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The identification of DNA copy numbers from short-read sequencing data remains a
challenge for both technical and algorithmic reasons. The raw data for these analyses
are measured in tens to hundreds of gigabytes per genome; transmitting, storing,
and analyzing such large files is cumbersome, particularly for methods that analyze
several samples simultaneously. We developed a very efficient representation of depth
of coverage (150–1000× compression) that enables such analyses. Current methods for
analyzing variants in whole-genome sequencing (WGS) data frequently miss copy number
variants (CNVs), particularly hemizygous deletions in the 1–100 kb range. To fill this gap, we
developed a method to identify CNVs in individual genomes, based on comparison to joint
profiles pre-computed from a large set of genomes. We analyzed depth of coverage in over
6000 high quality (>40×) genomes. The depth of coverage has strong sequence-specific
fluctuations only partially explained by global parameters like %GC. To account for these
fluctuations, we constructed multi-genome profiles representing the observed or inferred
diploid depth of coverage at each position along the genome. These Reference Coverage
Profiles (RCPs) take into account the diverse technologies and pipeline versions used.
Normalization of the scaled coverage to the RCP followed by hidden Markov model
(HMM) segmentation enables efficient detection of CNVs and large deletions in individual
genomes. Use of pre-computed multi-genome coverage profiles improves our ability to
analyze each individual genome. We make available RCPs and tools for performing these
analyses on personal genomes. We expect the increased sensitivity and specificity for
individual genome analysis to be critical for achieving clinical-grade genome interpretation.
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INTRODUCTION
Deletions, duplications and other copy number variations
(CNVs) are important components of genomic structural vari-
ation (SV), which need to be assessed when studying individual
genomes in a personal or clinical context. Accurate identification
of DNA copy numbers from short-read sequencing data remains
a challenge (Teo et al., 2012) for a variety of reasons, including the
voluminous file sizes, the short-read lengths, and insert sizes rela-
tive to the length of interspersed repeats, sequence-specific biases,
and the lack of quality control standards.

Many tools have been developed for detecting CNVs from
“second generation” short-read re-sequencing data, based on one
or more of four signal detection methods: (1) read pair or paired
end mapping (Chen et al., 2009; Korbel et al., 2009; Quinlan

Abbreviations: %GC, the G+C content; CGI, Complete Genomics, Inc.;
CNV, copy-number variant/variation; GRCh37, GRCh38, Genome Reference
Consortium, human reference 37/38; HMM, hidden Markov model; ISB, Institute
for Systems Biology; ITMI, Inova Translational Medicine Institute; MAD, median
absolute deviation; NCP, normalized coverage profile; RCP, Reference Coverage
Profile; SV, structural variant/variation; WGS, whole genome sequence.

et al., 2010; Chiara et al., 2012; Krishnan et al., 2012; Marschall
et al., 2012; Yasuda et al., 2012), (2) split-read mapping (Ye et al.,
2009; Wang et al., 2011; Zhang et al., 2011; Emde et al., 2012;
Karakoc et al., 2012; Schröder et al., 2014), (3) read depth analy-
sis (Chiang et al., 2009; Xie and Tammi, 2009; Yoon et al., 2009;
Ivakhno et al., 2010; Zhang et al., 2010; Abyzov et al., 2011; Magi
et al., 2011; Miller et al., 2011; Xi et al., 2011; Klambauer et al.,
2012; Szatkiewicz et al., 2013; Wang et al., 2013; Nguyen et al.,
2014), and (4) de novo assembly (Nijkamp et al., 2012; Chen et al.,
2014; Rizk et al., 2014). Assembly approaches, however, tend to
function as verification methods rather than discovery tools.

Read-pair algorithms consider discordant pairs of reads, or
pairs that diverge from the expected size or orientation. They then
cluster these reads into independent events and apply quality fil-
ters. The methods differ mostly in how they cluster discordant
reads, but also in the filtering steps. In an effort to improve sen-
sitivity, some methods also include ambiguously mapped reads.
Called soft clustering, these approaches assign the ambiguous
reads to a mapping that then clusters with an event. Tools that
employ this method include HYDRA (Quinlan et al., 2010),
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VariationHunter (Hormozdiari et al., 2010), and GASVPro (Sindi
et al., 2012). A few tools, such as ChopSticks (Yasuda et al., 2012)
and CLEVER (Marschall et al., 2012) also consider concordant
reads in order to refine breakpoint locations.

Split-read mapping detects breakpoints by aligning different
portions of a read to separate locations in the reference genome.
This approach is computationally taxing, so different methods
use different heuristics to guide read alignment. MATCHCLIP
(Wu et al., 2013) studies CIGAR strings (Li et al., 2009) to find
reads with long soft clipped segments that overlap. The Pindel
tool (Ye et al., 2009) looks for paired reads for which one read
did not align to the reference, then searches nearby for split read
mapping of the unaligned read. CREST (Wang et al., 2011) uses
multiply aligned reads with soft clips, gaps inserted at the end
of the read when matching to the reference is low, to help guide
mapping. SplazerS (Emde et al., 2012) defined its own mapping
strategy, which does not depend on heuristics, and while its results
are quite sensitive the runtimes are large. Split-read methods are
sensitive, especially to shorter events, but they are limited by
coverage, length of reads, runtimes, and by the presence of inter-
spersed repeats at the boundaries of CNVs. Such methods may
be best suited for small genomes and non-complex regions of the
human genome.

Methods based on read depth (depth of coverage) largely differ
by the statistical model they use to detect CNVs. CNVeM (Wang
et al., 2013) takes advantage of maximum likelihood estima-
tions to determine copy number, GENSENG (Szatkiewicz et al.,
2013) employs a hidden Markov model (HMM), and CNVnator
(Abyzov et al., 2011) uses a mean-shift approach in modeling the
data. Some methods analyze multiple samples at once to more
accurately model the coverage across a given region (Zhang et al.,
2010; Magi et al., 2011; Klambauer et al., 2012; Nguyen et al.,
2014). Similarly, these methods differ by the statistical method
they use, for example cn.MOPS (Klambauer et al., 2012) employs
a mixed Poisson model while CNVrd2 (Nguyen et al., 2014) uses
a normal (Gaussian) mixture model. The strength of read depth
methods is their ability to detect large CNVs. However these
methods are typically limited in their ability to detect smaller
events and have poor breakpoint resolution, as compared to the
other approaches.

Some tools integrate multiple signals in order to increase accu-
racy, and can be divided into three general strategies. One strategy
uses a primary signal to generate candidate CNV calls, then refine
or support those calls with a secondary signal, most commonly
pairing read depth and read pair methods (Medvedev et al., 2010;
Handsaker et al., 2011; Qi and Zhao, 2011; Zhang and Wu, 2011;
Bellos et al., 2012; Jiang et al., 2012; Rausch et al., 2012; Sindi
et al., 2012; Zhu et al., 2012; Escaramís et al., 2013; Hart et al.,
2013; Mimori et al., 2013). A second strategy runs multiple sig-
nal detection methods independently, then merges the results
together (Wong et al., 2010; Lam et al., 2012). Finally, the third
strategy integrates multiple signal types into a statistical model
to generate combined CNV calls (Shen et al., 2011; Hayes et al.,
2012; Michaelson and Sebat, 2012; Layer et al., 2014).

While whole-genome sequencing (WGS) providers target a
global metric of depth of coverage—e.g., 40-fold for high-
quality genomes—the depth of coverage has both statistical and
strong sequence-specific fluctuations. These fluctuations are only

partially explained by global parameters like %GC, and pose a
significant deconvolution problem. At the extreme of low cover-
age, “dropout” regions lack sufficient coverage to determine the
individual’s genotype reliably. In addition to centromeres, hete-
rochromatin, and other gaps in the reference sequence, a fraction
of the genome is not observed due to random fluctuations in read
distribution, or due to technology biases.

Normalizing the local depth of coverage to the average global
depth of coverage may lead to large numbers of false-positive
CNV identifications. A further complication arises from the fact
that interspersed repeats mediate many genome rearrangements
and are thus frequently observed at the boundaries of CNVs
and other SVs. As a result, short sequence reads at the bound-
aries of such events may be particularly difficult to map. Many
analysis methods working on individual genomes thus frequently
misidentify structural variants (SVs), particularly hemizygous
deletions in the 1–100 kb range.

The depth of coverage along the genome can be modeled by
comparing coverage profiles across samples, e.g., in cn.MOPS
(Klambauer et al., 2012). A significant limitation of this approach
is the requirement for several genomes for joint analysis (e.g.,
at least six in cn.MOPS)—a requirement that may pose chal-
lenges in a clinical context. Even for a single genome, managing
the coverage data is a hurdle due to the multi-gigabyte file sizes
involved.

We present here (1) a very efficient compressed format for stor-
ing coverage information, and (2) a method for identification of
CNVs, based on coverage normalization to pre-computed profiles
derived from a large cohort of genomes. Our method simplifies
the management of depth of coverage data and enables efficient
analysis of individual genomes.

MATERIALS AND METHODS
DESCRIPTION OF DATA SET
We have analyzed depth of coverage in 6392 human whole-
genome assemblies from 6135 individuals, most in trios or larger
families. None of these genomes are derived from cancer samples
or cell lines. Some of these genomes (n = 199) were assembled
using more than one pipeline version; we consider the most
recent assembly for a genome to be “primary,” and older assem-
blies “non-primary.” Also, 194 genomes were sequenced on both
the Complete Genomics, Inc. (CGI) and Illumina platforms.
The genomes were sequenced at high quality (>40× average
coverage). The components of the data set are detailed as follows.

• ISB-CGI: a set of 1308 primary genome assemblies sequenced
by CGI for the Institute for Systems Biology (ISB);

• ITMI-CGI: a set of 2439 primary genome assemblies
sequenced by CGI for the Inova Translational Medicine
Institute (ITMI) (Bodian et al., 2014);

• Diversity-CGI: a set of 69 genomes publicly released
by CGI (http://www.completegenomics.com/public-data/69-
Genomes/);

• ITMI-Illumina: a set of 2456 primary genome assemblies
sequenced by Illumina for ITMI.

• The Combined-CGI set includes the 3816 primary genome
assemblies in sets #1, #2, and #3.
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The ISB-CGI genomes were produced and analyzed using a
variety of library construction and analytic pipeline versions
(Supplementary Figure 1), as follows:

• CGI library v.1: 1173 assemblies (1026 primary); CGI library
v.2: 286 assemblies (282 primary).

• CGI pipeline software versions 1.08.0.30 through 1.08.0.34: 66
assemblies (61 primary).

• Pipeline versions 1.10.0.22 through 1.12.0.47: 137 assemblies
(106 primary).

• Pipeline versions 2.0.1.6 through 2.4.0.43: 870 assemblies (859
primary).

• The 286 library v.2 assemblies were processed with pipeline
versions 2.5.0.19 and 2.5.0.20 (282 primary).

The 2439 ITMI-CGI assemblies were all produced using CGI
library v.1 and pipeline versions 2.0.0.37 through 2.0.4.18 (all
primary). The Diversity-CGI assemblies were produced with
pipeline versions 1.10.0.2 through 1.10.0.26 and then reassem-
bled using pipeline version 2.0.0.26. The NA12878 genome was
re-sequenced by CGI and analyzed with pipeline version 2.5.
The ITMI-Illumina genomes were processed using versions 2.0.0
through 2.0.2 of Illumina’s standard genome analysis pipeline.

PREPROCESSING OF GENOME COVERAGE
For genomes sequenced on the CGI platform, we obtain per-base
depth of coverage information from the coverage report in the
“REF” directory, using the “gcCorrectedCoverage” column. This
column was added to the report in version 1.10 of the pipeline; we
therefore used instead the “weightSumSequenceCoverage” col-
umn for assemblies computed on earlier pipeline versions. For
genomes sequenced on the Illumina platform, we extracted the
per-base coverage profile from BAM files using samtools depth
(Li et al., 2009). For efficient storage and analysis, we trans-
formed each genome’s coverage report into a compact binary
format. In this format, one byte is used to represent the aver-
age coverage values for each non-overlapping, 20 bp window.
Since the average coverage may exceed the maximal value that
can be represented with one byte, we implemented a minimally
lossy representation format with three representation regimes
(Supplementary Figure 2), as follows. Coverage up to 200-fold is
represented unmodified. Coverage above 200 and under 2700—a
small fraction of the genome—is transformed using the formula
int(sqrt(coverage–200)+200). Coverage above 2700 is stored in a
separate file and at full resolution (i.e., not binned); such “over-
flow” sites, typically present in the mitochondrial chromosome
and in very high copy-number segments, are rare and of special
interest. The resulting binary format (which is identical for both
technologies) is then indexed using tabix (Li, 2011) for efficient
retrieval of coverage data.

GENOME STRATIFICATION BY %GC
The %GC of a sequence is known to affect its depth of cover-
age (Rieber et al., 2013). Sequences of extreme %GC have lower
complexity than sequences of intermediate %GC, which makes
unique mapping of reads more difficult. Sequencing technologies
may also behave differently on sequences with different %GC due

to biochemical differences in the sequenced DNA. Furthermore,
the relative coverage over different %GC levels may vary between
batches of samples analyzed at different times.

To control for such biases, we stratified the genome at 1-kb res-
olution into 25 %GC “buckets,” each having approximately equal
total genomic span (1/25 of the genome). We thus bin the genome
by rank instead of by equally spaced %GC cutoffs, to avoid correc-
tions based on bins that hold too little data (i.e., extreme %GC).
For the GRCh37 (hg19) freeze of the human genome, the cutoffs
used to separate between these %GC ranges were: 30.1, 31.7, 32.9,
33.9, 34.8, 35.6, 36.3, 37.0, 37.7, 38.3, 39.8, 39.6, 40.3, 41.0, 41.8,
42.6, 43.4, 44.4, 45.4, 46.5, 47.9, 49.5, 51.9, and 56.0%.

SCALING OF COVERAGE SIGNAL
Since individual genomes may be sequenced to different total
depths, the comparison of coverage values across samples neces-
sitates normalization of read depth for each sample to a common
scale. The simplest method involves scaling the depth of each
genome to the total coverage, in similarity to the scaling of tran-
scriptome samples to their total counts (Meyers et al., 2004).
We implemented a more nuanced scaling approach borrowing
concepts from our digital transcriptome normalization methods
(Glusman et al., 2013). To avoid sex-specific coverage biases and
variable mitochondrial representation, we consider only sequence
coverage in autosomes. We further excluded “overflow” coverage
sites typically observed in high copy number segments. Finally,
we computed the total coverage for scaling separately for each
of the 25 %GC buckets. Thus, each genome is characterized by
a “characteristic coverage vector” of 25 values representing the
total autosomal coverage in %GC buckets, excluding “overflow”
sites. The characteristic coverage vector serves as a fingerprint for
comparing genomes and for optimizing scaling factors.

For a set of genomes sharing some characteristic, such as
a sequencing technology or pipeline version, we compute a
25-value “target coverage vector” as the geometric average of
the corresponding characteristic coverage vectors of the studied
genomes. The target coverage vector is a characteristic of a set of
genomes, and is computed only once per set. Finally, the depth
of coverage along each chromosome in a genome is equalized to
a common scale by dividing by the target coverage value for the
corresponding %GC bucket.

GENERATION OF REFERENCE COVERAGE PROFILES
The expected ploidy of the genome varies; on autosomes, the
X chromosome in females, and the pseudo-autosomal regions
(PARs) in males, the genome is expected to be diploid; in males,
the sex chromosomes outside PARs are expected to be haploid. We
estimate a Reference Coverage Profile (RCP): the scaled coverage
level corresponding to diploid coverage (regardless of expected
ploidy), in each 1-kb segment of the genome. For most of the
genome, the median coverage serves as an excellent and simple
estimate of the diploid level. Where deletions and duplications
are common in the population, though, correct estimation of
the diploid level necessitated applying the following three heuris-
tics. First, across a set of genomes, the scaled coverage level
should cluster near integer multiples of the haploid coverage
level. Second, the most abundant cluster (peak) should represent
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the expected ploidy; when the expected ploidy is diploid, addi-
tional peaks may represent one copy (hemizygosity), zero copies
(nullizygosity), or other, higher copy number variants (CNVs)
(Supplementary Figure 3). To avoid trivial solutions, we further
penalize solutions that yield genotype distributions that deviate
from Hardy–Weinberg equilibrium.

At 1-kb resolution, this yields a very compact representation
(<10 MB) of the empirically observed coverage levels along the
genome. We computed separate RCPs for the two technologies
(CGI and Illumina) and for 10 version ranges of CGI’s ana-
lytic pipeline (Supplementary Figure 1), including up to 500
genome assemblies per RCP. The diploid coverage level, which
we estimated empirically from collections of genomes, cannot be
explained or predicted from the %GC and the mapability of the
sequence (Supplementary Figure 4).

NORMALIZATION OF COVERAGE TO THE REFERENCE VALUE
Given an individual genome’s scaled coverage profile, we divide
the scaled coverage in each kb-sized bin by the corresponding ref-
erence value to obtain the genome’s normalized coverage profile
(NCP). Normalized values near 1 represent the expected diploid
coverage, values near 0.5 represent hemizygosity (including chro-
mosomes X and Y in males), and values near 0 represent nullizy-
gosity. Conversely, values larger than 1 may represent duplications
and higher-count CNVs.

A typical file size for a genome’s normalized coverage expressed
at 1-kb resolution is 8.6–10 MB. This representation is small
enough to support incorporating coverage analysis into routine
genome analysis pipelines.

SEGMENTATION OF NORMALIZED COVERAGE
After normalizing each genome’s coverage to the corresponding
RCP, we sought to identify deletions and higher copy number seg-
ments. To achieve this, we segmented the NCP using HMMSeg
(Day et al., 2007), a program for segmentation of continuous
genomic data using HMMs.

We created an HMM with five states, representing the number
of observed copies in a locus: state 0 represents nullizygosity (no
coverage or complete deletion), state 1 typically represents hem-
izygosity (one copy only), state 2 corresponds to normal diploid
zygosity, state 3 denotes observation of an extra copy, and state 4
represents observing four or more copies. Each state is associated
with an emission value in terms of normalized coverage (0, 50,
100, 150, and 200%, respectively). The model parameters include,
for each state, the allowed variance of emission and the transition
probabilities to each state (Supplementary Figure 5). HMMSeg
computes for each bin the most probable state; we then segment
the genome by identifying consecutive bins with the same state.

COMPUTATION OF POPULATION FREQUENCIES
To compute CNV frequencies, we defined two reference sets
of “founder” genomes—the parents from a large collection of
trios—not known to be related. These sets included: (a) the
genomes of 1584 individuals sequenced using CGI technol-
ogy, and (b) the genomes of 1669 individuals sequenced using
Illumina technology. These are subsets, respectively, of the ITMI-
CGI and the ITMI-Illumina sets.

For each genomic segment resulting from the HMM-based
segmentation, we computed the median number of individuals
(in the corresponding reference set, CGI or Illumina) with the
same level of coverage as observed in an individual (e.g., hemizy-
gous), and hence the genotype frequency. We also computed the
allele frequency by integrating the ploidy observations across all
genomes in the reference panel.

COMPARISON TO THE “GOLD STANDARD” NA12878 GENOME
We obtained an updated assembly of the NA12878 genome from
CGI, sequenced using CGI’s library v.2 format and processed
using version 2.5 of CGI’s analytic pipeline. We analyzed this
genome assembly’s coverage to compute its NCP and to deter-
mine predicted deletions and CNVs by HMM segmentation. We
obtained deletion calls for this genome from Supplementary Table
4 in Mills et al. (2011). These deletions were discovered and vali-
dated using a variety of methods. We translated these deletions to
GRCh37 coordinates using liftOver (Hinrichs et al., 2006). Each
deletion spans one or more bins, each of which may have a dif-
ferent normalized coverage value (i.e., the fraction of expected
diploid coverage, prior to segmentation into states): we com-
puted the median of these values as the representative normalized
coverage level for each deletion.

EVALUATION OF CNV CALLS BY COMPLETE GENOMICS
CGI’s standard analysis pipeline computes predicted boundaries
(junctions) of CNVs and other SVs, reported in the “highCon-
fidenceJunctionsBeta” file. We observed that the same or very
similar junction coordinates are reported in many CGI assem-
blies. We collected all junctions from the set of 1584 “founder”
genomes and used a distance cutoff of 400 bp to cluster them into
recurring junction ranges. We then computed for each such range
the fraction of assemblies with a stated SV junction in that range:
this serves as a metric for population frequency of the junction or
propensity for false calls.

We selected events representing deletions and duplications
from the file “highConfidenceJunctionsBeta” of each assembly.
Since older versions of CGI’s pipeline do not make this deter-
mination explicitly, we selected events with both junctions on
the same chromosome, on the same strand, and within 1 Mb of
each other. We annotated each deletion or duplication event with
the frequency of its junctions, and computed the median NCP
as above (Section Comparison to the “Gold Standard” NA12878
Genome).

EVALUATION BY CONCORDANCE IN TRIOS
To evaluate concordance in a family trio (father, mother, and
child), we analyzed each genome in the trio independently, and
then computed the total number of bins in which the child’s state
(ploidy) was consistent with expectation from the parents’ states,
as enumerated in Supplementary Table 1. Similarly, we computed
total length of the segments where the offspring’s state was not
concordant with the parents’ states. For example, if one parent
is hemizygous (state 1) and the other parent has the expected
diploid coverage level (state 2), expected levels for the child
includes hemizygous and diploid (states 1 and 2). Any other state
observed in the child would be counted as discordant. We further
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computed the fraction of the genome in which all family members
are in state 2, and the fraction of the genome in which discordant
observations within the trio involve higher copy numbers (states
3 and 4). All these computations excluded chromosomes X, Y, M
and gaps in the reference genome.

Having identified discordant bins for each trio, we observed
that some bins were frequently discordant in many trios, and
they tended to cluster into segments. Most of these segments dis-
play also excessive heterozygosity (not shown); these represent
“compressions” of the reference sequence (Roach et al., 2010),
many but not all of which have been resolved in the latest ver-
sion (GRCh38) of the reference sequence. We classified segments
observed as discordant in 100 or more trios—totaling 3331 kb of
sequence—as recurring false positive results and excluded them
from further analysis.

To evaluate the specificity of the concordance metric, we cre-
ated shuffled trios by selecting for each child a randomly picked
father and a randomly picked mother—ensuring these are not the
true father and mother for the child. We then compared each child
to the replacement parents to compute the expected concordance
level from trivial similarity between individuals.

IMPLEMENTATION AND AVAILABILITY
We implemented the genome coverage analysis pipeline in the
Perl programming language. The code, documentation, and
resources are available at http://db.systemsbiology.net/gestalt/
coverage/. All the tools have very low memory requirements.
Condensing the coverage signal takes a couple of hours per
genome, depending on the computing speed of the machine. All
other steps take a couple of minutes each.

RESULTS
A MODULAR METHOD FOR COVERAGE ANALYSIS
We have developed a new method for identification of deletions
and CNVs in personal genomes, based on WGS depth of cover-
age. The method involves several modular stages, diagrammed in
Figure 1.

(1) We first condense the genome coverage information into an
efficient, technology-agnostic format. We discuss this fur-
ther in Section An Efficient Format for Storing Coverage
Information.

(2) We then scale the genome’s coverage, partitioned by %GC,
according to a pre-computed Target Coverage Vector that
is characteristic of the technology and pipeline version (see
Materials and Methods).

(3) We normalize the scaled genome coverage to the corre-
sponding RCP (see Materials and Methods). The result-
ing Normalized Coverage Profile (NCP) offers significantly
improved ability to distinguish between segments of the
genome that have the expected diploid level of coverage,
and those that are hemizygous or nullizygous (Figure 2).
This effect is more pronounced for genomes sequenced using
CGI’s technology than for those sequenced using Illumina;
we discuss this further in Section Depth of Coverage is
Consistent from Genome to Genome.

FIGURE 1 | Overview of the coverage analysis method. Raw coverage
data from CGI or Illumina technology is processed into a condensed format,
then scaled, normalized, segmented, and filtered. Light blue boxes and thin
lines represent data processing for a single genome. Orange boxes and
thick lines represent information flow involving multiple genomes.

(4) We finally segment the NCP using an HMM, and iden-
tify deletions and CNVs of interest by comparison to their
population frequency profile (see Materials and Methods).

AN EFFICIENT FORMAT FOR STORING COVERAGE INFORMATION
Using standard genome analysis tools, it is possible to produce
detailed information on the depth of coverage at single-base reso-
lution. CGI’ standard WGS pipeline reports coverage information
in a per-base long format that includes the raw coverage and (for
pipeline versions 1.10 and later) the %GC-corrected coverage.
This information is provided by CGI in the “REF” directory—
a standard component of every delivered genome. For Illumina
genomes (or any technology that produces BAM files), equiva-
lent raw coverage information can be extracted using samtools
(Li et al., 2009). Both these sources (REF and BAM) are very large
(gigabytes per genome, Table 1) and thus difficult and expensive
to store, transmit, and analyze. They are also frequently discarded
in favor of more processed (and condensed) representations of
variants relative to the reference genome. This effectively discour-
ages detailed analysis of coverage, potentially leading to missing
important discoveries.

We have devised a compact representation of the coverage
trace of a genome. Since each sequence read spans several con-
secutive positions along the genome (typically 30–35 for CGI,
100–250 for Illumina, from 300–400 bp inserts), we reasoned that
the coverage signal should show significant short-range corre-
lation and thus may be compressed with little loss of informa-
tion. Autocorrelation analysis (Figure 3) confirmed that depth of
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FIGURE 2 | Reference normalization sharpens individual genome

coverage distributions. Each graph represents the fraction of the genome
as a function of coverage level, before normalization (dotted curves) and after
normalization (solid curves). Male genomes have the expected 50% (haploid)

peak representing coverage in the sex chromosomes. Female genomes have
a very small peak at 50%, from (mostly autosomal) hemizygous segments.
The plots for female genomes are rescaled to better visualize this peak at
50%, which is only evident after normalization.

Table 1 | Typical range of file sizes from which coverage information

can be derived, for the CGI and Illumina technologies, as well as the

sizes of “condensed” and “normalized” coverage formats, per

genome.

File type Resolution Complete Illumina

genomics

Raw
coverage

1 bp REF: 16.63 ±
1.56 GB

BAM: 84.42
± 27.57 GB

Condensed
coverage

20 bp 110.37 ±
3.72 MB

89.58 ±
2.53 MB

NCP 1 kb 9.29 ± 0.18
MB

9.38 ± 0.06
MB

Variants var: 279.48 ±
26.26 MB

gVCF: 2.51 ±
0.71 GB

The sizes of files representing variants are included for comparison. NCP,

normalized coverage profile.

coverage is autocorrelated at least 50% over half a read length,
with additional but lower correlation consistent with the sepa-
ration between insert ends. We chose to bin coverage in 20 bp
windows; at this distance, autocorrelation ranges from 0.58 to

0.84 depending on technology and pipeline version. The correla-
tion is even higher between positions located within a single bin.
We further compressed the signal by using progressively lower
resolution for high-coverage values (see Materials and Methods).
This encoding method reduces the representation of coverage
by ∼150-fold for CGI genomes, and to 0.1% the size of a typical
BAM file for Illumina genomes (Table 1).

DEPTH OF COVERAGE IS CONSISTENT FROM GENOME TO GENOME
Depth of coverage across the genome strongly depends on the
sequencing technology used, and to a lesser extent, on the version
of the technology. We therefore stratified our training genome
assemblies into 10 chronological groups of CGI pipeline versions,
from the earliest released to the most current (Supplementary
Figure 1), and analyzed assemblies for each group as well as
assemblies sequenced using the Illumina platform separately.

We estimated the (technology- and version-specific) diploid
level of coverage at each position (1 kb bin) in the genome
from the observed distribution of scaled coverage in individu-
als. This metric is equivalent to the median coverage value for
most genomic bins, and is robust to the presence of outliers. The
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FIGURE 3 | Raw coverage autocorrelation. For a 100 kb segment of typical
sequence composition (chr1:9,010,001–9,110,000), autocorrelation along the
genome of raw coverage (prior to scaling) is shown as a function of distance
for seven individual genomes: six from distinct CGI pipeline versions and an
Illumina genome. As expected, short-range autocorrelation is higher for the

technology with longer reads (Illumina). Past the read length, autocorrelation
decreases sharply; except for older CGI pipeline versions, it rises again
approaching insert (300–400 bp). At larger distances (>750 bp), coverage is
essentially uncorrelated. The bold line indicates the compression cutoff
chosen (20 bp).

estimated diploid level deviates from the median in the presence
of common deletions and CNVs in the population; below, either
term refers to the estimated diploid level.

We further characterized the variation in coverage among
genomes, at each position, using the median absolute deviation
(MAD) from the median coverage. Based on the genome-wide
distribution of these two metrics (estimated diploid level and
MAD), we assessed the uniformity of coverage within and among
genomes. We observed that earlier versions of the CGI technol-
ogy had very large variation in coverage levels within genomes,
though this variation has sharply decreased in more modern ver-
sions (Figure 4). We observed much higher uniformity of median
coverage within genomes sequenced on the Illumina platform.
On the other hand, we observed much more consistent cover-
age among genomes sequenced with CGI’s current technology
than among Illumina genomes (Figure 5), even though the lat-
ter were sequenced using the same version of the technology
and processed using the same pipeline versions. The consis-
tency between Illumina genomes sequenced using different read
lengths, on different machines, and processed with other soft-
ware tools remains to be determined. We again observed a gen-
eral trend of improvement (reduced technical variation from
genome to genome) from the older to the newer versions of CGI’s
technology.

In other words, whereas the depth of coverage fluctuates much
more strongly along a single CGI genome assembly than along a
single Illumina genome assembly, the fluctuation is much more
consistent and predictable from one CGI assembly to another

than from one Illumina assembly to another. These results suggest
that computational methods for detection of CNVs not explic-
itly correcting for locus-specific coverage differences (i.e., based
on the expectation that coverage follows a common distribu-
tion genome-wide) should be more useful for analyzing genomes
sequenced on the Illumina platform than when interpreting
CGI genomes. Conversely, the very consistent coverage observed
among CGI genomes suggests an opportunity for improving
CNV detection by normalizing each genome’s coverage to a pre-
computed profile of empirically derived reference values—the
method we present here.

We find the RCPs computed from each of these 11 groups of
assemblies are all highly correlated (Figure 6). As expected, the
correlation between the Illumina RCP and any CGI RCP is much
lower (r ∼ 0.63) than between any pair of CGI RCPs (r > 0.99).
Likewise, the very earliest CGI pipeline versions yield RCPs that
are slightly less similar to the more modern CGI versions.

CONCORDANCE WITHIN TRIOS
We evaluated the performance of the coverage normalization
method by quantifying NCP concordance within 836 family
trios (father, mother, and child) sequenced using CGI’s technol-
ogy. For each trio, we identified segments in which the called
coverage level (HMM state) in the child is consistent with the
corresponding calls in the parents. Segments with unexpected
combinations of states represent either de novo CNV changes
(expected to be rare), errors in the reference sequence (which we
excluded, see Materials and Methods), normalization errors or,
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FIGURE 4 | Illumina genomes are more uniform in coverage. Cumulative fraction of genome as a function of median coverage for 10 CGI pipeline versions
and Illumina: more uniform coverage across a sample results in sharper, step-like sigmoidal curves.

FIGURE 5 | Modern CGI genomes are more consistent from sample to sample. Cumulative fraction of genome as a function of median absolute deviation
for 10 CGI pipeline versions and Illumina: curves closer to the left have more consistent coverage among samples.

if observed frequently throughout the genome, incorrect family
relationships.

The observed concordance across all trios was very high, span-
ning 99.93% ± 0.024% of the genome. The lowest observed
concordance in a trio was 99.83%. Since most of the genome is
diploid in most people, this metric is also high when comparing
the child to randomly picked parents (99.79% ± 0.274%).

A much stricter metric of concordance excludes from the com-
putation all regions in which father, mother, and child are in

state 2 (normal diploid coverage). Using this metric, the observed
concordance across all trios was 87.75% ± 5.04%. With ran-
domly picked parents, strict concordance was reduced to 66.27%
± 8.73%.

EVALUATION OF DELETIONS IN THE NA12878 GENOME
The NA12878 genome has been extensively analyzed and serves
as a “gold standard” genome for technology and algorithm devel-
opment. We analyzed a recent assembly of NA12878, sequenced
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FIGURE 6 | The Reference Coverage Profiles are very highly correlated. Global correlation among the 11 RCPs evaluated (10 CGI, one Illumina). Darker blue
shades denote higher correlation above 0.99; red shades represent correlations in the 0.5–0.9 range.

with CGI’s current technology, and compared the resulting NCP
with results of previously published analyses (Mills et al., 2011;
Layer et al., 2014).

We use 75% normalized coverage as the least stringent (high-
est) cutoff for separating deletions (hemizygous and nullizygous)
from the “bulk” diploid coverage (Figure 2). We assessed the
NCPs over each of 361 previously-reported autosomal deletions
in NA12878 by computing the median NCP within the reported
range. We found that 262 of these (73%) have median normalized
coverages lower than 75% (Figure 7). As expected, we observe
more variability of median NCP for the shorter deletion calls,
due to the 1-kb bin size used in our study. One outlier 4-kb
deletion call with excessive coverage corresponded to a poly-
morphic LINE1 element, hinting at read-mapping errors. We
evaluated the longer validated deletion calls with ∼100% nor-
malized coverage by our method as potential false negatives. We
found that the longest such deletion (chr4:9,461,230–10,235,268
in GRCh37 coordinates, 774 kb) is flanked by two segments of
reduced normalized coverage (24 kb and 22 kb long) consistent
with hemizygosity (inset b in Figure 7). We hypothesize that this
may have resulted in a deletion miscall of the entire 774 kb span
by other methods. The second longest potential false negative
(chr1:116,135,317–116,677,627 in GRCh37 coordinates) shows
quite consistent normalized coverage throughout its 542 kb span
(inset a in Figure 7). Neither of these two large deletions was
identified by LUMPY (Layer et al., 2014), suggesting that these
deletions were false positives in the published set rather than false
negatives for our method.

We similarly evaluated a much richer set of CNV events
identified by LUMPY (Layer et al., 2014) on the NA12878
genome. LUMPY’s integrative method allows detection of very

short CNVs, shorter than our current analytical resolution;
we therefore evaluated only 736 CNV calls at least 1 kb long
(Supplementary Figure 6). Of these, 53 have lengths of 6.0–
6.3 kb, consistent with full-length LINE1 elements. We similarly
observed a large number of reported CNVs ∼300 bp long (under
our 1 kb cutoff, and thus not shown), consistent with full-length
Alu repeats. Both LINE1 and Alu repeats commonly lead to
false positive findings due to the presence of very large num-
bers of them in the genome, and to mismapping of reads derived
from them. We found that 430 LUMPY CNV calls (58%) have
median normalized coverage lower than 75%. This fraction rises
to 75% (118 of 157) when considering events longer than 5 kb and
excluding LINE1-sized events.

CONCORDANCE WITH CGI’S CNV CALLS
Complete Genomics’ analysis pipeline includes a detailed analysis
of SVs, including deletions, inversions, tandem, and distal dupli-
cations, as well as complex and interchromosomal events. We
evaluated population frequency and representative coverage of
470 events representing deletions and duplications over 1 kb long
in the NA12878 genome (see Materials and Methods); 51 of these
have lengths of 6.0–6.3 kb, consistent with full-length LINE1 ele-
ments (Figure 8). We found that 328 CNVs (70%) have median
normalized coverages lower than 75%—as expected for hemizy-
gous or nullizygous deletions. Requiring that both junctions of
a CNV be infrequent in the population (frequency less than 0.1
each) enriches this proportion to 84% (63 of 75 events); only
one LINE1-sized deletion passes these filters. We further verified
that hemizygous deletions are flanked by segments of expected
diploid coverage, and nullizygous deletions by diploid or haploid
coverage (not shown).
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FIGURE 7 | Deletions in the NA12878 genome. For each “validated”
deletion in the NA12878 genome, we evaluated the median normalized
coverage (100 represents diploid level, 50 represents hemizygosity, etc.)
vs. the length of the event. A polymorphic LINE1 element stands out

as a high-coverage outlier. Insets: normalized coverage traces for the
two longest “validated” deletions showing near diploid level median
coverage; double-headed arrows denote the spans of the reported
deletion events.

DISTRIBUTION AND EFFECTS OF RARE DELETION EVENTS IN
GENOMES
We studied the distribution of rare (frequency < 0.01) hemizy-
gous and nullizygous deletions at least 3 kb long, in the autosomes
of 1584 unrelated genomes sequenced using CGI technology
and 1669 unrelated Illumina genomes. We observed that, on
average, each CGI genome presented 11.2 segments in hem-
izygous state and 2.2 segments in nullizygous state. Illumina
genomes had very similar hemizygous deletion frequency (10.9
segments/genome) and somewhat higher nullizygous frequency
(3.6 segments/genome).

We further assessed how frequently genes are affected by these
rare deletions. We defined as “affected” a gene in which at least
one annotated exon of at least one transcript is fully or partially
contained in a deleted segment. Not all exons are constitutive
(included in all transcripts of a gene). Considering the diver-
sity of alternative splicing forms, which may be differentially
expressed in various tissues and cell types, not all exon deletions
need result in an observable phenotype. Since we use a 1-kb
bin size, we excluded the terminal bins of each deletion from
this computation, to maximize the probability that the exon
is indeed disrupted by the deletion event. When analyzing the
CGI “founder” individuals, we found that 1437 autosomal genes

(distinct genes in the UCSC Genome Database, track kgXref)
contain a fully or partially hemizygous exon in at least one indi-
vidual, and 84 are “knocked out” (at least one nullizygous exon)
in at least one individual (Supplementary Figure 7). Similarly,
Illumina “founder” individuals presented 1404 autosomal genes
with at least one hemizygous exon, and 189 genes with at least
one nullizygous exon.

Conversely, we found that most individuals sampled (73%
CGI, 74% Illumina) harbored at least one gene with an exon in
hemizygous state from a rare deletion. As expected, much fewer
(11% CGI, 28% Illumina) had at least one gene with an exon
“knocked out” (Supplementary Figure 8).

DISCUSSION
Many approaches for CNV discovery from second generation
short-read re-sequencing data have been explored. Nevertheless,
such analyses are not routinely performed on personal genome
data, for a variety of reasons. Most methods for CNV discovery
have been designed to work on Illumina data (or equivalent);
working with CGI raw data is much more difficult due to the frag-
mented structure of the sequence reads. In all cases, the data files
required for analysis are very large—tens to hundreds of gigabytes
in size.

Frontiers in Genetics | Genomic Assay Technology February 2015 | Volume 6 | Article 45 | 10

http://www.frontiersin.org/Genomic_Assay_Technology
http://www.frontiersin.org/Genomic_Assay_Technology
http://www.frontiersin.org/Genomic_Assay_Technology/archive


Glusman et al. CNV detection using Reference Coverage Profiles

FIGURE 8 | CGI CNVs in the NA12878 genome. For each deletion or
duplication event in the NA12878 genome called by CGI, we evaluated the
median normalized coverage (100 represents diploid level, 50 represents

hemizygosity, etc.) vs. the length of the event. Black circles: events with
boundaries outside recurring junction clusters. Open circles: events with one
boundary outside recurring junction clusters. Gray points: all other events.

We have developed a method for compressing the cover-
age information in personal genomes down to a very manage-
able file size, which should pose no more difficulty for storing
and transmitting over networks than the standard files used to
describe sequence variants. We encourage researchers to apply
this conversion to their genome data to facilitate downstream
analyses.

The depth of coverage fluctuates strongly from locus to locus,
affected by %GC, mapability, and other sequence-specific pat-
terns, which may be technology-specific. Coverage may also
change from locus to locus in actively replicating cells (e.g., cell
lines and cancer samples): for this reason, we restricted our anal-
yses to DNA derived from blood and saliva (buccal cells). Even
lacking an ab initio model of all these effects, the depth of coverage
along the genome can be empirically modeled by comparing cov-
erage profiles among samples, leading to significantly improved
CNV calls (Klambauer et al., 2012). This again poses a technical
challenge, compounding the difficulty managing and analyzing
coverage information from individual genomes. Furthermore,
suitable “control” genomes may not be available, particularly in
a clinical context.

We presented here a solution to this difficulty, by way of pre-
computed multi-genome RCPs. Comparing one genome to a pre-
computed reference is conceptually equivalent to analyzing a set
of hundreds or thousands of genomes simultaneously—but while

the former is technically easy, the latter is essentially intractable
for coverage analyses. We stress the value of a large cohort of high-
quality (>40×) genomes for training such multi-genome profiles,
and the added value of the family structure of the cohort, for
internal validation of parameters and results.

Depth of coverage methods can precisely quantify copy num-
bers in complex genomic regions (Nguyen et al., 2014), but
cannot determine the actual structure of segmental duplications,
nor detect balanced rearrangements. A disadvantage of CNV dis-
covery based on depth of coverage is the lower resolution that can
be feasibly achieved for detecting the boundaries of each event.
While we presented here normalization and segmentation at 1-kb
resolution, it is possible to increase the resolution to 20 bp—the
bin size we use for condensing the coverage signal. The resources
required are expected to increase linearly with the resolution.
Ultimately, precise breakpoint identification requires analysis of
sequencing read data.

There are many possible algorithms that could be used for
computing CNVs in a genome from its Normalized Coverage
profile (NCP). We presented here segmentation of the NCP using
HMMSeg (Day et al., 2007). We have applied this method to
thousands of genomes from a variety of cohorts, including fam-
ilies with individuals affected with a variety of diseases. We have
identified deletions affecting genes as candidate causal mutations.
For example, a 85-kb de novo deletion spanning the 5′ region of
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NOTCH1 and causing Adams-Oliver syndrome (Stittrich et al.,
2014).

The method we developed is modular by design. Its compo-
nents can be used for other purposes and integrated into other
pipelines. For example, the RCPs could be of use for interpret-
ing “sequencing drop-out” regions in other uses of the short-read
sequencing technologies, e.g., RNA-seq, ChIP-seq, etc. The NCP
for a genome could be integrated into probabilistic frameworks
such as LUMPY (Layer et al., 2014) or could be added as a track
for visualization in the UCSC browser (Hinrichs et al., 2006).
The CNV frequency profiles may be of use for downstream pop-
ulation analyses and to filter common variants, expediting the
identification of causal variation in disease studies.
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