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Abstract: Channel state information (CSI) provides a fine-grained description of the signal propaga-
tion process, which has attracted extensive attention in the field of indoor positioning. The CSI signals
collected by different fingerprint points have a high degree of discrimination due to the influence of
multi-path effects. This multi-path effect is reflected in the correlation between subcarriers and anten-
nas. However, in mining such correlations, previous methods are difficult to aggregate non-adjacent
features, resulting in insufficient multi-path information extraction. In addition, the existence of
the multi-path effect makes the relationship between the original CSI signal and the distance not
obvious, and it is easy to cause mismatching of long-distance points. Therefore, this paper proposes
an indoor localization algorithm that combines the multi-head self-attention mechanism and effective
CSI (MHSA-EC). This algorithm is used to solve the problem where it is difficult for traditional
algorithms to effectively aggregate long-distance CSI features and mismatches of long-distance points.
This paper verifies the stability and accuracy of MHSA-EC positioning through a large number of
experiments. The average positioning error of MHSA-EC is 0.71 m in the comprehensive office and
0.64 m in the laboratory.

Keywords: channel state information; multi-head self-attention; effective CSI; feature extraction;
fingerprint localization

1. Introduction

The positioning algorithm is the basis of Location-Based Service (LBS). People need
location information in many scenes such as production and life, entertainment, and public
services. Traditionally, LBS is limited to outdoor activities, but the expansion of building
scale and the increase of people’s activities in indoor scenes have given indoor positioning
a larger market. For indoor positioning, the outdoor positioning method cannot be copied,
because the widely used Global Positioning System (GPS) positioning has very weak
signals in the indoor environment. Common indoor wireless positioning technologies are
as follows: based on Wi-Fi [1,2], Bluetooth [3,4], RFID [5], and Ultra-wideband (UWB) [6,7]
positioning method.

Among them, the Wi-Fi-based positioning method has a wide range of applications,
and the technology has developed from the initial positioning based on RSSI [8] to the
positioning technology based on channel state information (CSI). Channel state information
(CSI) refers to the known channel properties of a communication link. Compared with the
traditional received signal strength (RSSI), CSI can describe the channel in more detail.

1.1. CSI-Based Localization

In the field of CSI-based indoor positioning, scholars initially believed that multi-path
information was interference. Taking the relationship between distance and CSI signal
as the starting point, by suppressing the multi-path effect, the relationship between CSI
and distance was constructed after preprocessing. As for the positioning method of the
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ranging model, with the development of CSI in the field of positioning, more scholars
have found that multi-path information is not all interference; it can identify fingerprint
points with similar distances well and can greatly enhance the discrimination of signals
between different fingerprint points. Therefore, fingerprint-based localization methods
have gradually become popular.

The positioning system based on the ranging model realizes indoor positioning by
constructing the relationship between CSI and distance. The main representative is the
FILA system. The system uses CSI for the first time to establish a propagation model to
achieve indoor positioning. The system “exploits the frequency diversity to compensate
the small-scale fading effect” and finally models the relationship between the extracted
CSIe f f and the distance.

The fingerprint localization method is to match the test point to the nearest fingerprint
point. CSI-MIMO [9] processes the features by making a difference in the amplitudes of
adjacent subcarriers and then uses the KNN algorithm to achieve positioning. In addi-
tion to these methods of manually processing CSI features, many localization algorithms
use machine learning models (such as Support Vector Machines (SVM), Random Forests
(RF), Naive Bayes (NB), etc.) for feature extraction [10–12]. Zhou et al. [10] proposed
an algorithm to remove outliers using clustering and used SVM regression to establish a
nonlinear relationship between CSI fingerprints and locations. In the DeepFi algorithm [13],
the fingerprint is replaced by the deep learning model weight, and then, the radial-based
probabilistic method is used for position prediction. The positioning errors of the DeepFi
algorithm in the open environment and complex environment are 0.94 m and 1.80 m,
respectively. In the confi [14] algorithm, the CSI is restructured into a time-frequency tensor
and utilizes a CNN network for feature extraction. The mean error of ConFi is about
1.36 m. Hsieh et al. [15] compared the four localization methods of MLP-RSS, MLP-CSI,
CNN-RSS, and CNN-CSI. Compared with the Confi network, the sample here only uses the
one-dimensional tensor of CSI (1D-CSI), and no timing information is introduced. However,
the results indicate that the 1D-CNN using CSI information achieves excellent localization
performance with much lower network complexity. The LC-DNN [16] algorithm validates
the correlation between adjacent subcarriers and introduces the position-dependent local
feature. On this basis, the algorithm adopts local connections with separate convolution
kernels to extract position-dependent local features. The algorithm achieves a positioning
accuracy of 0.78 m in indoor scenes.

1.2. Limitations

The current mainstream CSI-based localization method is the fingerprint-based local-
ization method using deep learning. There are still some limitations to this type of approach.
We first address two problems: non-adjacent features aggregation and long-distance point
mismatching. As shown in Figure 1, in the CSI features, we locate the features that are
three dimensions away from the reference feature as adjacent features, and the features
outside this are called non-adjacent features. As for the long-distance point, if the length
of the indoor scene is L, we locate the point outside the reference point 3

4 L as the long-
distance point. Here, we just want to emphasize the approximate distance of distant points,
and different scenes have their own ratios.

CSI feature extraction based on convolutional neural network is still insufficient. In lo-
cation feature extraction, multi-path information brings higher discrimination to points
with similar distances. It is mentioned in [16,17] that the multi-path effect of a point
is reflected in the correlation between the CSI subcarriers and the communication link.
The current application uses the CNN network to aggregate the features of these two dimen-
sions. However, CNN is limited by the small scale of the receptive field, and it is difficult
for a single layer to aggregate all feature dimensions. In addition, some articles confirm
that CNN is weaker than other methods in capturing non-adjacent feature dependencies.
Section 1.3 goes into more detail.
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Figure 1. The non-adjacent features and the long-distance point.

Multi-path information brings higher discrimination to different points but also makes
it hard to map the feature differences between fingerprint points to distances. In other
words, it is hard to establish a clear mapping relationship with the distance for the raw CSI
features that have not been processed. Therefore, when a mismatch occurs, such methods
can match any fingerprint point in the absence of distance constraints. If the algorithm
incorrectly matches the test point to the long-distance fingerprint point, the positioning
accuracy will be greatly reduced.

1.3. Attention Mechanism

The change from MLP to CNN has gradually improved the CSI positioning per-
formance. It can be seen that the network feature extraction ability directly affects the
positioning performance. At present, the attention mechanism is widely used in neural net-
work architecture. Transformer [18] proposed by Google has better modeling for time series,
and the accuracy and running speed are greatly improved. In the follow-up development,
the transformer model has been widely used in the fields of time prediction and feature
mining. Botnet [19] is a simple yet powerful backbone that incorporates self-attention into
a variety of computer vision tasks, replacing spatial convolution with global self-attention
in the last three bottleneck blocks of ResNet. The model improves the baseline in instance
segmentation and object detection while also reducing parameters. The ViT [20] divides the
image into blocks, inputs the image features of different blocks into the transformer neural
network, and achieves a good classification effect. This paper confirms that the reliance
on CNNs is not necessary, and a pure transformer applied directly to sequences of image
patches can perform very well in image classification tasks.

In particular, this article [21] mentioned that on the subject–verb agreement problem,
the performance of the transformer is better than that of the CNN network model. From this
experiment, it can be seen that the transformer is more advantageous in dealing with the
long-distance dependence of features. Inspired by this article, we consider applying the
attention mechanism of the transformer model to the indoor localization task of CSI. In
CSI positioning, the correlation of subcarriers embodies multi-path information—a kind
of information that is extremely related to location. This correlation is not limited to
adjacent subcarriers but also exists between distant subcarriers. Therefore, in theory,
the application of the attention mechanism in the transformer will have a positive effect on
the CSI positioning task.

1.4. Contributions

In this paper, a multi-head self-attention mechanism and effective CSI fusion model
(MHSA-EC) is constructed. MHSA-EC aims to solve the problem that the CNN model has
insufficient ability to extract CSI features and the long-distance point mismatch problem
that is easy to occur in the CSI fingerprint-based localization algorithm. MHSA-EC is used
to simultaneously perform feature processing and distance information fusion on the CSI
information collected from a single location point and construct a joint representation of
multi-path information and distance information. The system block diagram is shown in
Figure 2:
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MHSA-EC Trained MHSA-EC

Figure 2. In the offline phase, the CSI data of each fingerprint point need to be collected for training
the MHSA-EC model. In the online phase, the trained MHSA-EC model is deployed to predict the
test point coordinates. The red point in the figure is the reference point, and the blue point is the
test point.

As an end-to-end network model, it is necessary to build a fingerprint database in
the offline stage and train MHSA-EC to update the network weights. In the online stage,
the trained MHSA-EC is deployed to meet the positioning requirements of online CSI data.

The MHSA-EC model proposes the following improvements and innovations for the
limitations of CSI positioning:

1. The algorithm solves the problem of long-distance fingerprint point mismatch in the
CSI-based fingerprint positioning algorithm. For the problem of mismatches that
are prone to occur at farther distances, we introduce effective CSI as an input to the
decision module. Since there is a nonlinear mapping relationship between effective CSI
and distance, this signal is introduced to help the decision module to more effectively
constrain the position output. The introduction of effective CSI can greatly increase
the average positioning accuracy of the system.

2. The attention mechanism solves the problem of insufficient CSI feature extraction
ability of the CNN network. The multi-path information contained in the subcarriers
and arrays in the CSI signal increases the discrimination of CSI features. The CSI
feature extraction method based on the CNN network is limited by the receptive field,
and it is difficult to aggregate non-adjacent CSI features, resulting in the insufficient
ability of the model to extract multi-path information. This paper improves the feature
extraction capability of CSI signals by introducing the attention mechanism from a
larger network receptive field and a better ability to aggregate non-adjacent features.
The model’s ability to extract CSI features determines whether the model can correctly
distinguish the CSI features of different fingerprint points. Therefore, the MHSA-EC
model with better CSI feature extraction capability can theoretically improve the
localization accuracy of the algorithm.

3. In addition, this paper also conducts extensive experiments to verify the localiza-
tion performance of the network in two typical scenes. It also carries out ablation
experiments to verify the effectiveness of the network module.

2. Preliminary
2.1. CSI

OFDM is a bandwidth-limited digital multi-carrier modulation method of wireless
communication. Its modulation and demodulation are based on Inverse Fast Fourier
Transform (IFFT) and Fast Fourier Transform (FFT), respectively. OFDM has become the
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most widely used multi-carrier modulation technique, whereas CSI is a sampling of the
frequency response in an OFDM system. It can be obtained by inserting a reference signal
at the transmitter and estimating the channel at the receiver:

Y = H · X + n

where Y represents the received signal, n is the additive white Gaussian noise, X is the
transmitted signal, and H represents the channel state information. In practical applications,
H can be estimated by the relationship between the received signal and the transmitted
signal Ĥ. The obtained Ĥ is the set of K subcarrier channel state information, which is
denoted as Ĥ = [ĥ f0 , ĥ f1 , . . . , ĥ fK ], where fk is the center frequency of the kth subcarrier.
Each subcarrier channel state information ĥ fk

can be expressed as:

ĥ fk
= |ĥ fk

|exp{j∠ĥ fk
}

where |ĥ fk
| represents the amplitude value of the channel state information of the kth

subcarrier, and ∠ĥ fk
represents the phase angle of the subcarrier. In indoor positioning

tasks based on CSI amplitude, the multi-path effect is ubiquitous, resulting in aliasing
between subcarriers. Based on this problem, the concept of effective CSI is proposed:

CSIe f f =
1
K

K

∑
k=1

fk
f0
× |ĥ|k, k ∈ (−15, 15)

where f0 is the center frequency, fk is the frequency of the kth subcarrier, and |ĥ|k is the
amplitude of the CSI of the kth subcarrier. Effective CSI is used to exploit the frequency
diversity to compensate for the small-scale fading effect. While reducing the fading effect,
we explore the relationship between the distance between the transmitter and the receiver.

2.2. Self-Attention

In the field of natural language processing, transformers have excellent performance.
The self-attention mechanism is an important method of the transformer model, which can
better understand the semantic information by learning the word dependencies within the
sentence. Its advantages lies in its low computational complexity, parallel computation,
and better learning of long-distance dependencies. Its formula is as follows:

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V

Q = WqX

K = WkX

V = WvX

where Q, K, and V represent query, key, and value respectively, dk is the number of columns
of K, X is the input and Wq, Wk, and Wv are the weight matrices of Q, K, and V respectively.

3. Materials and Methods
3.1. CSI Tensor

In the process of fingerprint collection of CSI, for a fingerprint point i, the collected
CSI amplitude can be expressed as:

A(i) =


a11

i a12
i · · · a1N

i
a21

i a22
i · · · a2N

i
...

...
. . .

...
aM1

i aM2
i · · · aMN

i
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where amn
i represents the CSI amplitude value of the mth link and the nth subcarrier at the

i fingerprint point. The link here refers to the connection path between all the receiving
ends and the transmitting ends of all the n-numbered subcarriers, so the number of M is
equal to the product of the number of transmitter antennas and the number of receiver
antennas. Considering the excellent performance of the self-attention mechanism in the
sequence classification task, we vectorize the CSI signal at the fingerprint point into a
1*N*M three-dimensional tensor. At the same time, we adopt the normalization method to
make the network converge faster during training. The maximum and minimum values of
a CSI tensor will be recorded, and the CSI amplitude value of the mth row and nth column
will be processed as follows:

âmn
i =

amn
i −Min(amn

i )

Max(amn
i )−Min(amn

i )

The normalized CSI tensor is as follows:

Â(i) =


â11

i â12
i · · · â1N

i
â21

i â22
i · · · â2N

i
...

...
. . .

...
âM1

i âM2
i · · · âMN

i


The above formula is the CSI tensor in the subcarrier dimension. Considering the location
information also covered in the antenna dimension, we transpose the raw CSI tensor and
perform the same processing to obtain ÂT . The final network input is [Â ÂT ].

3.2. System Architecture

There is still room for improvement in existing classical CSI-based localization models.
Classic models still need improvement in CSI feature extraction. Classical networks such as
Confi [14] and 1d-CNN [15] all use convolution operations as feature extraction methods.
The problem of doing this can be represented in Figure 3:

CSI data featureCSI data feature

receptive
field

receptive
field

convolution
kernel

(a) CNN-based feature
extraction method

(b) MHSA-based feature
extraction method

Figure 3. Convolutional neural network extraction method (a) compared with multi-head self-
attention neural network extraction method (b). The shades of orange represent the weight of
the feature.

Limited by the size of the receptive field, when the network aggregates features, it
is difficult for CNN to aggregate all features in a single-layer network compared to the
multi-head self-attention method (MHSA). However, there is a correlation between non-
adjacent carriers and antennas in the CSI signal, and mining this correlation is very helpful
for capturing multi-path information and improving positioning accuracy. Therefore,
the feature extraction ability of the multi-head self-attention mechanism is better.
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In addition, due to the fluctuation of the CSI signal, the positioning model may
encounter the problem of mismatching distant points. The classical model lacks constraints
for this problem, resulting in a high maximum positioning error. Introducing a kind of
distance information to the model can effectively solve this problem.

Based on the above discussion, we design the following network. MHSA-EC includes
four modules: feature extraction, statistical module, fusion method, and fully connected
decision. The structure is shown in Figure 4.

CSI data
Feature extractor

1D Convolutional Layer

Multi-Head Self-Attention Layer

Statistics module

Multi-Head Self-Attention Layer
Transpose

Subcarrier Dimension

Antenna Dimensions

Aggregation based on global
attention coefficients

Normalize

Calculation CSIeff

Fusion module

Antenna Dimensions

Subcarrier Dimension

Effective CSI 

SUM FC

CONCAT

 Decision module

Layer Normalization

Fully Connected Layer 

Relu

Fully Connected Layer 

Output

or

Figure 4. The processed CSI tensors are sent to the fusion module for data fusion after passing
through the feature extractor and statistical module. The decision module fits the fused information
to get the final position. The dotted line in the figure indicates that in the fusion algorithm, two
methods of concatenation or summation can be selected. Section 3.2.3 will discuss this in more detail.

MHSA-EC first uses the multi-head self-attention mechanism to extract the key fea-
tures of the subcarrier dimension and the antenna dimension, aiming at aggregating the
relevant information between the carriers and between the antennas, and calculating the
fingerprint characteristics of the current node. Effective CSI, a statistical vector that sup-
presses multi-path effects, is obtained through frequency diversity. Finally, the fusion
module summarizes all the branch inputs to the decision module, and the decision module
uses multiple fully connected layers and activation functions to perform fingerprint classi-
fication. The input in the network is the CSI amplitude, and the label is the position of the
fingerprint point. The parameters are trained and optimized by gradient descent.

3.2.1. Feature Extraction Module

Considering that the CSI dimension is less and it is difficult to mine potential features,
the [Â, ÂT ] is dimensionally expanded through the transformation of a one-dimensional
CNN to obtain [Fcarrier, Farray]. For the problem of insufficient performance of the CNN
model for long-distance subcarrier extraction of CSI, this paper proposes to use a multi-
head self-attention mechanism to extract CSI features. Compared with the self-attention
mechanism, the multi-head self-attention mechanism (MHSA) splices the outputs of multi-
ple self-attentions to form multiple subspaces, ensuring that the model pays attention to
different aspects of multi-path information. This extraction method also allows the model
to advance to richer location features. The block diagram of the MHSA is shown in Figure 5:
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Linear Linear Linear

Self- attention Layer

Linear Linear Linear

Self- attention Layer

Linear Linear Linear

V Q K

Scaled Dot-Product Attention

concat

Linear

H

Figure 5. MHSA concatenates the results of each self-attention layer and then obtains the final result
through a linear transformation.

In the MHSA layer, there are H self-attention layers, and the output of the self-attention
layer whose index is i ∈ [1, H] is:

headi
carrier = so f tmax[

(Wi
QFcarrier)(Wi

KFcarrier)
T

√
dF

](Wi
V Fcarrier)

Wi
Q, Wi

K, and Wi
V correspond to the mapping weights of different linear layers. The function

of softmax in the formula is as follows:

so f tmax(xi) =
exp(xi)

∑j exp(xj)

where xi represents the ith eigenvalue. The feature extraction module contains M MHSA
layers, and the output of the MHSA layer with index j ∈ [1, M] is:

mhsaj
carrier = [head1

carrier; head2
carrier; . . . ; headH

carrier]W
j
O

W j
O is the linear layer weight passed after multiple heads are spliced. Multiple MHSA layers

are concatenated to obtain the final output mhsacarrier. The CSI of the antenna dimension
will go through a similar extraction step and become mhsaarray. The output of the final
feature module is [mhsacarrier, mhsaarray].

3.2.2. Effective CSI Statistics Module

Effective CSI is used to compensate for small-scale fading effects, which have a nonlin-
ear relationship with physical distance. In FILA, the effective CSI is related to the distance
as follows:

d =
1

4π
[(

c
f0 ∗ |CSIe f f |

)2 ∗ σ]
1
n (1)

where c is the wave velocity, σ is the environment factor, n is the path loss fading exponent,
and f0 is the central frequency. Based on this relationship, the introduced effective CSI can
be input to the network as a kind of distance constraint information, thereby alleviating
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the mismatch of distant points. Therefore, in the statistics module, the effective CSI is
calculated, and the formula is as follows:

CSIe f f =
1
K

K

∑
k=1

fk
f0
∗ |ĥ|k, k ∈ (−15, 15)

where k is the subcarrier index, generally IEEE 802. An 11n standard commercial wireless
network card can collect 30 subcarrier numbers, where f0 is the center frequency, and fk is
the frequency of the kth subcarrier. |ĥ|k is the kth subcarrier CSI amplitude. Considering
the variable offset that may exist in network training, layer normalization is performed on
the CSIe f f signal to obtain ĈSIe f f .

3.2.3. Fusion and Position Determination

This paper considers two ways for the fusion of ĈSIe f f and [mhsacarrier, mhsaarray]: con-
catenation and summation. The concatenation method will connect each feature end to end:

f eatmerged = mhsacarrier||mhsaarray||ĈSIe f f

The fusion method does not require dimension size and requires fewer parameters than
the summation method. However, the feature dimension input to the decision module is
larger. The summation method requires a dimension alignment of each feature:

f eatS = WS ∗mhsacarrier + bS

f eatA = WA ∗mhsaarray + bA

f eatC = WC ∗ ĈSIe f f + bC

f eatmerged = f eatS + f eatA + f eatC

W∗ and b∗ are the weights and biases of the linear layer corresponding to different input
signals. The summation method has a lower dimension input to the decision-making
module, and it can fuse the effective CSI with each CSI feature, and the fusion level is
deeper. The experimental section is devoted to further research on the two fusion methods.

The decision module firstly normalizes each dimension of the fusion feature to speed
up the convergence of the network. After that, the feature is passed through multiple
modules of fully connected layers and nonlinear layers to fit the position of the fingerprint
points. For the final position output, the network uses a cross-entropy loss function to
guide the network optimization; the formula is:

Hy(ŷ) = −∑
i

yi ∗ log(ŷi)

where ŷ is the predicted probability distribution and y is the true probability distribution.
By calculating the loss of predicted results and actual results, the optimization direction of
the model is guided.

3.3. Optimization

In order to reduce the tedious manual parameter tuning, we choose the Hyperopt tool
for automatic hyperparameter selection. Hyperopt uses a form of Bayesian optimization
for parameter tuning that allows the user to obtain the best parameters for a given model.
Therefore, we define the search space of parameters, where the batch-size search space is
{16, 32, 64, 128}, nhead is {2, 3, 4, 5, 6}, and lr is {0.001, 0.0025, 0.0005, 0.00075}. Then, we use
Hyperopt for Bayesian optimization to output an optimal positioning network.
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4. Experimental Verification
4.1. Experimental Parameters and Scenes

The positioning stability and accuracy of MHSA-EC are tested in two typical indoor
scenes: comprehensive office and laboratory. The comprehensive office scene is larger and
has more points, which is conducive to the stability of the test model and the maximum
positioning error. In the laboratory, the overall area is small but contains rich multi-path
information, so the positioning results here can reflect the model’s ability to extract features.
On the acquisition device, both the transmitter and receiver are mobile devices equipped
with an Intel 5300 NIC Terminal. Each terminal uses the Ubuntu 16.04 system. At the
receiver, fine-grained CSI data are parsed by modifying the driver. The received packets
include time stamp, RSSI, number of antennas, noise, CSI, etc.

4.1.1. Experimental Parameters

The data set size is 232,000, of which 70% is the training set, 20% is the test set, and 10%
is the validation set. There are specific parameters in Table 1: batch-size = 16, Learning-
rate = 0.0005, the number of heads in the MHSA layer(nhead) = 5. The loss function is
cross-entropy loss, and the activation function is Relu. In the training phase, we use the
Glorot initializer to initialize the network. We use Adam as the gradient decay algorithm,
and we also use the early stopping strategy; the initial best loss = 1 × 108.

Table 1. Parameters in the experiment.

Parameter Name Parameter Value

batch size 16

learning rate 0.0005

nhead 5

loss function Adam

initializer Glorot initializer

4.1.2. Laboratory

As shown in Figure 6, We choose a standard laboratory with an area of 20 m2. The lay-
out is shown in Figure 6. Its center is occupied by a large table with only a small number of
personnel and some experimental equipment in the room. This is a typical indoor scene
that contains rich multi-path information, which is very suitable for verifying the ability of
our model to process multi-path information. The scene contains 20 reference points (red)
and 1 transmitter (yellow). The distance point between two adjacent references is 0.5 m.

Reference point Test point Transmitter

Transmitters

Mobile Platform

Figure 6. Cont.
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Reference point Test point Transmitter

Transmitters

Mobile Platform

Figure 6. Layout of the laboratory.

4.1.3. Comprehensive Office

As shown in Figure 7, this is a comprehensive office environment, including office
areas, meeting rooms, and hallways. The total area is 152.9 m2; the conference room is
16.4 × 4.4 m2; the meeting room is 16.4 × 4 m2; and the corridor is 8.4 × 1.8 m2. The office
area contains many desks and computer equipment. The office area and the conference
room are separated by a glass wall. The entire scene contains 59 reference points and
four transmitters. The distance between the two reference points is 1.2 m.

Figure 7. Layout of the comprehensive office.
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4.2. Model Performance Evaluation
4.2.1. Multi-Head Self-Attention Layers Experiment

We determine the number of layers of the multi-head self-attention (MHSA) mech-
anism by comparing the experimental methods. Considering that the amount of data in
the antenna branch and the subcarrier branch are the same, we keep the same number of
layers on the two branches. The experiments were carried out in the comprehensive office
scene. The results are shown in Table 2.

Table 2. Multi-Head Self-Attention Layers Experiment.

MHSA Layers MAE (m) STD (m)

1 1.49 1.63

2 1.15 1.37

3 0.71 0.83

4 0.72 0.92

We investigate from the two experimental indicators, the mean absolute error (MAE)
and the standard deviation (STD), and it can be seen that the accuracy and stability of the
positioning increase significantly with the increase of the number of layers. After continuing
to the fourth layer, the increase in the number of layers is not obvious. Based on the
comprehensive consideration of model complexity and positioning time, we set the number
of multi-head attention layers to three layers.

4.2.2. Fusion Method Experiment

After fixing the network parameters, we study the fusion method of the effective
CSI information and features. The experimental scene is also in the comprehensive office.
We compared the fusion methods of concatenation and summation. The results are as
follows: as can be seen from Table 3, compared with the concatenation method, the sum-
mation method has more advantages in terms of average positioning accuracy and model
parameters, which is also due to the deeper fusion level of the summation method.

Table 3. Fusion method experiment.

Fusion Method MAE (m) Parameters (m)

sum 0.71 17

concat 0.82 19

4.2.3. Positioning Performance Evaluation

We compare MHSA-EC with MHSA without effective CSI to show the CSIe f f role in
localization. At the same time, we also compared other existing methods in two scenes,
including the 1dCNN-CSI algorithm in [15] and the mainstream Confi [14] system. The CSI
magnitude signal is used by both systems and the MHSA-EC algorithm. The difference
is that the 1dCNN-CSI method uses a one-dimensional CSI tensor such as MHSA-EC,
while the Confi system introduces a time dimension to the original CSI tensor, which is a
two-dimensional CSI tensor. The positioning results in the laboratory scene are shown in
the following Figure 8:
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Figure 8. Performance on the laboratory.

In terms of localization results, MHSA-EC achieves the best localization results due to
the introduction of effective CSI. The performance of 1dCNN-CSI and Confi are almost the
same. The confidence of 1dCNN-CSI is higher in the range of 0–2 m, but the performance
of Confi is better in the range of 8.2–10 m. Although the MHSA network is weaker than
1dCNN-CSI in the range of 3.8–4 m, the overall positioning error is better than the other
two mainstream model structures. When the probability reaches 1.0, the positioning error
of MHSA-EC is 7.23 m and MHSA is 8.12 m, while Confi is 9.36 m and 1dCNN-CSI is
9.53 m.

The result of the comprehensive office scene is shown in the following Figure 9.
As shown in Figure 9, the localization performance of multiple localization methods

in the comprehensive office scene is weaker than that in the laboratory scene. Overall,
MHSA-based localization methods outperform Confi and 1dCNN-CSI. In the interval of
0–2 m, MHSA-EC is slightly better than the MHSA method, and in this long-distance error
interval of (2 m, 6 m), the MHSA-EC network maintains higher confidence than other
positioning systems. It can be shown that the introduction of effective CSI has a certain
inhibitory effect on the mismatch of long-distance points. The confidence of Confi and
the final positioning error within 0–1.5 m are higher than those of the 1dCNN-CSI system,
and the performance of the two is close in other error intervals. When the probability
reaches 1.0, the positioning error of MHSA-EC is 9.23 m and MHSA is 9.52 m, while Confi
is 10.36 m and 1dCNN-CSI is 11.23 m.
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Figure 9. Performance on the comprehensive office.

In addition, we calculated the average positioning error and positioning standard
deviation of the positioning system in different scenes to show the accuracy and stability
of the positioning. The results are shown in Table 4. The MHSA-EC has the best accuracy
and positioning stability. Compared with the Confi system, the accuracy is improved by
37%, and the stability is improved by 28% in the laboratory. In the comprehensive office,
the accuracy is improved by 40%, and the stability is improved by 35%.

Experiments show that the MHSA-EC method outperforms other existing methods in
localization accuracy. The introduction of the MHSA layer and effective CSI is of great help
to the localization effect.

Table 4. Comparison of localization effect with other methods.

Method Lab.mae (m) Lab.std (m) Com.mae (m) Com.std (m)

1dCNN-CSI 0.98 1.21 1.28 1.45

Confi 1.02 1.18 1.19 1.28

MHSA 0.83 0.96 0.91 1.08

MHSA-EC 0.64 0.85 0.71 0.83

5. Summary

The ability to extract CSI amplitude features has a great impact on CSI-based position-
ing systems. This paper analyzes the difficulty of aggregating long-distance subcarriers in
traditional convolutional networks and the problems of long-distance point mismatches.
Based on these questions, this paper proposed an indoor localization algorithm fusing
the multi-head self-attention mechanism and effective CSI. The algorithm architecture
consists of a feature extraction module, a statistical module, a fusion, and a location
decision module.

First of all, the multi-head self-attention layer is used in feature extraction to achieve a
better aggregation effect for features with farther distances. The purpose of this is to better
mine the location information contained in the multi-path effect.

At the same time, effective CSI is introduced to provide distance constraint informa-
tion for the location decision module. Finally, the two kinds of information are integrated
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through the fusion module, and the final position coordinates are output by the decision
module. MHSA-EC ensures the stability and accuracy of positioning. The average position-
ing error in the comprehensive office is 0.71 m, and the average positioning error in the
laboratory is 0.64 m.

However, this paper only explores the CSI amplitude and does not introduce other
signals. Compared with a single signal source, multi-source signals have more abundant
location features and can provide complementary information to each other to ensure the
accuracy and stability of the positioning algorithm. Therefore, other signal features can be
fused with the CSI features extracted by the MHSA-EC algorithm in the future to improve
the accuracy and stability of the positioning algorithm.
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