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Ionizing radiations induce shared 
epigenomic signatures unraveling adaptive 
mechanisms of cancerous cell lines 
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Youssef Siblini1, Céline Chéry1,2,3, Pierre Rouyer1, Jérémie Raso1, Amélia Julien1, Sébastien Hergalant1, 
Aurélie François4, Lina Bezdetnaya4,5, Guillaume Vogin6, Jean‑Louis Guéant1,2,3* and Abderrahim Oussalah1,2,3*  

Abstract 

Background: Although radiation therapy represents a core cancer treatment modality, its efficacy is hampered by 
radioresistance. The effect of ionizing radiations (IRs) is well known regarding their ability to induce genetic alterations; 
however, their impact on the epigenome landscape in cancer, notably at the CpG dinucleotide resolution, remains to 
be further deciphered. In addition, no evidence is available regarding the effect of IRs on the DNA methylome profile 
according to the methionine dependency phenotype, which represents a hallmark of metabolic adaptation in cancer.

Methods: We used a case–control study design with a fractionated irradiation regimen on four cancerous cell lines 
representative of HCC (HepG2), melanoma (MeWo and MeWo‑LC1, which exhibit opposed methionine dependency 
phenotypes), and glioblastoma (U251). We performed high‑resolution genome‑wide DNA methylome profiling using 
the MethylationEPIC BeadChip on baseline conditions, irradiated cell lines (cumulative dose of 10 Gy), and non‑
irradiated counterparts. We performed epigenome‑wide association studies to assess the effect of IRs and methio‑
nine‑dependency‑oriented analysis by carrying out epigenome‑wide conditional logistic regression. We looked for 
epigenome signatures at the locus and single‑probe (CpG dinucleotide) levels and through enrichment analyses of 
gene ontologies (GO). The EpiMet project was registered under the ID#AAP‑BMS_003_211.

Results: EWASs revealed shared GO annotation pathways associated with increased methylation signatures for sev‑
eral biological processes in response to IRs, including blood circulation, plasma membrane‑bounded cell projection 
organization, cell projection organization, multicellular organismal process, developmental process, and animal organ 
morphogenesis. Epigenome‑wide conditional logistic regression analysis on the methionine dependency phenotype 
highlighted several epigenome signatures related to cell cycle and division and responses to IR and ultraviolet light.

Conclusions: IRs generated a variation in the methylation level of a high number of CpG probes with shared biologi‑
cal pathways, including those associated with cell cycle and division, responses to IRs, sustained angiogenesis, tissue 
invasion, and metastasis. These results provide insight on shared adaptive mechanisms of the epigenome in cancer‑
ous cell lines in response to IR. Future experiments should focus on the tryptic association between IRs, the initiation 
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Introduction
Epigenome alterations, including modifications of DNA 
methylation, represent a hallmark of cancer initiation, 
progression, metastasis, and recurrence [1–5]. Cancer-
ous cell lines use epigenomic reprogramming to develop 
new strategies against anticancer treatments, including 
radiation therapy [1]. DNA methylation requires S-aden-
osyl methionine (SAM) as a methyl donor for which 
methionine represents the immediate metabolic precur-
sor. Dependency to methionine, also called methionine 
dependency, is a metabolic adaptation that occurs in 
association with cancerous transformation, and its inter-
action with epigenetic modifications is increasingly rec-
ognized as a driver of tumorigenesis [2, 4, 6–8]. In this 

context, epigenetic modifications have been hypothe-
sized as key drivers for tumor aggressiveness, with resist-
ant phenotype to conventional chemo- and radiotherapy 
and an ability to develop metastases [5].

Radiation therapy represents a core modality of cancer 
treatment [9]. For instance, it is indicated in newly diag-
nosed or recurrent glioblastoma [10–12] and has gained 
interest in recent years in the therapeutic algorithm of 
hepatocellular carcinoma (HCC), notably through ste-
reotactic body radiation therapy [13–16]. In the case of 
cutaneous malignant melanoma, radiation therapy is not 
recommended in current guidelines; however, numer-
ous studies reported its efficacy, notably in the setting of 
elective adjuvant irradiation for eradicating subclinical 

of a radioresistance phenotype, and their interaction with methionine dependency as a hallmark of metabolic adapta‑
tion in cancer.

Keywords: Epigenome‑wide association study, Epigenome alterations, Aberrant methylation, Radioresistance, 
Radiation therapy, Ionizing radiation, Metabolic adaptation in cancer, Methionine dependency, Hepatocellular 
carcinoma, Melanoma, Glioblastoma
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nodal metastases [17]. Radioresistance is a leading cause 
of cancer progression [18]. Ionizing radiations (IRs) are 
well known for their ability to induce cellular stress with 
subsequent alterations in several biological functions, 
including cellular stress response, cell signaling, DNA 
synthesis and repair, cell cycle and differentiation, and 
cell adhesion [19–24].

The effect of IRs is well known regarding their ability to 
induce genetic alterations [25]. Besides, epigenome alter-
ations have been hypothesized as a potential contributing 
factor to radioresistance, notably through DNA meth-
ylation, histone modification, and chromatin remod-
eling, which may induce transcriptional reprogramming 
that enables cells to avoid IR effects [18, 26, 27]. Rodent 
animal models have shown that IRs affect DNA and his-
tones’ methylation in several organs such as the liver, 
bone marrow, thymus, and spleen [28]. However, the 
effect of IRs on epigenetic alterations in cancer, notably at 
a nucleotide resolution level (CpG dinucleotide), remains 
to be further deciphered [25].

To date, data are sparse regarding the effect of IRs on 
the epigenomic landscape of established cancerous cell 
lines, notably following a fractionated irradiation regi-
men. Moreover, no work has systematically evaluated 
the impact of IRs at a nucleotide resolution level using 
a standardized protocol of fractionated irradiation using 
multiple cancerous cell lines. In addition, no data have 
been reported regarding specific epigenome signatures, 
considering the methionine dependency phenotype, 
which represents a hallmark of metabolic adaptation in 
cancer [6–8].

To address this knowledge gap, we used four cancerous 
cell lines to infer potential epigenomic alterations that 
IRs could induce in HCC, glioblastoma, and melanoma. 
HCC and glioblastoma were used as an example of cancer 
treatable by IRs and melanoma as an example of cancer 
with no indication of IR according to current guidelines. 
We were able to identify shared annotation pathways for 
epigenomic signatures associated with and exposure to 
IR. Furthermore, we performed epigenome-wide con-
ditional analyses according to methionine dependency 
phenotype and highlighted several epigenome signatures 
related to cell division and response to IR.

Methods
Design of the EpiMet project, oversight, and study aims
The EpiMet project was designed to assess the effect of 
IR, as a cellular stress model, on the epigenome land-
scape of cancerous cell lines using an EWAS approach. 
We also looked for potentially contrasted epigenome sig-
natures considering the methionine dependency pheno-
type using well-phenotyped cell lines. For this purpose, 
we used four cell lines and three cancer models: HCC, 

melanoma, and glioblastoma. The EpiMet project was 
declared at the University of Lorraine (Research Pole of 
Biology, Medicine, and Health Sciences) and registered 
under the ID #AAP-BMS_003_211.

Cell lines and cell culture procedures
We cultivated the human HCC HepG2 (ATCC®) cell 
lines in Dulbecco’s modified Eagle’s medium (DMEM) 
(Sigma–Aldrich, Saint-Quentin-Fallavier, France) sup-
plemented with 10% volume per volume of heat-inac-
tivated fetal bovine serum (FBS) (Sigma–Aldrich), 1% 
glutamine (Sigma–Aldrich), and 1% penicillin–strepto-
mycin (P/S) (Sigma–Aldrich). We cultivated the human 
melanoma cell lines (MeWo [ATCC®], MeWo-LC1 [Dr. 
Robert Liteplo, University of Ottawa, Ottawa, Ontario]) 
in DMEM supplemented with 10% volume per volume 
of FBS, 2% glutamine, and 1% P/S. We cultivated the 
human glioblastoma cell line U251 (European Collec-
tion of Authenticated Cell Cultures [ECACC]) in DMEM 
supplemented with 10% volume per volume of heat-
inactivated FBS, 1% non-essential amino acid (NEAA) 
(Sigma-Aldrich), 1% glutamine, 1% pyruvate (Sigma–
Aldrich), and 1% P/S. All the cells were incubated in a 
humidified atmosphere with 5%  CO2 at 37 °C.

Experimental design, cell line irradiation, and cell material
We used a case–control study design with a fraction-
ated irradiation regimen on four cancerous cell lines. 
In the irradiation arm, the cells were exposed to four 
IR doses at 2.5  Gy per irradiation at a one-week inter-
val, totaling a cumulative dose of 10  Gy. In the control 
arm, cell lines were not irradiated and were maintained 
in similar conditions for the same study period. All cells 
were maintained in standard culture conditions with a 
renewal of culture media two times a week. To perform 
DNA methylome profiling, we prepared flash-frozen cell 
pellets from irradiated cell lines (‘End_Irradiation’) one 
week after the fourth irradiation and their non-irradiated 
counterparts (‘End_No irradiation’) on the same day. We 
also prepared flash-frozen cell pellets from baseline con-
ditions for each cell line (‘Baseline’) before the initiation 
of the study. All experiments were performed in biologi-
cal triplicate, totaling 36 cell flasks (nine flasks per cell 
line: three Baseline, three End_Irradiation, three End_No 
irradiation). We performed cell line irradiation at the 
Department of Radiation Oncology of the Lorraine Insti-
tute of Oncology (Vandoeuvre-lès-Nancy, France). The 
cells were irradiated in the plateau growth phase to avoid 
any artifacts resulting from the cell cycle. Irradiation was 
performed on a 6-MeV X-ray linear accelerator (Clinac 
2100, Varian, Palo Alto, USA) (see Graphical Abstract).
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DNA methylome analyses
We carried out bisulfite conversion of 600  ng of DNA 
extracted from cell lines using the EZ DNA Meth-
ylation kit (Zymo Research, Proteigene, Saint-Marcel, 
France). The genome-wide profiling of DNA methylome 
was determined using the Infinium MethylationEPIC 
BeadChip array (Illumina, Paris, France) at the Func-
tional Genomics Facility of the INSERM unit UMR_S 
1256 (NGERE, Vandoeuvre-lès-Nancy, France). The 
Infinium MethylationEPIC BeadChip provides cover-
age of > 850,000 CpG probes in enhancer regions, gene 
bodies, promoters, and CpG islands. The arrays were 
scanned on an Illumina iScan® system, and raw methyla-
tion data were extracted using Illumina’s Genome Studio 
methylation module. For each CpG probe, the methyla-
tion level was described as a β value, ranging between 0 
(fully unmethylated CpG probe) and 1 (fully methylated 
CpG probe). Background correction and normalization 
were implemented using the SWAN method (R Pack-
age Minfi) [29]. Probe annotation information, includ-
ing sequence and chromosome location for the Infinium 
MethylationEPIC BeadChip array, was retrieved from the 
Infinium MethylationEPIC v1.0 B5 Manifest File.

Quality controls of methylome array data 
and bioinformatics analyses
We visually inspected the whole-genome distribution 
of the CpG probes according to their β value. We per-
formed primary component analysis (PCA) to assess 
the clustering of methylation profiles according to the 
whole methylation landscape of the studied cell lines. 
The top ten principal components (eigenvectors, EV) 
were calculated with their respective eigenvalue. PCA 
plots were used to report on the three top eigenvalues. 
We performed our analytical approach using a sequen-
tial approach. In step #1, we compared the epigenome 
landscape between ‘Baseline’ and ‘End_No irradiation’ 
conditions to assess whether the maintenance of cell lines 
affected DNA methylation. In step #2, we performed 
an EWAS that pooled ‘Baseline’ and ‘End_No irradia-
tion’ conditions to compare them with the ‘End_Irradia-
tion’ condition. The aim of step #2 was to assess whether 
the exposure to a cumulative dose of 10 Gy affected the 
DNA methylation landscape of the studied cell lines. 
In this step, we performed a sensitivity analysis EWAS 
by removing the ‘Baseline’ condition from the control 
group to compare the ‘End_Irradiation’ versus ‘End_No 
irradiation’ condition. In step #3, we performed the 
same analysis described in step #2 on each of the four 
cell lines. Finally, in step #4, we assessed using enrich-
ment analyses the gene ontology (GO) pathways signifi-
cantly associated with exposure to IRs and looked for 

shared GO annotations between the studied cell lines. 
In each EWAS (steps #1–3), we compared the mean β 
values of each CpG probe between the two subgroups 
using the t-test with Bonferroni correction. Output data 
included the mean β values in each subgroup, the dif-
ference of β values, the nominal P-value, and the Bon-
ferroni corrected P-value. To assess the effect of IRs on 
the epigenome landscape with respect to the methionine 
dependency phenotype, we performed conditional logis-
tic regression EWAS using the methylome profiles from 
methionine-dependent cell lines (MeWo-LC1) and their 
methionine-independent counterpart (MeWo) [30]. We 
used the ‘End_Irradiation’ as the dependent variable and 
the methionine-dependent phenotype as the conditional 
covariate. EWAS results were reported using an epi-Man-
hattan plot. We performed enrichment analyses on CpG 
probes exhibiting increased or decreased methylation 
signatures (difference of β values > 0.1 or <  − 0.1, respec-
tively) using the GO Enrichment Analysis tool [31]. For 
the conditional logistic regression EWAS, we performed 
enrichment analyses on the CpG probes with beta regres-
sion coefficient values > 200 or <  − 200. We used PAN-
THER ‘GO-Slim Biological Process’ and ‘GO-biological 
process complete’ annotation datasets and the REViGO 
tool to summarize and visualize statistically significant 
GO terms based on their calculated metrics (uniqueness 
and dispensability) [32]. We identified top enriched GO 
annotations using quantile–quantile plot representation. 
All statistical analyses were performed using the SNP and 
Variation Suite (v8.8.1; Golden Helix, Inc., Bozeman, MT, 
USA) and MedCalc, version 19.5.3 (MedCalc Software, 
Ostend, Belgium).

Results
Principal component analyses for DNA methylome profile 
assessment
We performed DNA methylome profiling of the 36 sam-
ples corresponding to nine flasks (three samples of the 
conditions ‘Baseline,’ ‘End_Irradiation,’ and ‘End_No irra-
diation’) for each of the four studied cell lines. All methy-
lome profiles passed quality checks and exhibited a valid 
β value density distribution (Additional file 1: Figure S1). 
In PCA on genome-wide DNA methylome profiles, we 
found a clustered distribution according to the cell line 
type (Fig. 1A). Cell line clustering was associated with the 
third PCA vector (EV = 0.32). In both 3-D and 2-D vis-
ual inspection of the PCA plots, we found no systematic 
clustering of DNA methylome profiles between ‘Baseline’ 
and ‘End_No irradiation’ conditions (Additional file  2: 
Figure S2, Additional file 3: Figure S3). Furthermore, we 
found no significant clustering of DNA methylome pro-
files according to the irradiation status (Fig.  1B, Addi-
tional file 3: Figure S3).
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Epigenome‑wide association studies
We found no statistically significant locus or CpG probe 
in the EWAS that compared ‘Baseline’ and ‘End_No 
irradiation’ conditions (Fig. 2A). This allowed us to pool 
both conditions and compare them with the ‘End_Irra-
diation’ condition in the whole and subgroup analyses 
according to cell line type. In the EWAS that assessed the 
effect of IRs on the DNA methylation profile (End_Irra-
diation vs. [End_No irradiation/Baseline]), we found no 

statistically significant locus or CpG probe (Fig. 2B, Addi-
tional file 4: Table S1a). In sensitivity analysis EWAS, we 
found consistent results by comparing the ‘End_Irradia-
tion’ versus ‘End_No irradiation’ condition (Additional 
file 5: Table S1b). In EWAS subanalyses that assessed the 
effect of IRs on individual cell types, we found no statisti-
cally significant CpG (Fig.  3, Additional file  6: Table  S2, 
Additional file 7: Table S3,  8: Table S4, Additional file 9: 
Table  S5). When we compared the EWAS subanalyses, 
we found no shared CpG probes exhibiting a difference 
of β values > 0.1 (Fig.  4A) or <  − 0.1 (Fig.  4B) between 
the four cell lines. In the conditional logistic regression 
EWAS that looked for specific epigenome signatures 
considering the methionine dependency phenotype, we 
found no statistically significant locus or CpG probe at 
the genome-wide level (Additional file 10: Figure S4).

Enrichment analyses
Enrichment analyses that used the CpG probes exhibiting 
a difference of β values > 0.1 or <  − 0.1 found no statisti-
cally significant GO annotation when all cell lines were 
considered together (Additional file  11: Table  S6a,b). 
However, when cell lines were considered separately, we 
found significantly enriched GO annotations on CpG 
probes that exhibited a β values difference > 0.1 (increase 
in methylation level) among HepG2 and MeWo-LC1 cell 
lines (Fig. 5A and Additional file 11: Table S6c–f) and for 
CpG probes that exhibited a β values difference <  − 0.1 
(decrease in methylation level) among HepG2, MeWo-
LC1, and U251 cell lines (Fig. 5B and  11: Table S6g–j). 
Importantly, we found 14 shared GO annotation path-
ways between HepG2 and MeWo-LC1 cell lines in asso-
ciation with CpG probes with an increased methylation 
level (Fig. 5A and Additional file 12: Figure S5) with sig-
nificantly correlated enrichment folds (Spearman’s coef-
ficient of rank correlation [rho] = 0.825 (95% CI, 0.522 
to 0.943); P < 0.001) for the following main annotations: 
blood circulation, plasma membrane-bounded cell pro-
jection organization, and cell projection organization 
(Table  1; Fig.  6A). Similarly, we found mirrored results 
with shared GO annotation pathways between HepG2, 
MeWo-LC1, and U251 cell lines in association with CpG 
probes with a decreased methylation level (Fig.  5B and 
Additional file 12: Figure S5) with significantly correlated 
enrichment folds (rho = 1; P < 0.0001) (Fig. 6B), including 
regulation of plasma membrane-bounded cell projection 
organization and regulation of cell projection organiza-
tion (Table 2).

In conditional logistic regression EWAS that compared 
methionine-dependent MeWo-LC1 cells to their non-
methionine dependent mother cells MeWo, the enrich-
ment analyses performed on the CpG probes with beta 
regression coefficient values > 200 highlighted several 

Fig. 1. 3‑D plot using the three top eigenvectors (EV1, EV2, EV3) 
derived from the primary component analysis on the genome‑wide 
methylome landscape of the studied cell lines. Panel (A) reports the 
clustering per cell line; panel (B) reports the clustering according 
to the two study conditions: ‘Baseline/End_No irradiation and’ 
‘End_Irradiation’
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Fig. 2 Epi‑Manhattan plot reporting the results of the epigenome‑wide association study that compared ‘Baseline’ versus ‘End_No irradiation’ (panel 
A) and ‘End_Irradiation’ versus (Baseline/End_No irradiation) (panel B)

Table 1 Shared gene ontology annotations for enrichment analyses on CpG probes that exhibited a β values difference > 0.1 before 
and after ionizing radiation of HepG2 and MeWo‑LC1 cell lines

FE: fold enrichment; DFR: false discovery rate

* No significant GO annotation was found for the CpG probes that exhibited a β values difference > 0.1 before and after ionizing radiation for MeWo and U251 cell lines

GO biological process complete HepG2* MeWo‑LC1*

FE P‑value FDR,
P‑value

FE P‑value FDR,
P‑value

Blood circulation (GO:0008015) 3.22 2.22 ×  10–5 2.34 ×  10–2 2.33 7.49 ×  10–5 1.62 ×  10–2

Animal organ morphogenesis (GO:0009887) 2.34 1.19 ×  10–5 1.71 ×  10–2 1.97 1.58 ×  10–6 8.04 ×  10–4

Plasma membrane‑bounded cell projection organization 
(GO:0120036)

2.26 3.86 ×  10–6 7.63 ×  10–3 1.73 2.98 ×  10–5 8.27 ×  10–3

Cell projection organization (GO:0030030) 2.23 5.33 ×  10–6 8.42 ×  10–3 1.72 2.86 ×  10–5 8.07 ×  10–3

Cell development (GO:0048468) 1.95 2.02 ×  10–5 2.45 ×  10–2 2.06 3.40 ×  10–12 5.96 ×  10–9

Anatomical structure morphogenesis (GO:0009653) 1.94 7.92 ×  10–7 2.50 ×  10–3 1.82 1.49 ×  10–10 1.96 ×  10–7

Nervous system development (GO:0007399) 1.86 4.60 ×  10–6 8.08 ×  10–3 1.94 1.67 ×  10–13 3.31 ×  10–10

Cell differentiation (GO:003054) 1.58 1.90 ×  10–5 2.51 ×  10–2 1.75 9.46 ×  10–16 2.99 ×  10–12

Cellulardevelopmental process (GO:0048869) 1.58 2.13 ×  10–5 2.40 ×  10–2 1.75 6.11 ×  10–16 2.41 ×  10–12

System development (GO:0048731) 1.56 2.62 ×  10–6 6.89 ×  10–3 1.64 8.72 ×  10–15 1.97 ×  10–11

Multicellular organism development (GO:0007275) 1.55 4.60 ×  10–7 1.82 ×  10–3 1.61 5.24 ×  10–16 2.76 ×  10–12

Anatomical structure development (GO:0048856) 1.55 1.51 ×  10–7 1.19 ×  10–3 1.59 9.01 ×  10–17 7.12 ×  10–13

Developmental process (GO:0032502) 1.51 2.22 ×  10–7 1.17 ×  10–3 1.59 5.53 ×  10–19 8.74 ×  10–15

Multicellular organismal process (GO:0032501) 1.45 1.10 ×  10–7 1.73 ×  10–3 1.46 1.64 ×  10–15 4.33 ×  10–12
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pathways, including cell division and responses to IR and 
ultraviolet light (Table  3, Fig.  7, and Additional file  13: 
Table S7 a). Conversely, enrichment analyses performed 

on the CpG probes with beta regression coefficient val-
ues <  − 200 highlighted pathways related to cell cycle, 

Fig. 3 Epi‑Manhattan plot reporting the results of the epigenome‑wide association study that compared ‘End_Irradiation’ versus (Baseline/End_No 
irradiation) in HepG2 (panel A), MeWo (panel B), MeWo‑LC1 (panel C), and U251 (panel D) cell lines
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cell division, and DNA damage (Table 4, Fig. 8, and Addi-
tional file 13: Table S7 b).

Discussion
In the EpiMet study, we assessed the effect of a frac-
tionated regimen of IRs on the epigenome land-
scape of cancerous cell lines representative of leading 
causes of cancer incidence and mortality worldwide, 

including HCC, cutaneous melanoma, and glioblas-
toma, with a cumulative incidence of over one million 
new cases diagnosed in 2020 [33]. HCC is the most 
common primary malignant tumor of the liver [34–36], 
glioblastoma is the most common and most aggres-
sive malignant primary brain tumor [37], and cutane-
ous malignant melanoma has an increasing incidence 
worldwide.
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Using an original approach through a case–con-
trol study design and four cancerous cell lines (HepG2, 
MeWo, MeWo-LC1, and U251), we provided better 
insight at a high-resolution scale on the DNA methy-
lome variations in association with IRs. While we did 
not find monogenic epigenome signatures in association 

with exposure to IRs, we identified significant enrich-
ments in CpG probes exhibiting increased or decreased 
methylation levels (difference of β values > 0.1 or <  − 0.1, 
respectively) in association with exposure to IRs that 
were consistent with epigenomic adaptive mechanisms 
involving sustained angiogenesis, tissue invasion, and 
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with an increased methylation level; B Venn diagram illustrating the shared GO annotation pathways between HepG2, MeWo‑LC1, and U251 cell 
lines in association with CpG probes with a decreased methylation level
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metastasis. The enrichment folds for the shared epig-
enomic signatures were found to be highly correlated 
across cell lines. In addition, we highlighted several epig-
enome signatures related to cell division and response to 
IRs in association with the methionine dependency phe-
notype that we addressed using two melanoma cell lines 
with opposite methionine dependency phenotypes.

Despite unaltered DNA sequences, epigenetic altera-
tions can alter gene expression and cell functions [38, 
39]. DNA methylation alterations represent a dynamic 

process described under physiological and pathologi-
cal conditions, including aging, cancer, complex phe-
notype diseases, and inherited disorders [40–42]. IRs 
represent a well-defined experimental model of cellular 
stress [19–24]. DNA methylation has been shown to vary 
in response to cellular stress conditions [43–45]. Mito-
chondrial dysfunction, induced by cellular stress, trig-
gers a methylation-dependent pro-survival response with 
enhanced DNA methylation of tumor suppressor genes 
and pathways involved in cell survival regulation [45].

Few studies have assessed the effect of IRs on cancerous 
cell lines, and no study assessed the methylome landscape 
using the high-density EPIC BeadChip for methylome 
profiling. A study on the MDA-MB-231 cell line cor-
responding to metastatic mammary adenocarcinoma 
assessed the effect of IRs at a unique irradiation dose of 
2 or 6 Gy [46]. The DNA methylome profiling assessed by 
the Infinium HumanMethylation450 BeadChip (M450k 
array) demonstrated enrichment in GO annotations 
related to cell cycle, DNA repair, and apoptosis pathways 
[46]. A comparative analysis of the methylome profile of 
radiosensitive (SCC-61) and radioresistant (rSCC-61) 
human squamous cell carcinoma cell lines (head and 
neck squamous cell cancer) reported an enrichment in 
glucocorticoid receptor signaling, fatty acid α-oxidation, 
and cell cycle regulation as top canonical pathways asso-
ciated with radiation resistance [47]. A recent study 
investigated the DNA methylation alterations follow-
ing IRs of glioma stem cells using the M450k array after 
repeated doses of 2 or 4 Gy using two regimens of 3 or 
15 fractions [48]. The DNA methylome signatures were 
assessed 14 days after the last irradiation. No significant 
DNA methylation alterations were observed in cell lines 
that received few fractions of radiations [48]. Conversely, 
higher radiation doses induced a variation in DNA meth-
ylation level at numerous CpG sites whose annotations 
potentially reflect a cellular response to radiation stress 
[48].

To date, no study has assessed the DNA methylome 
alterations in association with IRs using a well-pheno-
typed cellular model for methionine dependency in can-
cer. We performed methionine-dependency-oriented 
analysis by carrying out epigenome-wide conditional 
logistic regression analysis and combining epigenome 
experiments from two cancerous cell lines with mirrored 
methionine dependency phenotypes (i.e., MeWo-LC1 cell 
line being methionine dependent and which derives from 
the methionine-independent MeWo cell line) [30]. Inter-
estingly, we found enrichment in epigenome signatures 
on loci associated with cell cycle and division, responses 
to IR and ultraviolet light, and DNA damage.

The present study has several strengths. First, we 
used an original case–control study design on several 
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Fig. 6 A Correlation plot reporting the enrichment folds of the 
shared gene ontology annotation pathways between HepG2 and 
MeWo‑LC1 cell lines for the CpG probes that exhibited a β values 
difference > 0.1 before and after ionizing radiation (no significant 
gene ontology annotation was found for the CpG probes that 
exhibited a β values difference > 0.1 before and after ionizing 
radiation for MeWo and U251 cell lines); B correlation plot reporting 
the enrichment folds of the shared gene ontology annotation 
pathways between HepG2, MeWo‑LC1, and U251 cell lines for the 
CpG probes that exhibited a β values difference <  − 0.1 before and 
after ionizing radiation  (no significant gene ontology annotation was 
found for the CpG probes that exhibited a β values difference <  − 0.1 
before and after ionizing radiation for MeWo cell line)
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cancerous cell lines, including two cell lines known for 
their opposed methionine dependency phenotypes. Sec-
ond, we assessed DNA epigenome signatures using the 
high-resolution Infinium MethylationEPIC on more 
than 850 k CpG probes. Third, we assessed the effect of 
a fractionated regimen of IRs with a cumulated dose of 
10 Gy, and we assessed both baseline and end of irradia-
tion conditions in the control arm to control for the risk 
of bias. Our study aimed to investigate the effect of mod-
erate hypofractionation without generating an excess of 
mitotic cell death. Hypofractionation is a new standard 
applied in the management of prostate and breast can-
cers but also for radioresistant tumors such as the three 
cancer models investigated in the EpiMet protocol. In 
the irradiation protocol regimen that we applied in the 
present study, we aimed to model the radiation boost 
delivered at the end of the treatment schedule. Fourth, 
we report the first evidence on the association of epig-
enome landscape alterations with IRs, considering the 
methionine dependency phenotype. Fifth, we performed 
several bioinformatics approaches that unraveled shared 

enriched annotation pathways in relation to IRs exposure. 
Nevertheless, we acknowledge several potential limita-
tions of the study that should be considered in interpret-
ing our results. First, even if a fractionated regimen of 
IRs seems to be the more adapted experimental design 
to assess the effect of adaptive epigenome alterations to 
radiation-induced cellular stress, it remains that a higher 
cumulative dose (> 10  Gy) could induce a more striking 
epigenome signature associated with IRs and should be 
investigated in future experiments. Second, we did not 
assess and quantify the effect of IRs at the cellular level 
by using a surrogate biomarker to estimate DNA damage 
[49]. Third, even if our hypothesis on epigenome modifi-
cations in the setting of IR exposure was based on DNA 
methylation alterations, the role of histone modifica-
tion and chromatin dynamics (e.g., H3K4me3 signature) 
could not be ruled out and deserves further investigation 
[50].

In our study, we did not perform methylation profiles 
on human cancer samples before and after IR exposure 
for several reasons. First, the EpiMet project received 

Table 2 Shared gene ontology annotations for enrichment analyses on CpG probes that exhibited a β values difference < − 0.1 before 
and after ionizing radiation of HepG2, MeWo‑LC1, and U251 cell lines

FE: fold enrichment; DFR: false discovery rate

*No significant GO annotation was found for the CpG probes that exhibited a β values difference < −0.1 before and after ionizing radiation for MeWo cell line

GO biological process complete HepG2* MeWo‑LC1* U251*

FE P‑value FDR, P‑value FE P‑value FDR, P‑value FE P‑value FDR, P‑value

Regulation of neuron projection development 
(GO:0010975)

2.03 4.69 ×  10–6 1.35 ×  10–3 2.42 1.05 ×  10–5 1.84 ×  10–2 2.43 6.78 ×  10–5 3.25 ×  10–2

Regulation of plasma membrane‑bounded 
cell projection organization (GO:0120035)

1.97 2.76 ×  10–7 1.25 ×  10–4 2.14 1.58 ×  10–5 2.28 ×  10–2 2.25 2.07 ×  10–5 1.72 ×  10–2

Regulation of cell projection organization 
(GO:0031344)

1.92 6.05 ×  10–7 2.33 ×  10–4 2.09 3.50 ×  10–5 4.25 ×  10–2 2.19 4.32 ×  10–5 2.53 ×  10–2

Nervous system development (GO:0007399) 1.63 6.94 ×  10–12 1.22 ×  10–8 1.56 1.22 ×  10–5 1.93 ×  10–2 1.68 1.76 ×  10–6 2.53 ×  10–3

Table 3 Top enriched gene ontology annotations on CpG probes with beta regression coefficient values > 200 in association with 
ionizing radiations using conditional logistic regression EWAS on the methionine dependency phenotype

CLR: conditional logistic regression; FE: fold enrichment; DFR: false discovery rate

* Top significantly enriched GO annotations were defined using a Q–Q plot ranking of fold enrichment values. The full list of significantly enriched gene ontology 
annotations is reported in Additional file 13: Table S7a

GO biological process complete CLR‑EWAS for the methionine dependency phenotype (MeWo‑LC1 
vs. MeWo)

FE* P‑value FDR, P‑value

Centrosome duplication (GO:0051298) 3.16 1.05 ×  10–4 7.80 ×  10–3

Centrosome cycle (GO:0007098) 2.20 2.11 ×  10–4 1.41 ×  10–2

Peripheral nervous system development (GO:0007422) 2.17 4.85 ×  10–4 2.83 ×  10–2

Microtubule organizing center organization (GO:0031023) 2.16 1.22 ×  10–4 8.91 ×  10–3

response to UV (GO:0,009,411) 2.05 1.53 ×  10–5 1.47 ×  10–3

Response to ionizing radiation (GO:0010212) 1.94 1.00 ×  10–4 7.49 ×  10–3
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Fig. 7 Q–Q plot for the top enriched gene ontology annotations on CpG probes with beta regression coefficient values > 200 in association with 
ionizing radiations using conditional logistic regression EWAS on the methionine dependency phenotype

Table 4 Top enriched gene ontology annotations on CpG probes with beta regression coefficient values < − 200 in association with 
ionizing radiations using conditional logistic regression EWAS on the methionine dependency phenotype

CLR: conditional logistic regression; FE: fold enrichment; DFR: false discovery rate

*Top significantly enriched GO annotations were defined using a Q–Q plot ranking of fold enrichment values. The full list of significantly enriched gene ontology 
annotations is reported in Additional file 13: Table S7b

GO biological process complete CLR‑EWAS for the methionine dependency 
phenotype (MeWo‑LC1 vs. MeWo)

FE* P‑value FDR, P‑value

Positive regulation of protein targeting to mitochondrion (GO:1903955) 3.00 1.03 ×  10–3 4.57 ×  10–2

Regulation of protein targeting to mitochondrion (GO:1903214) 2.80 3.50 ×  10–4 1.87 ×  10–2

Mitotic metaphase plate congression (GO:0007080) 2.60 5.84 ×  10–4 2.87 ×  10–2

Embryonic digit morphogenesis (GO:0042733) 2.51 4.70 ×  10–4 2.40 ×  10–2

Metaphase plate congression (GO:0051310) 2.47 5.38 ×  10–4 2.67 ×  10–2

Positive regulation of establishment of protein localization to mitochondrion(GO:1903749) 2.40 9.12 ×  10–4 4.19 ×  10–2

Mitotic G1 DNA damage checkpoint signaling (GO:0031571) 2.35 4.65 ×  10–4 2.38 ×  10–2

Regulation of establishment of protein localization to mitochondrion (GO:1903747) 2.30 3.61 ×  10–4 1.91 ×  10–2

Intrinsic apoptotic signaling pathway in response to DNA damage (GO:0008630) 2.30 6.77 ×  10–4 3.24 ×  10–2

Mitotic G1/S transition checkpoint signaling (GO:0044819) 2.30 5.24 ×  10–4 2.62 ×  10–2

Protein N‑linked glycosylation (GO:0006487) 2.30 6.84 ×  10–4 3.25 ×  10–2

Mitotic sister chromatid segregation (GO:0000070) 2.20 4.52 ×  10–5 3.31 ×  10–3

Intrinsic apoptotic signaling pathway (GO:0097193) 2.11 1.65 ×  10–5 1.43 ×  10–3

Negative regulation of G1/S transition of mitotic cell cycle (GO:2000134) 2.05 3.93 ×  10–4 2.05 ×  10–2

G1/S transition of mitotic cell cycle (GO:0000082) 2.05 6.21 ×  10–4 3.00 ×  10–2

Mitotic cell cycle checkpoint signaling (GO:0007093) 2.03 2.85 ×  10–5 2.26 ×  10–3

Mitotic DNA damage checkpoint signaling (GO:0044773) 2.02 3.85 ×  10–4 2.02 ×  10–2

Cell cycle G1/S phase transition (GO:0044843) 2.01 9.98 ×  10–4 4.47 ×  10–2

Mitotic DNA integrity checkpoint signaling (GO:0044774) 2.01 3.16 ×  10–4 1.73 ×  10–2
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regulatory authorizations from the ethics committee of 
the University of Lorraine to perform analyses on four 
cell lines representative of three cancer models (HCC, 
melanoma, and glioblastoma). Second, we developed 
the EpiMet project to assess the influence of the methio-
nine dependency phenotype on the effect of IRs on the 
DNA methylome landscape. Methionine dependency 
is defined as the ‘inability of cells to grow when methio-
nine is replaced in culture medium by its metabolic pre-
cursor homocysteine’ [6]. According to this definition, 
establishing a methionine dependency phenotype is 
possible through in vitro testing using cell culture mod-
els and methionine-free culture media. In vivo strategies 
of methionine restriction are not efficient and decrease 
serum methionine by only 40 to 50% [51], which is not 
sufficient for obtaining complete methionine deprivation. 
In this setting, the use of methioninase-based strategies 
for methionine deprivation on xenografted nude mice 
models could be considered as part of a future develop-
ment of our research framework [51, 52]. Third, accord-
ing to international guidelines, IRs are performed after 
surgery or in definitive intent in glioblastoma, melanoma, 
or HCC. Thus, the interventions to collect fresh tissues of 
irradiated tumors would be difficult to defend in an inter-
ventional clinical trial.

In conclusion, the present study unraveled shared epi-
genomic adaptive mechanisms in response to IRs using 
in vitro models of epidemiologically leading cancerous 
diseases. These mechanisms are related to cell cycle 
and division, responses to IR, sustained angiogenesis, 

tissue invasion, and metastasis. Our results pave the 
way toward a future research agenda regarding the 
epigenomic correlates of radioresistance, the develop-
ment of a clonal selection of radiation-resistant cells, 
and tumor relapse. Future experimental designs will 
help better understand the long-term effect of chronic 
cellular stress on initiating and maintaining epigenetic 
modifications that could initiate and perpetuate a radi-
oresistance phenotype and its interaction with methio-
nine dependency as a hallmark of metabolic adaptation 
in cancer.
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