpu phenocopies traffickingmutants. (A-B) 293T, 293T tetherin or Y6,8A tetherin cells were infected with VSV-G
pseudotyped NL4.3WT or mutant virus at anMOI of 0.8. (A) 48 hours post infection viral supernatants were assayed for infectivity using HeLa-TZMbl reporter
cells as in Fig 1. Error bars represent the standard deviation of three independent experiments. (B) Cell lysates and sucrose purified viral supernatants were
subjected to SDS-PAGE and analyzed byWestern blotting as in Fig 1. (C) 293T tetherin cells were infected with NL4.3 HIV-1WT, ΔVpu, Vpu LILI, Vpu ELV or
Vpu 2/6Amutants at anMOI of 2. 48 hours post infection cell lysates were subjected to SDS-PAGE and analyzed byWestern blotting for HSP90 and tetherin,
and analyzed by LiCor quantitative imager. (D) 293T tetherin expressing cells were transfected with 50 ng of pCR3.1 Vpu-HA or indicated mutants. 16 hours
post transfection cells were fixed and stained for HA (green) and the TGNmarker TGN46 (red) and examined by widefield fluorescent microscopy. Panels are of
representative examples. Bars = 10 μm. (E) Z stacks were taken of all cells (n = 15), images were deconvolved using the AutoQuant X3 software and Pearson’s
correlations were calculated for all Z stacks using ImageJ. Results were analyzed by unpaired 2-tailed t-test—*** P = 10–5 or lower. (F) 293T, 293T tetherin or
Y6,8A tetherin cells were infected with VSV-G pseudotyped NL4.3WT at anMOI of 0.8. 6 hours post infection DMSO or 50 μMTyrphostin was added to the
medium. 48 hours post infection supernatants were assayed as in (A). (G) Cell lysates and sucrose purified viral supernatants were processed as in (B). (H)
293T tetherin cells were transfected with 2 μg pCR3.1 Vpu-HA or 2/6 Vpu-HA and treated with DMSO or 50 μMTyrphostin for 24 h. Cell lysates were
electrophoresed as before, or on a 8%, 50 μMPhos-tag gel to separate the phosphorylated species.

doi:10.1371/journal.ppat.1005141.g002
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trafficking mutants. Moreover, in cells stably expressing the Vpu chimeras, no reduction of
tetherin steady state levels was observed upon CB fusion to any of the chimeras (Fig 4B), nor
was β-TrCP interaction restored to the 2/6A mutant fusion (Fig 4C), indicating this was inde-
pendent of SCF and ESCRT function. Wild-type subcellular localization was restored to all
mutants; 2/6A, ELV and LI/LI localization was significantly restored to TGN-associated com-
partments upon CB fusion (Fig 4D and 4E).

To further characterize these Vpu chimeras, we next examined whether they were func-
tional against tetherin bearing tyrosine (trafficking) and serine/threonine (the proposed
SCFβTRCP ubiquitination site [29]) mutations in the cytoplasmic tail. In the case of 293T
tetherin-STS-AAA cells, the Vpu CB chimeras behaved as they did against the wild-type pro-
tein, effectively fully rescuing the 2/6A, LILI or ELV lesion (Fig 5A). Importantly, stable expres-
sion of an STS mutant tetherin had no detectable effect on the efficiency of counteraction by
wild-type Vpu, and the CB addition had no effect, indicating that there is no reduction in Vpu
antagonism when tetherin lacks the residues proposed to be important for ubiquitination.

Fig 3. Functional rescue of Vpu phospho- and traffickingmutants by direct interaction with clathrin. (A) Schematic representation of Vpu CB chimera
constructs. (B) 293T tetherin cells were transfected with NL4.3 ΔVpu proviral plasmid in combination with YFP expression vector and pCR3.1 Vpu, pCR3.1
Vpu CB or Vpu CBmut or Vpu mutants thereof. 48 hours post transfection infectivity of viral supernatants was determined on HeLa-TZMbl cells as in Fig 1.
Error bars represent standard deviation of three independent experiments. (C) Cell lysates and pelleted supernatant virions from (B) were harvested and
subjected to SDS-PAGE and analyzed byWestern blotting for HIV-1 p24CA, Vpu and HSP90, and analyzed by LiCor quantitative imager. (D) HeLa-TZMbl
cells were co-transfected with pCR3.1 Vpu or indicated mutant and a GFP expression vector. Cell-surface tetherin levels were analyzed 48 hours post
transfection by flow cytometry in the GFP positive cells. The percentages of tetherin surface expression levels are calculated frommedian fluorescence
intensities.

doi:10.1371/journal.ppat.1005141.g003
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However, in the case of 293T tetherin Y6,8A cells, whilst Vpu wild-type and CB fusions
remained active, the mutant chimeras remained completely defective (Fig 5B). These data

Fig 4. Clathrin binding rescues Vpu localization without restoring β-TrCP binding or tetherin degradation. (A) 293T tetherin expressing cells were co-
transfected with NL4.3 ΔVpu proviral plasmid and YFP, pCR3.1 Vpu, Vpu CB, Vpu CBmut expression vector or indicated mutant in combination with
AP180c. 48 hours post transfection cell lysates and pelleted supernatant virions were harvested and subjected to SDS-PAGE and analyzed byWestern
blotting for HIV-1 p24CA, Vpu and HSP90, and analyzed by LiCor quantitative imager. (B) 293T tetherin cells were transfected with pCR3.1 Vpu or indicated
mutant. 48 hours post infection cell lysates were subjected to SDS-PAGE and analyzed byWestern blotting for HSP90, tetherin and Vpu, and analyzed by
LiCor quantitative imager. (C) 293T cells were transfected with pCR3.1 Vpu or indicated mutant in combination with a pCR3.1 myc-β-TrCP2 expression
vector. 48 hours post transfection cells were lysed and immunoprecipitated with anti-myc antibody, using PFA (0.05%w/v) as a cross-linking agent. Total cell
lysates and precipitates were subjected to SDS-PAGE and analyzed byWestern blotting for myc-β-TrCP2 and Vpu-HA, and analyzed by ImageQuant. (D-E)
Hela cells were transfected with 100 ng of pCR3.1 Vpu-HA or Vpu-HA CB or indicated mutants and processed as in Fig 2. Vpu-HA (green); TGNmarker
TGN46 (red). (G) Bars = 10 μm. (E) Asterisks inside the bars represent significant localization differences between the mutant andWT Vpu, those above
between mutant and mutant clathrin box fusion.

doi:10.1371/journal.ppat.1005141.g004
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imply that unlike the ExxxLV motif, the clathrin box addition is not dominant over the tetherin
tyrosine-based sorting motif. This therefore suggests that tetherin sorting into clathrin-rich
domains in the recycling compartment is essential for clathrin box chimera rescue, which then
anchors the Vpu/tetherin complex. Subsequent endosomal trafficking, and importantly, any
requirement for serine/threonine ubiquitination are downstream of this event. It also further
reinforces the notion that the primary lesion in tetherin antagonism of the 2/6A mutant, like
ELV and LI/LI, is at the level of clathrin-dependent sorting, not ubiquitin ligase recruitment.

Finally we examined mutations within the DSGNES motif itself. The consensus for a β-
TrCP-binding site is DSGxxS, yet the N55/E56 in group M Vpu is almost universally con-
served. We found rare mutations (N55H/E56G) in patients that displayed impaired tetherin
antagonism despite retaining β-TrCP interaction [34]. Similarly, examination of a Vpu N55H/
E56G mutation in the context of the NL4.3 Vpu revealed defects in tetherin counteraction in
293T tetherin cells (S3 and S4 Figs), which again could be rescued by a clathrin box fusion
unless tetherin itself contained tyrosine mutations (Fig 5C and 5D). Together with the
above data, these observations suggest that structural constraints or flexibility within the

Fig 5. Clathrin box rescue of Vpumutants is dependent on tetherin’s Y6,8 sorting signal. (A-B) 293T tetherin STS or 293T tetherin Y6,8A cells were
transfected with NL4.3 ΔVpu proviral plasmid in combination with YFP expression vector and increasing concentrations of pCR3.1 Vpu or indicated mutant.
48 hours post transfection infectivity of viral supernatants was determined on HeLa-TZMbl cells as in Fig 1. (C) 293T tetherin or 293T tetherin Y6,8A cells
were transfected as in (A) with pCR3.1 Vpu or the N54H,E55G (NE) mutant. 48 hours post transfection infectivity of viral supernatants was determined on
HeLa-TZMbl cells as in Fig 1. Error bars represent standard deviation of three independent experiments. (D) Cell lysates and pelleted supernatant virions
from (A) were harvested and subjected to SDS-PAGE and analyzed byWestern blotting for HIV-1 p24CA, Vpu and HSP90, and analyzed by LiCor
quantitative imager.

doi:10.1371/journal.ppat.1005141.g005
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phosphoserine motif may underlie the reason why the 2/6A mutant is defective for tetherin
mis-trafficking.

Vpu interacts with clathrin adaptors AP-1 and AP-2 in tetherin-
expressing cells
Our previous characterization of the ExxxLV motif and the data presented herein indicate that
clathrin-dependent sorting of Vpu/tetherin complexes is an essential step in tetherin antago-
nism, prior to ubiquitin-dependent degradation. The demonstration that the ExxxLV motif of
Vpu and the YDYCRV site in tetherin can form a ternary complex with AP-1 [39] is consistent
with the cell biological observations that Vpu primarily blocks tetherin recycling and transit to
the PM rather than stimulating its endocytosis [33,35]. However, demonstration that Vpu can
interact with AP-1 in cells is lacking, and neither siRNA depletion of AP-1, nor deletion of γ-
adaptin in murine fibroblasts, affects tetherin antagonism [36]. Clathrin adaptor interactions
with their cargoes can sometimes (but not universally) be detected in yeast 2 or 3-hybrid assays
or with recombinant proteins, but the relative weakness of their affinities often precludes direct
demonstration of their interactions in vivo by conventional immunoprecipitations. To examine
Vpu interaction with AP-1, we initially employed a proximity-based biotin ligase assay (S6A
Fig). A consenus clade B Vpu or indicated mutant (note the phosphomutant S53,57A is labeled
S3/7A), was fused to a myc-tagged E coli biotin ligase BirA-R113G, which itself does not com-
promise Vpu activity (S6B Fig). These constructs were then transfected into 293T or 293T
tetherin cells. 6 hours after transfection the cells were incubated with free-biotin overnight in
the presence of concanamycin A to block any tetherin degradation by the wild-type Vpu pro-
tein. Cell lysates were precipitated with streptavidin beads, and recovered proteins analyzed by
Western blotting. Such treatment will lead to promiscuous biotinylation of proteins in close
proximity with Vpu, potentially allowing us to detect interacting factors with weak affinities.
As shown in S6C Fig, addition of biotin led to an accumulation of biotinylated proteins in cell
lysates, including a strong band that is auto-biotinylation Vpu-BirA fusion itself. Importantly,
β-TrCP was detected for all mutants tested in both 293T and 293T tetherin cells except the 2/
6A mutant. Interestingly AP-1 γ-adaptin was detected only in streptavidin precipitates from
293T tetherin cells transfected with wild-type Vpu-BirA fusion, and not cells lacking tetherin
expression. Furthermore, in 293T tetherin cells both ELV and LI/LI mutants failed to biotiny-
late AP-1. Interestingly, this was observed for the 2/6A mutant and also a Vpu A14L/W22A
mutant that lacks tetherin binding. Thus, proximity-based tagging suggested Vpu does indeed
interact with AP-1 in living cells. This appears to be dependent on tetherin binding and
requires both the predicted AP-1σ binding site in Vpu, ExxxLV, and the non-canonical AP-1μ
contact proposed to imparted by LI/LI. Furthermore, the lack of the 2/6A mutant to biotinylate
AP-1γ suggests that Vpu phosphorylation is required to promote interaction, consistent with
its cellular phenotype.

Whilst this data is strongly suggestive, it does not rule out that conformational changes in
the mutants position the BirA in a context where AP-1 cannot be biotinylated. To strengthen
these observations, we performed cross-linking immunoprecipitations in 293T tetherin cells
transfected with HA-tagged Vpu or all of the above Vpu mutants. This revealed that AP-1γ
could be detected in immunoprecipitates of Vpu-HA (Fig 6A). This was not detected for the
A14L/W22A mutant, again indicating a requirement for tetherin interaction. A reduced
amount of AP-1γ was detected in the 2/6A and ELV mutant immunoprecipitates, and this var-
ied between replicates (see histogram below blot). Since tetherin’s YDYCRVmotif also binds
to AP-1 (Jia et al., 2014), we repeated the immunoprecipitations in 293T tetherin Y6,8A cells
(Fig 6B). Whilst AP-1 precipitation was preserved for the wild-type protein, this effectively
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removed all detectable AP-1 interactions with any of the mutants, including the NE mutation
between the two serines, indicating the reduced detection was due to tetherin/AP-1 interac-
tions. To confirm these data, we also performed the same precipitations in 293T cells express-
ing a rhesus macaque tetherin to which HIV-1 Vpu cannot bind (Fig 6C), or parental 293T
cells (S7A Fig) and found that no AP-1 could be detected under any conditions. These data
also held true for the patient isolate Vpu 2_87 (S7B Fig). Therefore, these data demonstrate for
the first time that Vpu does interact with AP-1 in vivo. Tetherin/Vpu TM-domain interactions
are essential for this interaction, as are the predicted AP-1 binding sites in Vpu. Moreover, the
lack of interaction of the 2/6A mutant indicates that phosphorylation of Vpu upstream of the
ExxxLV regulates AP-1 interaction, and these data correlate well will the clathrin dependency
presented in Fig 4.

The ExxxLV motif has the potential to bind to other clathrin adaptor σ subunits[39]. Since
AP-1 depletion does not block Vpu function, we wondered whether Vpu interaction with the
clathrin machinery might also occur through AP-2. We therefore analyzed the precipitations
from cells expressing tetherin Y6,8A for the AP-2α adaptin subunit (Figs 6A, 6B and S7B).
Surprisingly this could also be detected with the wild-type protein, but was absent for all the

Fig 6. Vpu interacts with clathrin adaptors AP-1 and AP-2 in tetherin-expressing cells. (A-C) 293T tetherin (A), 293T tetherin Y6,8A (B) or 293 rhesus
tetherin (C) cells were transfected with pCR3.1 Vpu-HA, Vpu A14L/W22A-HA, Vpu ELV-HA, Vpu 2/6A-HA, Vpu LILI-HA or Vpu NE-HA mutants. 48 h post
transfection, cells were lysed and cross-linked using PFA (0.05%w/v) and immunoprecipitated with anti-HA antibody. Total cell lysates and precipitates were
subjected to SDS-PAGE and analyzed byWestern blotting for Vpu-HA, tetherin, AP-1γ or AP-2α. Panels are of representative experiments. Histograms
represent western blot quantification of the relative AP-1 or AP-2 binding normalized to input control. Error bars represent the standard deviation of three
independent experiments.

doi:10.1371/journal.ppat.1005141.g006

Vpu Phosphorylation Regulates Clathrin Adaptor Interaction

PLOS Pathogens | DOI:10.1371/journal.ppat.1005141 August 28, 2015 12 / 26



mutants, indicating ExxxLV also regulates this interaction. Thus, Vpu interacts promiscuously
with both major cellular clathrin adaptors in a manner dependent on its ability to bind to
tetherin. This is likely to account for why individual adaptor knockdowns fail to block Vpu
function, and suggest that AP-2 might represent a compensatory clathrin-dependent traffick-
ing mechanism for counteracting tetherin.

Finally, to provide direct evidence that it was phosphorylation of Vpu that permitted AP1/
AP2 interactions, we repeated these immunoprecipitations in 293T tetherin Y6,8A cells treated
with Tyrphostin (Fig 7). Under these conditions the ability of wildtype Vpu to interact with
AP1 or AP2 was abolished, indicating that CKII-mediated phosphorylation for Vpu is required
for recruitment of clathrin transport machinery.

Discussion
In this study we have re-evaluated discrepancies in the literature regarding the role of
SCFβTRCP1/2 and ESCRT in Vpu-mediated tetherin degradation and antagonism of its physical
antiviral activity. We find that whilst essential for the former, they are dispensable for the latter
in HIV-1 infected cells. We further show that phospho-serine mutants of Vpu have a distinct
phenotype, displaying defects in tetherin antagonism because they cannot engage with cla-
thrin-dependent trafficking pathways. We demonstrate that in cellulo Vpu/tetherin TM inter-
actions induce Vpu binding to either clathrin adaptors AP-1 or AP-2. This interaction requires
the ExxxLV trafficking motif, validating the recent structural study [39]. Importantly, phos-
phomutants of Vpu are also defective for clathrin adaptor engagement, implying that CKII-
mediated phosphorylation not only regulates SCFβTRCP1/2 recruitment, but also regulates Vpu
trafficking. Together these data clarify the role of the Vpu DSGNES motif in tetherin counter-
action and provide strong evidence that sorting of Vpu/tetherin complexes into clathrin-rich
domains of the endocytic pathway is the critical event in efficient tetherin antagonism. Further-
more, the observation that Vpu can interact both with AP-1 or AP-2 suggests a redundancy in
adaptor protein requirement for tetherin counteraction that provides a plausible explanation
for why depletion of either AP-1 or AP-2 is not sufficient to compromise Vpu function[36].
Thus potentially, tetherin/Vpu complexes that escape AP-1 in the TGN, and which traffic to
the PM, can be retrieved by AP-2. Such a model would also rationalize why in some cases
tetherin counteraction by Vpu can be observed with minimal evidence of surface downregula-
tion [18,48].

Much of the discrepant literature regarding the mechanism of Vpu-mediated tetherin antago-
nism comes from experiments where tetherin, provirus and/or Vpu are transiently transfected
into cells. Whilst these experiments are useful for understanding much of the biology of tetherin/
HIV interactions, they are prone to artifacts when interpreting the cell biology and importance of
Vpu-mediated degradation. Overexpression of tetherin or Vpu at non-physiological levels has
been shown to induce ER-associated degradation [30]. This is not observed in infected cells,
where tetherin is degraded in endosomes. Also, because of the nature of transient transfections,
there is a huge variability of expression levels of the transfected components between cells within
the culture. Under these conditions strong blocks to degradation may lead to tetherin accumula-
tion, and an overwhelming of the endosomal system, giving the appearance of a direct inhibition
of counteraction. By infecting tetherin-expressing cells at relevant multiplicities of infection, to
ensure each cell has on average one productive infection event, these issues can be mitigated and
this has allowed us to separate the requirement of the phospho-serine motif in counteraction
from the recruitment of SCFβTRCP1/2 and the ESCRTmachinery for degradation.

Our in cellulo data validates the structural and biochemical studies by Jia et al [39], in which
AP-1 interaction requires the ExxxLV motif that occupies the acidic-dileucine binding site in
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Fig 7. Vpu interactionwith clathrin adaptors AP-1 and AP-2 is abrogated following treatment with CKII
inhibitor, Tyrphostin. 293T tetherin Y6,8A cells were transfected with pCR3.1 Vpu-HA, Vpu A14L/W22A-HA,
Vpu ELV-HA, Vpu 2/6A-HA, Vpu LILI-HA or Vpu NE-HAmutants. 24h post-transfection cells were treated with
DMSO or 50 μMTyrphostin. Cells were lysed and cross-linked, 48 h post transfection, using PFA (0.05%w/v)
and immunoprecipitated with anti-HA antibody. Total cell lysates and precipitates were subjected to SDS-PAGE
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AP-1σ. We also provide evidence that in cells, this motif can also bind to AP-2. Furthermore,
the phenotype of our LI/LI mutant is consistent with the proposed non-canonical interaction
of R44/L45 with AP-1μ suggested by densities in the crystal. However, because the constructs
used by the authors to determine the structural requirements for AP-1/tetherin/Vpu interac-
tion required artificial Vpu/tetherin fusions, they may not faithfully represent how AP-1 is ini-
tially recruited. Thus, the requirements for the DSGNES and Vpu/tetherin transmembrane
domain interactions that we have uncovered in cells were not previously observed.

We propose a model whereby phosphorylation of Vpu regulates the AP interaction with the
ELV motif (Fig 8). Whilst we cannot formally rule out that the phosphoserine directly contrib-
utes to AP-1 interaction itself, the lack of a significant additive phenotype in terms of virus
release and AP-1 interaction makes this the most consistent explanation of our data. Further-
more there is precedence for phosphorylation upstream of certain acidic dileucine motifs inter-
actions with the clathrin transport machinery [43]. In particular, a CKII phosphorylation
upstream of a non-canonical RDDHLL site in the cation-independent mannose-6-phosphate
receptor regulates its interaction with AP1. Another context-dependent feature of acidic dileu-
cine signals is an adjacent acidic patch [37]. Interestingly, this feature is present in HIV-1 Vpu.
Furthermore, the laboratory strain NL4.3 Vpu, which has a reduced anti-tetherin activity com-
pared to most primary isolates, has a shorter acidic patch between the DSGNES and ExxxLV
motifs [34]. The requirement for TM interactions in addition to the phospho-serines in “prim-
ing” Vpu for clathrin adaptor interaction would imply that tetherin binding contributes to con-
formational changes that are required for antagonism. Since β-TrCP binding does not require
the presence of tetherin (or CD4), phosphorylation must be an independent event. However,
whether β-TrCP and AP-1/2 binding can occur simultaneously or are mutually exclusive is
unknown. Another interesting point to note is that the LI/LI mutation is more severely com-
promised than either the 2/6 or the ELV mutations in some contexts. As it also compromises

and analyzed byWestern blotting for Vpu-HA, tetherin, AP-1γ or AP-2α. Panels are of representative
experiments. Histograms represent quantification of the relative AP-1 or AP-2 binding normalized to input
control. Error bars represent the standard deviation of three independent experiments.

doi:10.1371/journal.ppat.1005141.g007

Fig 8. A proposedmodel for Vpu engagement of clathrin adaptors during tetherin counteraction. Vpu and tetherin interactions via TM/TM domain
interactions and casein kinase II phosphorylation promote Vpu recruitment of AP-1 or AP-2. This allows the EXXXLV motif to bind to the σ subunit, and
potentially through non-canonical interactions between its first alpha helix with the AP-1 or 2 μ subunits. In addition the YCRVmotif in tetherin binds to the
AP1μ. Thus tetherin/Vpu complexes are sorted into clathrin rich domains of the TGN or PM for subsequent trafficking and ubiquitination.

doi:10.1371/journal.ppat.1005141.g008
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AP binding, the non-canonical interaction of the R45,L46 with AP-1μmay also play an essen-
tial contextual role in positioning the ELV motif. This interaction may also explain why the
residual activities of 2/6 and ELV mutations are sensitive to clathrin depletion.

Structural information on the Vpu cytoplasmic tail is limited at present. Partial NMR struc-
tures in solution and associated with lipids have been determined [49–52]. In a lipid environ-
ment, the ExxxLV is embedded within helix 2 of the cytoplasmic tail [52], but adopts an
extended conformation in solution [51]. To bind to AP-1, the ExxxLV site cannot be helical.
However, the lipid-associated structure has a very interesting feature: a highly conserved C-ter-
minal tryptophan residue appears to pack against the DSGNES, almost as if locking the struc-
ture. Mutations in the W residue have context-dependent defects in tetherin antagonism
depending on the Vpu used [34,53]. Importantly, NMR studies on the effects of serine phos-
phorylation suggests that it leads to conformational changes within the C-terminal region of
the Vpu cytoplasmic tail that promotes βTRCP binding. In some studies [49,50], but not others
[54], these conformational changes are consistent with an opening up of the ELV site. How-
ever, all these studies have thusfar been performed in the absence of target binding using solu-
ble Vpu cytoplasmic tails, and so how representative they are of the wildtype protein is unclear.
Furthermore, upregulation of SCYL2, a clathrin associated protein that modulates protein
phosphatase 2A (PP2A), induces Vpu de-phosphorylation and reduces tetherin antagonism
[55]. Thus, there is scope for regulated phosphorylation and subsequent dephosphorylation
cycles in regulation of Vpu activity. We suggest that this would occur at the level of clathrin-
dependent transport rather than SCFβTRCP1/2 interactions.

There is much indirect evidence consistent with AP-1 being the major clathrin adaptor used
by Vpu. The block to tetherin transport to the surface, the predominant localization to the
TGN, and of course the recent structure discussed above [33,35,36,39]. However, AP-1 knock-
down is difficult to efficiently achieve and does not compromise Vpu function [36]. AP-1 has
multiple orthologs for some of its subunits, and there is potential redundancy in the adaptor
machinery allowing the cell to compensate for its absence [37]. Our observation that Vpu can
interact also with AP-2 in an ExxxLV-dependent manner is therefore an important observation
for several reasons. Firstly, it suggests that Vpu is promiscuous and if one adaptor is compro-
mised, another can be used, explaining why neither AP-1 nor AP-2 have been unambiguously
identified as Vpu cofactors [25,36]. Secondly, it might explain why in some studies, Vpu has
been observed to induce a weak enhancement of tetherin endocytosis [35]. Artificial tetherin/
Vpu linked chimeric proteins are excluded from budding virions, and this is dependent on the
ExxxLV motif [18], which would be consistent with anchoring by AP-2 into clathrin-rich
domains at the plasma membrane. The YDYCRVmotif of tetherin cannot interact with AP-2μ
as a YXXθ signal because of a steric clash of Y6 in the binding pocket [39]. The YDYCRV motif
is essential for the “slow”, AP-1-dependent recycling of tetherin to the PM via the TGN
[17,33]. Therefore, Vpu is likely to meet the majority of its target (newly synthesized and recy-
cling tetherin) in the TGN. Since AP-1 has been proposed to regulate bidirectional traffic
between the TGN and endosomal compartments [37], AP-1 is likely to be the major player in
tetherin counteraction. However, the ExxxLV motif is dominant over the tetherin recycling
motif [36]. Therefore we would predict that tetherin/Vpu complexes that escape re-routing in
the TGN and make it to the PM would be excluded from virions and AP-2 would promote
their endocytosis, much in the same way that SIV Nef proteins and HIV-2 envelopes antago-
nize tetherin [6,38,56]. More importantly, it also accounts for why Vpu still has some activity
against the short tetherin isoform without appreciable cell surface downregulation [13,40]. The
relative role of AP-1 and AP-2 will reflect the kinetics of their respective activities in different
cell types. We suggest the combination of some or all of the above accounts for the variable
importance that downregulation of tetherin from the PM has been given to its antagonism.
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The requirement for the ExxxLV and DSGNES motifs is not absolute when tetherin levels are
low. At higher expression levels, such as upon IFN treatment of primary CD4+ T cells, they
become essential for tetherin antagonism [36]. This residual function requires tetherin’s sorting
motif, suggestive of competition between the clathrin-dependent trafficking and virion reten-
tion. Tetherin/Vpu interaction may simply tip this balance, reducing tetherin partitioning into
virions sufficiently when its expression levels are low. It is this that we propose to augment via
our clathrin box fusion rescue, locking the tetherin/Vpu complex into clathrin-rich domains in
the recycling pathway from where they cannot be transited to the PM.

Decoupling tetherin degradation (which amongst primate lentiviruses is so far peculiar to
HIV-1 group M Vpu) from subversion of trafficking (counteraction) suggests that the impor-
tance of the former might reflect downstream consequences of tetherin restriction. Enhanced
antagonism of the long tetherin isoform by Vpu could be required because of its signal trans-
duction or its ability to deliver retained virions to endosomes [14,40]. Our data shows that in
stable tetherin expressing cells, STS mutations impart little resistance to Vpu and that they are
still sensitive to Vpu-clathrin box fusions. Since neither LI/LI nor ELV mutations block binding
of Vpu to β-TrCP or tetherin, ubiquitination may still occur on serine and threonine residues.
However, its effect is likely to be subsequent to antagonism by clathrin-dependent mis-traffick-
ing. Strong reduction of tetherin at the cell surface by Vpu coupled to endosomal degradation
would therefore be a potent way of suppressing signal transduction, or blocking the routing of
virions for degradation where they may encounter other host pattern recognition receptors or
antigen processing machinery. These will be important attributes to maintain in vivo without
necessarily being essential for physical antagonism of tetherin.

Materials and Methods

Cells, plasmids and reagents
HEK293T cells were obtained from ATCC (American Tissue Culture Collection). 293T
tetherin cell lines stably expressing human tetherin and mutants were previously described
[4,57]. The HeLa-TZMbl reporter cell line, was kindly provided by John Kappes through the
NIH AIDS Reagents Repository Program (ARRP). Cells were maintained in Dulbecco’s
modified Eagle medium (DMEM) supplemented with 10% fetal calf serum and Gentamycin
(Invitrogen, UK). Wildtype HIV-1 NL4.3 (obtained from NIH-ARRP), a Vpu-defective coun-
terpart and a codon optimized pCR3.1 Vpu-HA has been described previously [58]. The Vpu
A14L/W22A, ELV, 2/6A, LILI and NE mutants in pCR3.1 Vpu-HA and in the NL4.3 proviral
genome were generated by Quick-change site-directed mutagenesis PCR according to standard
protocols using Phusion-II polymerase (New England Biolabs). A codon-optimised version of
the previously described primary wild-type HIV-1 Vpu 2_87 [34] was HA-tagged and cloned
into pCR3.1. The Vpu A15L/W23A, ELV, 2/6A, LILI and NE mutants were generated in
pCR3.1 Vpu 2_87-HA by Quick-change site-directed mutagenesis as described above. Consen-
sus B codon-optimised Vpu-myc-BirA-R188G fusion was synthesized (Life Technologies) and
cloned into the lentiviral vector pAIP (kindly provided by A Cimarelli). The Vpu A15L/W23A,
ELV, 2/6A and LILI mutants were generated by Quick-change site-directed mutagenesis as
described above. The pCR3.1 myc-β-TrCP2 was previously described by [36] and the pCR3.1
myc-HRS expression vector was kindly provided by Juan Martin-Serrano [59].

Primary human CD4+ T cells were isolated from fresh venous blood drawn from healthy
volunteers. CD4+ T cells were purified from total peripheral blood mononuclear cells (PBMC)
isolated by lymphoprep (AXIS-SHIELD) gradient centrifugation using a CD4+ T cell Dyna-
beads isolation kit (Invitrogen). T cells were then activated for 48 h using anti-CD3/anti-CD28
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magnetic beads (Invitrogen). The beads were then removed cells were then maintained in
rhIL-2 (20 U/ml) (Roche).

Production of VSV-G pseudotyped viral stocks
For full-length HIV-1 WT, HIV-1 ΔVpu, HIV-1 Vpu LILI, HIV-1 Vpu ELV, HIV-1 Vpu LILI/
ELV, HIV-1 Vpu 2/6A, HIV-1 Vpu 2/6A/ELV virus stocks pseudotyped with the Vesicular
Stomatitis Virus Glycoprotein (VSV-G), 293T cells were transfected with 2 μg of proviral plas-
mid in combination with 200 ng of pCMV VSV-G. 48 hours post-transfection, the supernatant
containing virions was harvested and endpoint titers were determined on HeLa-TZMbl cells as
described previously [3].

Virus release assay
For virus release assays using transient transfection, subconfluent 293T cells or derivatives
were plated in 24 well plates and transfected with 500 ng of NL4.3 proviral plasmid, in combi-
nation with increasing concentrations of tetherin (0 ng, 25 ng, 50 ng and 100 ng) and fixed 25
ng of Vpu-HA or mutants using 1 μg/ml polyethyleneimine (Polysciences). Medium was
replaced 8 hours post-transfection and cells and supernatants were harvested after 48 hours.
The infectivity of viral supernatants was determined by infecting HeLa-TZMbl and assayed for
β-galactosidase activity as previously described [36]. For biochemical analysis of physical virus
particle release, supernatants were filtered (0.22 μm) (Merck Millipore) and pelleted through a
20% sucrose/ PBS cushion at 20,000 x g for 90 min at 4°C. Virion and cell lysates were sub-
jected to SDS-PAGE andWestern blotted for rabbit anti-HSP90 (Santa Cruz Biotechnologies),
HIV-1 p24CA (monoclonal antibody 183-H12-5C; kindly provided by B Chesebro through the
NIH ARRP), monoclonal mouse anti-HA.11 (Covance), polyclonal rabbit anti-HA (Rockland)
and/ or Vpu (rabbit polyclonal; kindly provided by K. Strebel through the NIH ARRP [60]. For
CK-II inhibition, we used Tyrphostin AG1112 (Sigma) reconstituted in DMSO at a concentra-
tion of 50 μM.Where indicated, Phos-tag (Wako Chemicals, Japan) and MnCl2 (Sigma) were
added to the composition of 8% polyacrylamide gels to induce mobility shifts in phosphory-
lated proteins, to final concentrations of 25 μM and 50 μM, respectively.

Tetherin degradation assay
1.5 x 105 293T tetherin cells were infected with VSV-G-pseudotyped HIV-1 WT, HIV-1 ΔVpu,
HIV-1 Vpu LILI, HIV-1 Vpu ELV or HIV-1 Vpu 2/6A at an MOI of 2. The medium was
replaced 4 hours after infection. 48 hours post infection cell lysates were harvested and sub-
jected to SDS-PAGE andWestern blotted for rabbit anti-HSP90 (Santa Cruz Biotechnologies)
and polyclonal rabbit anti-tetherin antibody (kindly provided by K Strebel through the NIH
ARRP) [48], and processed as described above.

siRNAmediated protein knockdown
293T tetherin cells were seeded at a density of 2 x 105 cells per well in a 12 well plate. After
6 hours, the first transfection was performed. For each well, 2 μl Dharmafect (Thermo Scien-
tific) was added to 98 μl of Opti-MEM (Life Technologies), this solution was added to 5 μl of
20 μM siRNA in 95 μl of Opti-MEM according to manufactures protocol. For HRS knock-
down, siRNA oligonucleotide against HGS targeting the CCGGAACGAGCCCAAGTACAA
sequence (Qiagen) was used. For UBAP1 knockdown, siRNA oligonucleotide against UBAP1
targeting CTCGACTATCTCTTTGCACAT (Qiagen) was used. For TSG101 knockdown,
siRNA oligonucleotide sequence CCUCCAGUCUUCUCUCGUCUU (Thermo Scientific) was
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used. For β-TrCP1 and 2 knockdown, SMARTpool siRNA against human BTRC and FBXW11
(Thermo Scientific) were used. A non-targeting siRNA was used as control (Thermo Scien-
tific). The cells were re-seeded into a 24 well plate on day 2 and a second transfection was per-
formed according to manufactures protocol. The cells were infected 3 hours post transfection
with VSV-G-pseudotyped HIV-1 WT, HIV-1 ΔVpu at an MOI of 0.8. The infectivity of viral
supernatants was determined by infecting HeLa-TZMbl as described above. Cell lysates and
viral particles were subjected to SDS-PAGE, andWestern blot assays were performed using a
rabbit polyclonal anti-HRS (HGS) antibody (Millipore), a polyclonal rabbit anti-UBAP1 anti-
body (Proteintech) and a monoclonal mouse anti-TSG101 antibody (Abcam).

Flow cytometry
HeLa-TZMbl cells were transfected with 400 ng of pCR3.1 GFP and 400 ng of pCR3.1 Vpu-
HA or indicated mutants. 48 hours post transfection the cells were harvested and stained for
surface tetherin using a monoclonal anti-BST2 IgG2a antibody (Abnova) and a goat-anti-
mouse IgG2a-Alexa633 conjugated secondary antibody (Molecular Probes, Invitrogen, UK).
Tetherin expression on GFP positive cells was then analyzed using a BD FACSCanto II flow-
cytometer (Becton Dickinson) and the FlowJo software.

Immunoprecipitation
For Vpu/HRS coIP, 293T tetherin cells were transfected with 700 ng of pCR3.1 myc-HRS or
indicated mutants/truncations in combination with pCR3.1 Vpu-HA or indicated mutant
or pCR3.1 GFP expression plasmids. 48 hours post transfection the cells were lysed in buffer
containing 50 mM Tris pH 7.4, 150 mMNaCl, 200 μM sodium ortho-vanadate, 5 mM NEM,
complete protease inhibitors (Roche) and 1% digitonin. After removal of the nuclei, the
supernatants were immunoprecipitated with 5 μg/ml monoclonal mouse anti-myc antibody
previously described (Kueck and Neil, 2012). Western blot assays were performed using a poly-
clonal rabbit anti-HA antibody (Rockland) and rabbit polyclonal anti-HRS (HGS) antibody
(Millipore). For Vpu/tetherin coIP, 293T cells were transfected twice over 48 hours with
siRNA oligonucleotide against UBAP1 targeting CTCGACTATCTCTTTGCACAT or Non-
targeting siRNA was used as control (Dharmacon). The cells were then infected with VSV-G-
pseudotyped HIV-1 WT, HIV-1 ΔVpu, HIV-1 Vpu LILI or HIV-1 Vpu A14LW22A at an
MOI of 2. 48 hours post infection the cells were lysed on ice for 30 min in buffer containing
50 mM Tris pH 7.4, 150 mMNaCl, complete protease inhibitors (Roche) and 1% digitonin
(Calbiochem). Immunoprecipitation was performed as previously described [36] andWestern
blot assays were performed using a rabbit anti-Vpu antibody polyclonal rabbit anti-tetherin
antibody and polyclonal rabbit anti-UBAP1 antibody (Proteintech), and visualized by Image-
Quant using corresponding HRP-linked secondary antibodies (New England Biolabs, UK).

Immunofluorescence
Hela cells were grown on coverslips, transfected with 50 ng of pCR3.1 Vpu-HA or indicated
mutant. 16 hours later cells were fixed in 4% paraformaldehyde/ PBS, washed with 10 mM gly-
cine/ PBS, and permeabilized in 1% bovine serum albumin/ 0.1% Triton-X100/ PBS for 15
min. Cells were stained using anti-rabbit polyclonal HA antibody (Rockland) in combination
with sheep anti-human TGN46 (AbD Serotec), followed by the appropriate secondary antibod-
ies conjugated to Alexa 488 or 594 fluorophores (Molecular Probes, Invitrogen). Cells were
mounted on glass slides using ProLong AntiFade- 4’,6-diamidino-2-phenylindole (DAPI)
mounting solution (Molecular Probes, Invitrogen) and images were captured with a Nikon
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ESCLIPSE Ti inverted microscope. Z stacks were taken of all cells, images deconvolved using
AutoQuant X3 and analyzed using the ImageJ software.

Cross-linking IP
293T, 293T tetherin, 293T tetherin Y6,8A or 293 Rhesus tetherin cells were transfected with
8 μg GFP expression construct, pCR3.1 Vpu-HA or mutant thereof. Transfection media was
changed 6 hours post transfection and cells incubated with 50 nM concanamycin. In the case
of CKII inhibitor treatment, cells were treated with 50 μM final Tyrphostin 24 hours prior to
harvesting. 48 hours post transfection, cells were trypsinised and washed in PBS. Cells were
cross-linked with 0.05% HCHO/PBS for 10 min at 37°C. The cross-linking reaction was then
quenched by incubating cells in 0.25 M glycine for 5 min. Cells were washed once in PBS before
resuspension in lysis buffer (10 mMHepes pH 7, 150 mMNaCl, 6 mMMgCl2, 2 mMDTT,
10% glycerol, 0.5% NP40, 200 μM sodium orthvanadate and 1x Complete protease inhibitors
(Roche)). Cells were lysed on ice for 10 min followed by repeated sonication (3 x 10 s cycles
with 20 s rests). The cell lysates were clarified by centrifugation at 1000 x g for 10 min and
supernatants were immunoprecipitated with 5 μg/ml mouse monoclonal anti-HA.11 antibody
(Covance) or rabbit polyclonal anti-HA antibody (Rockland) on Dynabeads protein G beads
(Life Technologies) for 4 hours at 4°C. Beads were collected post incubation and washed 5
times in lysis buffer before cross-links were reversed in 1% SDS, 10 mM EDTA and 5 mm DTT
at 65°C for 45 min. Western blot assays were performed using rabbit polyclonal anti-HA anti-
body (Rockland), polyclonal rabbit anti-tetherin antibody, mouse monoclonal anti-HA.11
antibody, mouse monoclonal anti-AP-1γ1 antibody (Sigma) and mouse monoclonal anti-AP-
2α antibody (Sigma). Vpu/β-TrCP2 cross-linking IP was previously described by [36].

Affinity purification of biotinylated proteins
[61] 293T or 293T tetherin cells were transiently transfected with 8 μg empty BirA vector,
Vpu-myc-BirA or relevant mutant constructs using polyethylenimine (PEI). Cells were incu-
bated for 8 hours prior to changing medium and treated overnight with 100 nM Concanamy-
cin A (Invitrogen) and 150 μM biotin (Invitrogen). Cells were washed twice in PBS and lysed
in 1 ml lysis buffer (50 mM Tris pH 7.4, 500 mMNaCl, 0.4% SDS, 5 mM EDTA, 1 mM DTT
and 1x Complete protease inhibitor (Roche)) before sonication. Triton-X-100 was added to a
final concentration of 2% before further sonication and an equal volume of 50 mM Tris pH 7.4
was added to the cell lysates before clarification at 14,000 rpm for 5 minutes. Supernatants
were incubated with 200 μl avidin agarose (Pierce) for 4 hours at 4°C. Beads were collected and
washed four times in 1 ml lysis buffer before resuspension in 100 μl Laemmli-SDS sample
buffer supplemented with free biotin. Cell lysates and precipitates were analysed by Western
blot using HRP-conjugated streptavidin (Invitrogen), mouse monoclonal anti-myc antibody
(Covance), rabbit monoclonal β-TrCP antibody (Cell signaling Technology) and mouse mono-
clonal anti-AP-1γ1 antibody (Sigma).

Ethical information
Permission to isolate primary human CD4+ T cells from healthy consenting donors was pro-
vided by the KCL Infectious Disease BioBank Local Research Ethics Committee, reference SN-
1/6/7/9.
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Supporting Information
S1 Fig. Vpu/HRS interaction is dependent on residues in the DUIM of HRS that bind ubi-
quitin. (A) Schematic representation of HRS C-terminal truncations. (B) 293T cells were
transfected with pCR3.1 Vpu-HA in combination with a pCR3.1 myc-HRS or myc-HRS trun-
cation expression vector. 48 hours post transfection cells were lysed and immunoprecipitated
with anti-myc antibody. Total cell lysates and precipitates were subjected to SDS-PAGE and
analysed by Western blotting for myc-HRS and Vpu, and analyzed by ImageQuant. Asterisk:
anti-HA antibody heavy chain (C) Immunoprecipitation was performed as in (B) but with
myc-HRS W25A L29D and myc-HRS A266Q A268Q mutants.
(TIF)

S2 Fig. Vpu LI/LI mutant exhibits impaired tetherin counteractivity. (A) LogoPlots of the
first alpha helix of the Vpu cytoplasmic tail from HIV-1 subgroup M clades A, B, C, D, G and
H generated from sequences obtained from the Los Alamos database (www.hiv.lanl.gov). (B)
293T cells were transfected with NL4.3 HIV-1 WT, ΔVpu, Vpu LILI, Vpu ELV or Vpu 2/6A
mutant together with increasing concentrations of pCR3.1 tetherin-HA expression plasmid.
Cell lysates and sucrose purified viral supernatants from 50 ng tetherin input were subjected to
SDS-PAGE and analyzed by Western blotting for HSP90, HIV-1 p24CA and Vpu, and ana-
lyzed by LiCor quantitative imager. Asterisk: non-specific band. (C) Infectivity of viral super-
natants was assayed on HeLa-TZMbl reporter cells. Infectious virus release was plotted as β-
galactosidase activity in relative light units (RLU). Error bars represent the standard deviation
of three independent experiments. (D) HeLa-TZMbl cells were co-transfected with pCR3.1
Vpu-HA or indicated mutant and a GFP expression vector. Cell-surface tetherin levels were
analysed 48 hours post transfection by flow cytometry. GFP positive cells were gated and
tetherin levels (solid lines) were compared to un-transfected cells or transfected with indicated
Vpu (dotted lines). Numbers indicate median fluorescence intensities of endogenous tetherin
surface levels. The solid peak in the upper histogram in the middle of the panel represents
binding of the isotype control. (E) 293T tetherin expressing cells were transfected twice over a
48 hour period with siRNA oligonucleotides directed against UBAP1 or non-targeting control.
The cells were then infected with HIV-1 WT, HIV-1 Vpu LILI, HIV-1 Vpu A14LW22A or
HIV-1 ΔVpu at an MOI of 2. 48 hours later, cells were lysed and immunoprecipitated with
anti-tetherin antibody. Total cell lysates and precipitates were subjected to SDS-PAGE and
analyzed by Western blotting for tetherin, UBAP1 and Vpu, and analyzed by ImageQuant.
(TIF)

S3 Fig. Further Vpu mutants show similar phenotypes in infected primary CD4+ T cells
and in 293T cells. (A-B) 293T, 293T tetherin or Y6,8A tetherin cells were infected with VSV-G
pseudotyped NL4.3 wt or mutant virus at anMOI of 0.8. (A) 48 hours post infection viral superna-
tants were assayed for infectivity using HeLa-TZMbl reporter cells as in Fig 1. Error bars represent
the standard deviation of three independent experiments. (B) Cell lysates and sucrose purified
viral supernatants were subjected to SDS-PAGE and analyzed byWestern blotting as in Fig 1. (C)
Primary human CD4+ T cells were infected with the indicated HIV-1 mutant at anMOI of 0.8. 16
h later the cells were treated or not with 5000 U/ml universal type-I interferon. Cell lysates and
viral supernatants were harvested a further 24 h later and analyzed for infectivity on HeLa-TZMbl
cells (A) or physical particle yield and cellular viral expression by quantitativeWestern blotting.
(TIF)

S4 Fig. A primary isolate Vpu allele and its mutants exhibit a comparable phenotype to
NL4.3 Vpu. (A) 293T tetherin cells were transfected with NL4.3 ΔVpu proviral plasmid in
combination with YFP expression vector and pCR3.1 2_87 Vpu or mutants thereof. 48 hours
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post transfection infectivity of viral supernatants was determined on HeLa-TZMbl cells as in
Fig 1. (B) Cell lysates and pelleted supernatant virions from (A) were harvested and subjected
to SDS-PAGE and analyzed by Western blotting for HIV-1 p24CA, Vpu and HSP90, and ana-
lyzed by LiCor quantitative imager. (C) Hela cells were transfected with 100 ng of pCR3.1 2_87
Vpu-HA or indicated mutants. 16 hours post transfection cells were fixed and stained for HA
(green) and the TGN marker TGN46 (red) and examined by widefield fluorescent microscopy.
Panels are of representative examples. Bars = 10 μm. (D) Z stacks were taken of all cells
(n = 15), images were deconvolved using the AutoQuant X3 software and Pearson’s correla-
tions were calculated for all Z stacks using ImageJ. Results were analyzed by unpaired 2-tailed
t-test—��� P = 10–5 or lower.
(TIF)

S5 Fig. Clathrin binding restores the tetherin downregulation capacity of Vpu mutants. (A
to D) HeLa-TZMbl cells were co-transfected with pCR3.1 Vpu-HA or indicated mutant and a
GFP expression vector. Cell-surface tetherin levels were analyzed 48 hours post transfection by
flow cytometry. GFP positive cells were gated and tetherin levels (solid lines) were compared to
un-transfected cells or transfected with indicated Vpu (dotted lines). Numbers indicate median
fluorescence intensities of endogenous tetherin surface levels. The solid peak in the upper his-
togram in the middle of the panel represents binding of the isotype control.
(TIF)

S6 Fig. Proximity-based biotin ligase assay suggests Vpu/AP-1 interaction. (A) Schematic
representation of proximity-based biotin ligase assay. (B) 293T tetherin cells were transfected
with NL4.3 ΔVpu proviral plasmid in combination with YFP expression vector and pCR3.1
Vpu or indicated mutant thereof. 48 hours post transfection infectivity of viral supernatants
was determined on HeLa-TZMbl cells as in Fig 1. (C) 293T or 293T tetherin cells were trans-
fected with Vpu-myc-BirA, B Vpu ELV-myc-BirA, B Vpu A15L/W23A-myc-BirA, B Vpu S3/
7A- myc-BirA (phospho-mutant), B Vpu LILI-myc-BirA or empty vector control. 6 hours post
transfection, cells were treated with 100 nM concanamycin A in the presence of 150 μM free
biotin. 16 hours later, cells were washed, lysed, sonicated and biotinylated proteins were recov-
ered on streptavidin-conjugated beads and analysed by Western blot for avidin, Vpu-myc-
BirA, β-TrCP or AP-1 γ. Asterisk: Vpu-myc-BirA band.
(TIF)

S7 Fig. Vpu binding to clathrin adaptors AP-1 and AP-2 is dependent on tetherin binding
(A) and binding to AP-1 and AP-2 is conserved by primary Vpu 2_87 in tetherin expressing
cells (B). (A) 293T cells were transfected with pCR3.1 Vpu-HA, Vpu ELV-HA, Vpu 3/7A-HA,
Vpu LILI-HA or Vpu NE-HA mutants. (B) 293T tetherin Y6,8A were transfected with pCR3.1
Vpu-HA, Vpu A15L/W23A-HA, Vpu ELV-HA, Vpu 3/7A-HA, Vpu LILI-HA or Vpu NE-HA
mutants. 48 h post transfection, cells were lysed and cross-linked using PFA (0.05% w/v) and
immunoprecipitated with anti-HA antibody. Total cell lysates and precipitates were subjected
to SDS-PAGE and analyzed by Western blotting for Vpu-HA, AP-1 Ɣ or AP-2 α. Panels are of
representative experiments. Histograms represent quantification of the relative AP-1 or AP-2
binding normalized to input control. Error bars represent the standard deviation of three inde-
pendent experiments.
(TIF)

Acknowledgments
We thank Juan Martin-Serrano for ESCRT reagents, and Mark Marsh for generous advice.

Vpu Phosphorylation Regulates Clathrin Adaptor Interaction

PLOS Pathogens | DOI:10.1371/journal.ppat.1005141 August 28, 2015 22 / 26

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1005141.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1005141.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1005141.s007


Author Contributions
Conceived and designed the experiments: TK TLF JW SJDN. Performed the experiments: TK
TLF JW JCS. Analyzed the data: TK TLF JW SJDN. Contributed reagents/materials/analysis
tools: SP. Wrote the paper: TK TLF JW SJDN.

References
1. Neil SJ (2013) The antiviral activities of tetherin. Curr Top Microbiol Immunol 371: 67–104. doi: 10.

1007/978-3-642-37765-5_3 PMID: 23686232

2. Jia B, Serra-Moreno R, Neidermyer W, Rahmberg A, Mackey J, et al. (2009) Species-specific activity of
SIV Nef and HIV-1 Vpu in overcoming restriction by tetherin/BST2. PLoS Pathog 5: e1000429. doi: 10.
1371/journal.ppat.1000429 PMID: 19436700

3. Le Tortorec A, Neil SJ (2009) Antagonism to and intracellular sequestration of human tetherin by the
human immunodeficiency virus type 2 envelope glycoprotein. J Virol 83: 11966–11978. doi: 10.1128/
JVI.01515-09 PMID: 19740980

4. Neil SJ, Zang T, Bieniasz PD (2008) Tetherin inhibits retrovirus release and is antagonized by HIV-1
Vpu. Nature 451: 425–430. doi: 10.1038/nature06553 PMID: 18200009

5. Van Damme N, Goff D, Katsura C, Jorgenson RL, Mitchell R, et al. (2008) The interferon-induced pro-
tein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein.
Cell Host Microbe 3: 245–252. doi: 10.1016/j.chom.2008.03.001 PMID: 18342597

6. Zhang F, Landford WN, Ng M, McNatt MW, Bieniasz PD, et al. (2011) SIV Nef proteins recruit the AP-2
complex to antagonize Tetherin and facilitate virion release. PLoS Pathog 7: e1002039. doi: 10.1371/
journal.ppat.1002039 PMID: 21625568

7. Perez-Caballero D, Zang T, Ebrahimi A, McNatt MW, Gregory DA, et al. (2009) Tetherin inhibits HIV-1
release by directly tethering virions to cells. Cell 139: 499–511. doi: 10.1016/j.cell.2009.08.039 PMID:
19879838

8. Venkatesh S, Bieniasz PD (2013) Mechanism of HIV-1 virion entrapment by tetherin. PLoS Pathog 9:
e1003483. doi: 10.1371/journal.ppat.1003483 PMID: 23874200

9. Alvarez RA, Hamlin RE, Monroe A, Moldt B, Hotta MT, et al. (2014) HIV-1 Vpu antagonism of tetherin
inhibits antibody-dependent cellular cytotoxic responses by natural killer cells. J Virol 88: 6031–6046.
doi: 10.1128/JVI.00449-14 PMID: 24623433

10. Arias JF, Heyer LN, von Bredow B, Weisgrau KL, Moldt B, et al. (2014) Tetherin antagonism by Vpu
protects HIV-infected cells from antibody-dependent cell-mediated cytotoxicity. Proc Natl Acad Sci U S
A 111: 6425–6430. doi: 10.1073/pnas.1321507111 PMID: 24733916

11. Pham TN, Lukhele S, Hajjar F, Routy JP, Cohen EA (2014) HIV Nef and Vpu protect HIV-infected CD4
+ T cells from antibody-mediated cell lysis through down-modulation of CD4 and BST2. Retrovirology
11: 15. doi: 10.1186/1742-4690-11-15 PMID: 24498878

12. Veillette M, Desormeaux A, Medjahed H, Gharsallah NE, Coutu M, et al. (2014) Interaction with cellular
CD4 exposes HIV-1 envelope epitopes targeted by antibody-dependent cell-mediated cytotoxicity. J
Virol 88: 2633–2644. doi: 10.1128/JVI.03230-13 PMID: 24352444

13. Cocka LJ, Bates P (2012) Identification of alternatively translated Tetherin isoforms with differing antivi-
ral and signaling activities. PLoS Pathog 8: e1002931. doi: 10.1371/journal.ppat.1002931 PMID:
23028328

14. Galao RP, Le Tortorec A, Pickering S, Kueck T, Neil SJ (2012) Innate sensing of HIV-1 assembly by
Tetherin induces NFkappaB-dependent proinflammatory responses. Cell Host Microbe 12: 633–644.
doi: 10.1016/j.chom.2012.10.007 PMID: 23159053

15. Galao RP, Pickering S, Curnock R, Neil SJ (2014) Retroviral Retention Activates a Syk-Dependent
HemITAM in Human Tetherin. Cell Host Microbe 16: 291–303. doi: 10.1016/j.chom.2014.08.005
PMID: 25211072

16. Tokarev A, Suarez M, KwanW, Fitzpatrick K, Singh R, et al. (2013) Stimulation of NF-kappaB Activity
by the HIV Restriction Factor BST2. J Virol 87: 2046–2057. doi: 10.1128/JVI.02272-12 PMID:
23221546

17. Rollason R, Korolchuk V, Hamilton C, Schu P, Banting G (2007) Clathrin-mediated endocytosis of a
lipid-raft-associated protein is mediated through a dual tyrosine motif. J Cell Sci 120: 3850–3858.
PMID: 17940069

18. McNatt MW, Zang T, Bieniasz PD (2013) Vpu binds directly to tetherin and displaces it from nascent
virions. PLoS Pathog 9: e1003299. doi: 10.1371/journal.ppat.1003299 PMID: 23633949

Vpu Phosphorylation Regulates Clathrin Adaptor Interaction

PLOS Pathogens | DOI:10.1371/journal.ppat.1005141 August 28, 2015 23 / 26

http://dx.doi.org/10.1007/978-3-642-37765-5_3
http://dx.doi.org/10.1007/978-3-642-37765-5_3
http://www.ncbi.nlm.nih.gov/pubmed/23686232
http://dx.doi.org/10.1371/journal.ppat.1000429
http://dx.doi.org/10.1371/journal.ppat.1000429
http://www.ncbi.nlm.nih.gov/pubmed/19436700
http://dx.doi.org/10.1128/JVI.01515-09
http://dx.doi.org/10.1128/JVI.01515-09
http://www.ncbi.nlm.nih.gov/pubmed/19740980
http://dx.doi.org/10.1038/nature06553
http://www.ncbi.nlm.nih.gov/pubmed/18200009
http://dx.doi.org/10.1016/j.chom.2008.03.001
http://www.ncbi.nlm.nih.gov/pubmed/18342597
http://dx.doi.org/10.1371/journal.ppat.1002039
http://dx.doi.org/10.1371/journal.ppat.1002039
http://www.ncbi.nlm.nih.gov/pubmed/21625568
http://dx.doi.org/10.1016/j.cell.2009.08.039
http://www.ncbi.nlm.nih.gov/pubmed/19879838
http://dx.doi.org/10.1371/journal.ppat.1003483
http://www.ncbi.nlm.nih.gov/pubmed/23874200
http://dx.doi.org/10.1128/JVI.00449-14
http://www.ncbi.nlm.nih.gov/pubmed/24623433
http://dx.doi.org/10.1073/pnas.1321507111
http://www.ncbi.nlm.nih.gov/pubmed/24733916
http://dx.doi.org/10.1186/1742-4690-11-15
http://www.ncbi.nlm.nih.gov/pubmed/24498878
http://dx.doi.org/10.1128/JVI.03230-13
http://www.ncbi.nlm.nih.gov/pubmed/24352444
http://dx.doi.org/10.1371/journal.ppat.1002931
http://www.ncbi.nlm.nih.gov/pubmed/23028328
http://dx.doi.org/10.1016/j.chom.2012.10.007
http://www.ncbi.nlm.nih.gov/pubmed/23159053
http://dx.doi.org/10.1016/j.chom.2014.08.005
http://www.ncbi.nlm.nih.gov/pubmed/25211072
http://dx.doi.org/10.1128/JVI.02272-12
http://www.ncbi.nlm.nih.gov/pubmed/23221546
http://www.ncbi.nlm.nih.gov/pubmed/17940069
http://dx.doi.org/10.1371/journal.ppat.1003299
http://www.ncbi.nlm.nih.gov/pubmed/23633949


19. Skasko M, Wang Y, Tian Y, Tokarev A, Munguia J, et al. (2012) HIV-1 Vpu protein antagonizes innate
restriction factor BST-2 via lipid-embedded helix-helix interactions. J Biol Chem 287: 58–67. doi: 10.
1074/jbc.M111.296772 PMID: 22072710

20. Vigan R, Neil SJ (2010) Determinants of tetherin antagonism in the transmembrane domain of the
human immunodeficiency virus type 1 Vpu protein. J Virol 84: 12958–12970. doi: 10.1128/JVI.01699-
10 PMID: 20926557

21. Agromayor M, Soler N, Caballe A, Kueck T, Freund SM, et al. (2012) The UBAP1 subunit of ESCRT-I
interacts with ubiquitin via a SOUBA domain. Structure 20: 414–428. doi: 10.1016/j.str.2011.12.013
PMID: 22405001

22. Janvier K, Pelchen-Matthews A, Renaud JB, Caillet M, Marsh M, et al. (2011) The ESCRT-0 compo-
nent HRS is required for HIV-1 Vpu-mediated BST-2/tetherin down-regulation. PLoS Pathog 7:
e1001265. doi: 10.1371/journal.ppat.1001265 PMID: 21304933

23. Douglas JL, Viswanathan K, McCarroll MN, Gustin JK, Fruh K, et al. (2009) Vpu directs the degradation
of the human immunodeficiency virus restriction factor BST-2/Tetherin via a {beta}TrCP-dependent
mechanism. J Virol 83: 7931–7947. doi: 10.1128/JVI.00242-09 PMID: 19515779

24. Mangeat B, Gers-Huber G, LehmannM, Zufferey M, Luban J, et al. (2009) HIV-1 Vpu neutralizes the
antiviral factor Tetherin/BST-2 by binding it and directing its beta-TrCP2-dependent degradation. PLoS
Pathog 5: e1000574. doi: 10.1371/journal.ppat.1000574 PMID: 19730691

25. Mitchell RS, Katsura C, Skasko MA, Fitzpatrick K, Lau D, et al. (2009) Vpu antagonizes BST-2-medi-
ated restriction of HIV-1 release via beta-TrCP and endo-lysosomal trafficking. PLoS Pathog 5:
e1000450. doi: 10.1371/journal.ppat.1000450 PMID: 19478868

26. Schubert U, Schneider T, Henklein P, Hoffmann K, Berthold E, et al. (1992) Human-immunodeficiency-
virus-type-1-encoded Vpu protein is phosphorylated by casein kinase II. Eur J Biochem 204: 875–883.
PMID: 1541298

27. Schubert U, Henklein P, Boldyreff B, Wingender E, Strebel K, et al. (1994) The human immunodefi-
ciency virus type 1 encoded Vpu protein is phosphorylated by casein kinase-2 (CK-2) at positions
Ser52 and Ser56 within a predicted alpha-helix-turn-alpha-helix-motif. J Mol Biol 236: 16–25. PMID:
8107101

28. Margottin F, Bour SP, Durand H, Selig L, Benichou S, et al. (1998) A novel humanWD protein, h-beta
TrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-
box motif. Mol Cell 1: 565–574. PMID: 9660940

29. Tokarev AA, Munguia J, Guatelli JC (2011) Serine-threonine ubiquitination mediates downregulation of
BST-2/tetherin and relief of restricted virion release by HIV-1 Vpu. J Virol 85: 51–63. doi: 10.1128/JVI.
01795-10 PMID: 20980512

30. Andrew AJ, Miyagi E, Strebel K (2011) Differential effects of human immunodeficiency virus type 1 Vpu
on the stability of BST-2/tetherin. J Virol 85: 2611–2619. doi: 10.1128/JVI.02080-10 PMID: 21191020

31. Schubert U, Strebel K (1994) Differential activities of the human immunodeficiency virus type 1-
encoded Vpu protein are regulated by phosphorylation and occur in different cellular compartments. J
Virol 68: 2260–2271. PMID: 8139011

32. Tervo HM, Homann S, Ambiel I, Fritz JV, Fackler OT, et al. (2011) beta-TrCP is dispensable for Vpu's
ability to overcome the CD317/Tetherin-imposed restriction to HIV-1 release. Retrovirology 8: 9. doi:
10.1186/1742-4690-8-9 PMID: 21310048

33. Schmidt S, Fritz JV, Bitzegeio J, Fackler OT, Keppler OT (2011) HIV-1 Vpu blocks recycling and bio-
synthetic transport of the intrinsic immunity factor CD317/tetherin to overcome the virion release restric-
tion. MBio 2: e00036–00011. doi: 10.1128/mBio.00036-11 PMID: 21610122

34. Pickering S, Hue S, Kim EY, Reddy S, Wolinsky SM, et al. (2014) Preservation of tetherin and CD4
counter-activities in circulating Vpu alleles despite extensive sequence variation within HIV-1 infected
individuals. PLoS Pathog 10: e1003895. doi: 10.1371/journal.ppat.1003895 PMID: 24465210

35. Dube M, Paquay C, Roy BB, Bego MG, Mercier J, et al. (2011) HIV-1 Vpu antagonizes BST-2 by inter-
fering mainly with the trafficking of newly synthesized BST-2 to the cell surface. Traffic 12: 1714–1729.
doi: 10.1111/j.1600-0854.2011.01277.x PMID: 21902775

36. Kueck T, Neil SJ (2012) A cytoplasmic tail determinant in HIV-1 Vpu mediates targeting of tetherin for
endosomal degradation and counteracts interferon-induced restriction. PLoS Pathog 8: e1002609. doi:
10.1371/journal.ppat.1002609 PMID: 22479182

37. Bonifacino JS, Traub LM (2003) Signals for sorting of transmembrane proteins to endosomes and lyso-
somes. Annu Rev Biochem 72: 395–447. PMID: 12651740

38. Lau D, KwanW, Guatelli J (2011) Role of the endocytic pathway in the counteraction of BST-2 by
human lentiviral pathogens. J Virol 85: 9834–9846. doi: 10.1128/JVI.02633-10 PMID: 21813615

Vpu Phosphorylation Regulates Clathrin Adaptor Interaction

PLOS Pathogens | DOI:10.1371/journal.ppat.1005141 August 28, 2015 24 / 26

http://dx.doi.org/10.1074/jbc.M111.296772
http://dx.doi.org/10.1074/jbc.M111.296772
http://www.ncbi.nlm.nih.gov/pubmed/22072710
http://dx.doi.org/10.1128/JVI.01699-10
http://dx.doi.org/10.1128/JVI.01699-10
http://www.ncbi.nlm.nih.gov/pubmed/20926557
http://dx.doi.org/10.1016/j.str.2011.12.013
http://www.ncbi.nlm.nih.gov/pubmed/22405001
http://dx.doi.org/10.1371/journal.ppat.1001265
http://www.ncbi.nlm.nih.gov/pubmed/21304933
http://dx.doi.org/10.1128/JVI.00242-09
http://www.ncbi.nlm.nih.gov/pubmed/19515779
http://dx.doi.org/10.1371/journal.ppat.1000574
http://www.ncbi.nlm.nih.gov/pubmed/19730691
http://dx.doi.org/10.1371/journal.ppat.1000450
http://www.ncbi.nlm.nih.gov/pubmed/19478868
http://www.ncbi.nlm.nih.gov/pubmed/1541298
http://www.ncbi.nlm.nih.gov/pubmed/8107101
http://www.ncbi.nlm.nih.gov/pubmed/9660940
http://dx.doi.org/10.1128/JVI.01795-10
http://dx.doi.org/10.1128/JVI.01795-10
http://www.ncbi.nlm.nih.gov/pubmed/20980512
http://dx.doi.org/10.1128/JVI.02080-10
http://www.ncbi.nlm.nih.gov/pubmed/21191020
http://www.ncbi.nlm.nih.gov/pubmed/8139011
http://dx.doi.org/10.1186/1742-4690-8-9
http://www.ncbi.nlm.nih.gov/pubmed/21310048
http://dx.doi.org/10.1128/mBio.00036-11
http://www.ncbi.nlm.nih.gov/pubmed/21610122
http://dx.doi.org/10.1371/journal.ppat.1003895
http://www.ncbi.nlm.nih.gov/pubmed/24465210
http://dx.doi.org/10.1111/j.1600-0854.2011.01277.x
http://www.ncbi.nlm.nih.gov/pubmed/21902775
http://dx.doi.org/10.1371/journal.ppat.1002609
http://www.ncbi.nlm.nih.gov/pubmed/22479182
http://www.ncbi.nlm.nih.gov/pubmed/12651740
http://dx.doi.org/10.1128/JVI.02633-10
http://www.ncbi.nlm.nih.gov/pubmed/21813615


39. Jia X, Weber E, Tokarev A, Lewinski M, Rizk M, et al. (2014) Structural basis of HIV-1 Vpu-mediated
BST2 antagonism via hijacking of the clathrin adaptor protein complex 1. Elife 3: e02362. doi: 10.7554/
eLife.02362 PMID: 24843023

40. Weinelt J, Neil SJ (2014) Differential sensitivities of tetherin isoforms to counteraction by primate lentivi-
ruses. J Virol 88: 5845–5858. doi: 10.1128/JVI.03818-13 PMID: 24623426

41. Serra-Moreno R, Jia B, Breed M, Alvarez X, Evans DT (2011) Compensatory changes in the cyto-
plasmic tail of gp41 confer resistance to tetherin/BST-2 in a pathogenic nef-deleted SIV. Cell Host
Microbe 9: 46–57. doi: 10.1016/j.chom.2010.12.005 PMID: 21238946

42. Zhang F, Wilson SJ, Landford WC, Virgen B, Gregory D, et al. (2009) Nef proteins from simian immuno-
deficiency viruses are tetherin antagonists. Cell Host Microbe 6: 54–67. doi: 10.1016/j.chom.2009.05.
008 PMID: 19501037

43. Mauxion F, Le Borgne R, Munier-Lehmann H, Hoflack B (1996) A casein kinase II phosphorylation site
in the cytoplasmic domain of the cation-dependent mannose 6-phosphate receptor determines the high
affinity interaction of the AP-1 Golgi assembly proteins with membranes. J Biol Chem 271: 2171–2178.
PMID: 8567675

44. McDonald B, Martin-Serrano J (2008) Regulation of Tsg101 expression by the steadiness box: a role of
Tsg101-associated ligase. Mol Biol Cell 19: 754–763. PMID: 18077552

45. Martin-Serrano J, Neil SJ (2011) Host factors involved in retroviral budding and release. Nat Rev Micro-
biol 9: 519–531. doi: 10.1038/nrmicro2596 PMID: 21677686

46. Hirano S, Kawasaki M, Ura H, Kato R, Raiborg C, et al. (2006) Double-sided ubiquitin binding of Hrs-
UIM in endosomal protein sorting. Nat Struct Mol Biol 13: 272–277. PMID: 16462748

47. Tokarev A, Guatelli J (2011) Misdirection of membrane trafficking by HIV-1 Vpu and Nef: Keys to viral
virulence and persistence. Cell Logist 1: 90–102. PMID: 21922073

48. Miyagi E, Andrew AJ, Kao S, Strebel K (2009) Vpu enhances HIV-1 virus release in the absence of Bst-
2 cell surface down-modulation and intracellular depletion. Proc Natl Acad Sci U S A 106: 2868–2873.
doi: 10.1073/pnas.0813223106 PMID: 19196977

49. Coadou G, Evrard-Todeschi N, Gharbi-Benarous J, Benarous R, Girault JP (2002) HIV-1 encoded
virus protein U (Vpu) solution structure of the 41–62 hydrophilic region containing the phosphorylated
sites Ser52 and Ser56. Int J Biol Macromol 30: 23–40. PMID: 11893391

50. Coadou G, Gharbi-Benarous J, Megy S, Bertho G, Evrard-Todeschi N, et al. (2003) NMR studies of the
phosphorylation motif of the HIV-1 protein Vpu bound to the F-box protein beta-TrCP. Biochemistry 42:
14741–14751. PMID: 14674748

51. Willbold D, Hoffmann S, Rosch P (1997) Secondary structure and tertiary fold of the human immunode-
ficiency virus protein U (Vpu) cytoplasmic domain in solution. Eur J Biochem 245: 581–588. PMID:
9182993

52. Wittlich M, Koenig BW, Stoldt M, Schmidt H, Willbold D (2009) NMR structural characterization of HIV-1
virus protein U cytoplasmic domain in the presence of dodecylphosphatidylcholine micelles. FEBS J
276: 6560–6575. doi: 10.1111/j.1742-4658.2009.07363.x PMID: 19804408

53. Jafari M, Guatelli J, Lewinski MK (2014) Activities of transmitted/founder and chronic clade B HIV-1
Vpu and a C-terminal polymorphism specifically affecting virion release. J Virol 88: 5062–5078. doi: 10.
1128/JVI.03472-13 PMID: 24574397

54. Wittlich M, Koenig BW,Willbold D (2008) Structural consequences of phosphorylation of two serine res-
idues in the cytoplasmic domain of HIV-1 VpU. J Pept Sci 14: 804–810. doi: 10.1002/psc.1004 PMID:
18186541

55. Miyakawa K, Sawasaki T, Matsunaga S, Tokarev A, Quinn G, et al. (2012) Interferon-induced SCYL2
limits release of HIV-1 by triggering PP2A-mediated dephosphorylation of the viral protein Vpu. Sci Sig-
nal 5: ra73. doi: 10.1126/scisignal.2003212 PMID: 23047923

56. Serra-Moreno R, Zimmermann K, Stern LJ, Evans DT (2013) Tetherin/BST-2 antagonism by Nef
depends on a direct physical interaction between Nef and tetherin, and on clathrin-mediated endocyto-
sis. PLoS Pathog 9: e1003487. doi: 10.1371/journal.ppat.1003487 PMID: 23853598

57. Pardieu C, Vigan R, Wilson SJ, Calvi A, Zang T, et al. (2010) The RING-CH ligase K5 antagonizes
restriction of KSHV and HIV-1 particle release by mediating ubiquitin-dependent endosomal degrada-
tion of tetherin. PLoS Pathog 6: e1000843. doi: 10.1371/journal.ppat.1000843 PMID: 20419159

58. Neil SJ, Eastman SW, Jouvenet N, Bieniasz PD (2006) HIV-1 Vpu promotes release and prevents
endocytosis of nascent retrovirus particles from the plasmamembrane. PLoS Pathog 2: e39. PMID:
16699598

59. Martin-Serrano J, Yarovoy A, Perez-Caballero D, Bieniasz PD (2003) Divergent retroviral late-budding
domains recruit vacuolar protein sorting factors by using alternative adaptor proteins. Proc Natl Acad
Sci U S A 100: 12414–12419. PMID: 14519844

Vpu Phosphorylation Regulates Clathrin Adaptor Interaction

PLOS Pathogens | DOI:10.1371/journal.ppat.1005141 August 28, 2015 25 / 26

http://dx.doi.org/10.7554/eLife.02362
http://dx.doi.org/10.7554/eLife.02362
http://www.ncbi.nlm.nih.gov/pubmed/24843023
http://dx.doi.org/10.1128/JVI.03818-13
http://www.ncbi.nlm.nih.gov/pubmed/24623426
http://dx.doi.org/10.1016/j.chom.2010.12.005
http://www.ncbi.nlm.nih.gov/pubmed/21238946
http://dx.doi.org/10.1016/j.chom.2009.05.008
http://dx.doi.org/10.1016/j.chom.2009.05.008
http://www.ncbi.nlm.nih.gov/pubmed/19501037
http://www.ncbi.nlm.nih.gov/pubmed/8567675
http://www.ncbi.nlm.nih.gov/pubmed/18077552
http://dx.doi.org/10.1038/nrmicro2596
http://www.ncbi.nlm.nih.gov/pubmed/21677686
http://www.ncbi.nlm.nih.gov/pubmed/16462748
http://www.ncbi.nlm.nih.gov/pubmed/21922073
http://dx.doi.org/10.1073/pnas.0813223106
http://www.ncbi.nlm.nih.gov/pubmed/19196977
http://www.ncbi.nlm.nih.gov/pubmed/11893391
http://www.ncbi.nlm.nih.gov/pubmed/14674748
http://www.ncbi.nlm.nih.gov/pubmed/9182993
http://dx.doi.org/10.1111/j.1742-4658.2009.07363.x
http://www.ncbi.nlm.nih.gov/pubmed/19804408
http://dx.doi.org/10.1128/JVI.03472-13
http://dx.doi.org/10.1128/JVI.03472-13
http://www.ncbi.nlm.nih.gov/pubmed/24574397
http://dx.doi.org/10.1002/psc.1004
http://www.ncbi.nlm.nih.gov/pubmed/18186541
http://dx.doi.org/10.1126/scisignal.2003212
http://www.ncbi.nlm.nih.gov/pubmed/23047923
http://dx.doi.org/10.1371/journal.ppat.1003487
http://www.ncbi.nlm.nih.gov/pubmed/23853598
http://dx.doi.org/10.1371/journal.ppat.1000843
http://www.ncbi.nlm.nih.gov/pubmed/20419159
http://www.ncbi.nlm.nih.gov/pubmed/16699598
http://www.ncbi.nlm.nih.gov/pubmed/14519844


60. Maldarelli F, Chen MY, Willey RL, Strebel K (1993) Human immunodeficiency virus type 1 Vpu protein
is an oligomeric type I integral membrane protein. J Virol 67: 5056–5061. PMID: 8331740

61. Roux KJ, Kim DI, Raida M, Burke B (2012) A promiscuous biotin ligase fusion protein identifies proximal
and interacting proteins in mammalian cells. J Cell Biol 196: 801–810. doi: 10.1083/jcb.201112098
PMID: 22412018

Vpu Phosphorylation Regulates Clathrin Adaptor Interaction

PLOS Pathogens | DOI:10.1371/journal.ppat.1005141 August 28, 2015 26 / 26

http://www.ncbi.nlm.nih.gov/pubmed/8331740
http://dx.doi.org/10.1083/jcb.201112098
http://www.ncbi.nlm.nih.gov/pubmed/22412018

