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Abstract: Laccases are multicopper oxidases that have shown a great potential in various biotech-
nological and green chemistry processes mainly due to their high relative non-specific oxidation of
phenols, arylamines and some inorganic metals, and their high redox potentials that can span from
500 to 800 mV vs. SHE. Other advantages of laccases include the use of readily available oxygen as a
second substrate, the formation of water as a side-product and no requirement for cofactors. Impor-
tantly, addition of low-molecular-weight redox mediators that act as electron shuttles, promoting the
oxidation of complex bulky substrates and/or of higher redox potential than the enzymes themselves,
can further expand their substrate scope, in the so-called laccase-mediated systems (LMS). Laccase
bioprocesses can be designed for efficiency at both acidic and basic conditions since it is known that
fungal and bacterial laccases exhibit distinct optimal pH values for the similar phenolic and aromatic
amines. This review covers studies on the synthesis of five- and six-membered ring heterocyclic cores,
such as benzimidazoles, benzofurans, benzothiazoles, quinazoline and quinazolinone, phenazine,
phenoxazine, phenoxazinone and phenothiazine derivatives. The enzymes used and the reaction
protocols are briefly outlined, and the mechanistic pathways described.

Keywords: biocatalysis; heterocycles; oxidoreductases; bioprocesses; cross-coupling reactions; green
methods; sustainability

1. Introduction

Heterocyclic compounds are important molecules among the applied branches of
organic chemistry. They are abundant in natural products and their properties are useful in
the design of several pharmaceuticals and new materials. They are key structural compo-
nents in many molecular drugs, due to their ability to hydrogen bond and other properties,
exhibiting an overall inhibitor effect retarding the progression of several diseases [1–3].
In the area of new materials, heterocycles can impart unique and useful electronic and
optical properties [4–6]. A large number of N-based or O-based heterocycles have found
additional utility as dyestuffs, copolymers, and valuable intermediates in synthesis. They
display many advantages, including an easy preparation, low toxicity, low adverse effects,
high bioavailability, low drug resistance and good biocompatibility. Therefore, the synthe-
sis of heterocyclic compounds has attracted considerable interest in the last decades and
a variety of synthetic protocols have been developed [7]. Despite the wide availability of
synthetic methods, the development of new and more efficient procedures or methods is
still required. Organic synthesis of chemicals suffers from several drawbacks, including
the high cost of chemicals, cumbersome multi-step reactions and toxicity of reagents. Most
reported methods in the literature involve the use of excess amounts of expensive and toxic
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oxidants at abrasive reaction conditions (high temperatures and pressure, as well as long
reaction times) and environmentally unfriendly solvents [8–10].

The increased societal interest in products from renewable feedstocks, greener pro-
cesses and the recent advances in biotechnology have brought the application of enzymes
to the forefront of research to address the current challenges of modern synthetic organic
chemistry. Enzymatic processes are green and sustainable, since biocatalysts are biocom-
patible, biodegradable and essentially non-hazardous and non-toxic. Enzymatic reactions
generally avoid the need of conventional organic synthetic procedures such as functional
group activation, protection and deprotection steps, affording routes with a lower number
of steps, which are more cost-effective and generate reduced amounts of waste. Further-
more, enzymatic processes are in general quite selective, distinguishing between regio- and
stereoisomers and discriminating various functional groups.

Enzymes have been continually expanding their catalytic applications in industrial,
medical and diagnosis fields, owing to their high catalytic efficiency, substrate specificity,
mild reaction conditions and good environmental safety [11–13]. Eco-friendly oxidation
bioprocesses represent an attractive and important alternative to the traditional chemical
synthetic methods in the green chemistry field, allowing the development of sustainable
processes and production of new molecules.

Laccases couple the oxidation of a wide range of aromatic substrates with the reduction
of molecular oxygen to water. They are very interesting biocatalysts that have attracted
considerable attention in the last decades in environmental and biotechnological processes,
including drug, food, textile, cosmetics, and biodegradation of organic compounds in
wastewater, enzymatic biofuel cells, among others [14–19]. Laccase reactions, which
promote aromatic compounds oxidation in the presence of oxygen as a co-substrate, do
not use toxic reagents and do not display hazardous side effects, have received increasing
attention in the synthesis of fine chemicals. The type of chemical transformations that can
be performed and the chemical structures that can be accessed are vast and can be further
broadened by laccase-mediator systems (LMS) [13,20–24].

In the present review, the contribution of the laccase-assisted biocatalytic processes as
alternative approaches to the synthesis of N-, S- and O-based aromatic heterocycles will
be described. The review is organized according to the main heterocycle types in order of
increasing complexity, ring size, number of heteroatoms and their fused analogues.

2. Biocatalysis with Laccases
2.1. Laccases Are Widespread Enzymes

The laccase from the lacquer tree Rhus vernicifera was the first laccase described and
is responsible for the oxidation of urushiol, a milky secretion of the lacquer tree, in the
presence of air by a process of polymerization and cross-linking producing lacquer, a
hard and strong resin that has been widely used in traditional oriental crafts [25]. Plant
laccases are found in the xylem where they oxidize monolignols in the early stages of
lignification [26] and contribute to the cross-linking of cell wall structural proteins [27].
The vast majority of laccases characterized so far have been, however, isolated from fungi,
in particular white-rot basidiomycetes, where they play a role in lignin degradation [28].
Fungal laccases can also act as a virulent factor such as the grapevine grey mould and
the chestnut blight fungus [26] and have been described as prominent virulence factors
in pathogenic yeast [29]. In the eukaryotic domain, laccases are also present in insects,
where they are active in the cuticle sclerotization [28]. In the last two decades, a large
number of laccases of bacterial origin have been identified and characterized [30–33].
Their role has been assigned to the microorganisms’ copper resistance, morphogenesis,
sporulation, pigmentation, lignocellulose degradation, bacteria–bacteria interactions or
antibiotic production [34].
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2.2. Overall Structure of Laccases and Catalytic Mechanisms

Laccases belong to the family of multicopper oxidases (MCOs) that typically have
an overall structural fold comprising three cupredoxin-type domains with a Greek key
β-barrel topology (Figure 1A) [35]. MCOs contain four Cu atoms, the T1 Cu site in-
volved in substrate oxidation, and T2 and T3 Cu atoms that form a trinuclear centre
(TNC); they couple the one-electron oxidation of substrates at the T1 Cu with the four-
electron reduction of molecular oxygen to water at TNC (Figure 1B) [36–38]. The T1 Cu
is coordinated by two histidine nitrogen atoms and a cysteine sulphur, and it is charac-
terised by an intense S(π)→Cu(dx2−y2) charge transfer absorption band at around 600 nm,
ε600 nm > 3000 M−1 cm−1 responsible for the intense blue colour of the enzymes. The T2
copper site, strategically positioned close to the T3 binuclear copper centre, is usually
coordinated by two histidine residues and a water (or hydroxyl) molecule, while each T3
copper is coordinated by three histidines and a bridging ligand such as a hydroxyl moiety,
displaying an absorption in the near-UV, with λmax = 330 nm. The mononuclear T1 Cu
site interacts with the trinuclear cluster T2/T3 through the highly conserved HCH motif,
where the cysteine in the T1 binding Cu shuttles electrons over a distance of ∼13 Å to each
of the two histidines coordinated to T3 copper ions (Figure 1B). The reaction mechanism
of laccases and other MCOs have been extensively studied by biochemical, kinetic, spec-
troscopic, and structural techniques [39]. The main electron transfer steps in the reaction
mechanism are the (i) reduction of the T1 Cu site by the oxidized substrate, (ii) electron
transfer from the T1 Cu site to the trinuclear cluster, and (iii) O2 reduction by the trinuclear
cluster. The T1 Cu centre is sited at the bottom of the substrate binding region, relatively
exposed to the solvent, and interacts with substrates through the imidazole ring of one of
its His ligands [40–43]. The broad range of organic substrates capable of being oxidized
by MCOs is a result of non-covalent binding near the T1 Cu for outer-sphere electron
transfer (ET) [39].
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Figure 1. (A) Representation of the three-dimensional structure of CotA laccase with the cupredoxin
domains coloured differently (residues 1–173, domain1: green; residues 182–340, domain2: blue;
residues 369–501, domain 3: violet). The four copper atoms are shown as orange spheres. (B) The
mononuclear T1 centre is on the right and the trinuclear centre is on the left. Pictures drawn with the
use of PyMOL software and supported by the deposited structure in Protein Database PDB1w6l.
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2.3. Bacterial Versus Fungal Laccases: Redox Potential and pH Optima

Laccases have nearly identical Cu active sites, but they exhibit significant differences in
substrate specificity and catalytic rates. These differences have been assigned to alterations
in second-sphere residues around the T1 Cu centre. The vast majority of studies and
applications were performed using fungal laccases that show, in general, higher redox
potentials (around 800 mV vs. SHE). Bacterial laccases (with E0 around 500 mV vs. SHE)
also show interesting properties for diverse biotechnological applications, such as higher
thermostability and optimal pH values in the neutral to basic range, in contrast with fungal
laccases that operate maximally in the acidic range of pH.

A high redox potential increases the range of oxidizable substrates and improves the
effectiveness and versatility of the enzyme. In laccases, such as those of bacterial origin,
which bear a T1 Cu methionine axial ligand, the copper lies above the plane defined by the
nitrogen and cysteine sulphur ligands and is displaced towards the methionine, showing a
distorted tetragonal geometry [37]. Fungal laccases have non-coordinating phenylalanine
or leucine at this position, favouring a trigonal planar geometry for the site, which is
believed to contribute to the higher redox potential observed in these enzymes [44–46].
The replacement of the axial ligand (residue Met502) at the T1 site of CotA by leucine
and phenylalanine led to an increase in the E0 by c.a. 100 mV, although the higher E0

determined did not favour an increased oxidation rate, since the mutations had a profound
impact on the stability of the enzyme [44]. Conversely, mutation of the axial ligand (residue
F463) to methionine in the Trametes villosa laccase decreases the redox potential from 790 to
680 mV [46]. Structural studies on the Trametes trogii laccase (E0T1 = 760 mV) suggested an
important contribution for the hydrophobic residues near the T1 copper site to the high
redox potential observed for this enzyme [43]. Similar conclusions have been reached by
the experimental replacement of I494 and L386 hydrophobic residues in the vicinity of the
T1 copper site of the CotA laccase by alanines that led to a lower E0 due to an increase
in the solvent accessibility to this centre, stabilizing the T1 copper in the +2 oxidation
state [47]. Overall, the available literature indicates that the variations in redox potential
of the T1 centre observed among laccases is not assigned to a single structural feature but
to a sum of factors such as the copper centre coordination geometry and the nature of the
second sphere residues influencing solvent accessibility, hydrogen bonding, and dielectric
anisotropy around the site.

Laccases exhibited different optimal pH values for different substrates. For substrates,
which involves the release of a proton and an electron (such as phenolics and arylamines),
laccases have a bell-shaped pH activity profile with an optimal pH dependent on the
laccase and the substrate [48]. This is consistent with a mechanism that balances two
opposing effects, one generated by the redox potential difference between the reducing
substrate and the T1 Cu (correlating to the electron transfer rate, favoured by higher pH),
and another generated by the binding of a hydroxide anion to the T2/T3 Cu (which inhibits
the activity at a higher pH) [48]. Interestingly, fungal laccases such as the Trametes versicolor
(TvL) laccase show maximal rates at the acidic range, while bacterial laccases show a clear
preference for the basic range of pH values [49]. All well-characterized fungal laccases
have a conserved Asp or Glu residue close to the substrate binding site cavity that is
not present in CotA or in any bacterial laccase identified so far (Figure 2). The negative
charge close to the active site in TvL (Asp 206) and in Melanocarpus albomyces (Glu 235)
was proposed to have a role in facilitating substrate oxidation by accepting a proton from
the substrate [40,50,51]. In the case of laccases that do not contain any negatively charged
residue in the vicinity of the substrate binding site (Figure 2), such as CotA, the efficiency
of the oxidation relies mostly on the protonation/deprotonation state equilibria of the
compounds themselves [49,52,53]. Furthermore, maximal rates of oxidation are dependent
on the electronic nature of other substituents, which are key factors for the stability of
the radicals formed; the presence of electron-withdrawing substituents leads to a higher
stabilization of radicals which, as expected, impacts positively on the rates of enzymatic
oxidation [49].
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Figure 2. Overlap of the active site of the fungal TvL and bacterial CotA laccases with detail on
the Asp206/Thr260. Pictures drawn with the use of PyMOL software and supported PDB1w6l and
1KYA. It is believed that carboxylate residues are crucial to oxidise substrates containing phenolic or
aromatic amine functional groups aiding in the deprotonation of substrates.

2.4. Laccases-Mediated Reactions

The substrate scope of laccases can be enhanced in the presence of small redox me-
diator molecules in the so-called laccases-mediated systems (LMS). In reactions where
the substrate has a higher E0 than the laccase or is too large to penetrate into the enzyme
active site, the presence of redox mediators may facilitate reactions [54]. The mediator
should be a substrate of the enzyme that, upon reaction, forms a reactive oxidized inter-
mediate which, then, diffuses away from the enzymatic pocket and oxidizes the substrate
by mechanisms different from the enzymatic one (Scheme 1A). Ideally, a redox mediator
should generate stable radicals in its oxidized form that do not inactivate the enzyme, and
whose reactivity would allow its recycling without degradation. The mechanism of the
mediator–substrate oxidation varies with the redox mediator molecule used [20,22,55].
Mediators that have the N–OH structural feature, such as HBT (1-hydroxybenzotriazole),
favour the radical hydrogen-atom transfer (HAT) pathway, while ABTS (2,2′-Azino-bis(3-
ethylbenzothiazoline-6-sulfonic acid) diammonium salt) reacts via an electron transfer (ET)
route. Other mediators, such as TEMPO (2,2′,6,6′tetramethyl piperidine N-oxyl) and its ana-
logues, are suggested to follow an ionic oxidation pathway (Scheme 1B). Despite the proven
efficiency of LMS systems to assist laccases’ reactions, the application of these systems is
partially hindered by their cost and the generation of possible toxic species. This led to an
interest in understanding which mediator’s laccase uses in nature since it is thought that the
biodegradation of the non-phenolic aromatic structures of lignin by fungal laccases occurs
by a process that involves free radicals, derived from their own biodegradation process,
acting as redox mediators. The description of the fungal metabolite 3-hydroxyanthranilic
(3-HAA) as a mediator was one of the first evidences of the contribution of redox mediators
of natural origin to assist lignin biodegradation [56]. The enzymatic oxidation of several
polycyclic aromatic hydrocarbons (PAHs) mediated by other fungal phenolic metabolites
was also achieved with, i.e., 4-hydroxybenzoic acid and 4-hydroxybenzylic alcohol [57].
The mediator 4-hydroxybenzoic acid has been also used for fungicide degradation and
detoxification [58] as well as syringaldehyde, acetosyringone, vanillin, among other nat-
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urally occurring substituted phenols related to lignin, [59] although the stability of the
corresponding phenoxy radicals does not favour their wide utilization.

Molecules 2021, 26, x FOR PEER REVIEW 6 of 26 
 

 

substituted phenols related to lignin, [59] although the stability of the corresponding 

phenoxy radicals does not favour their wide utilization. 

 

Scheme 1. Schematic representation of (A) the laccase-mediator redox cycle; (B) of the mediator–

substrate oxidation via the (i) HAT route, (ii) the electron transfer (ET) route and (iii) the ionic 

oxidation route. Adapted from [20]. 

3. Application of Laccases in Bio-Oxidative Synthesis of Heterocyclic Compounds 

The vast majority of laccase biocatalytic synthetic processes have been reported using 

phenols as substrates. The reactions involve the radical-coupling of phenolic monomers and 

cross-coupling of substituted catechols and hydroquinones with nitrogen-based 

nucleophiles via in situ generated ortho- and para-quinones and have provided new 

synthetic routes to aminoquinones and other C–N coupling derivatives [9,60,61,62,63,64]. 

Far less reported are the oxidative reactions of laccases with a wide range of different 

aromatic amines and their radical-coupling reactions, involving the generated o- and p-

benzoquinonediimine or benzoquinoneimine intermediates, leading to relevant bio-

products. Noteworthy, the dual behaviour of these compounds as substrates vs. 

nucleophiles is a key feature for investigating alternative synthetic approaches to the 

synthesis of heterocyclic compounds [65,66,67]. 

Scheme 1. Schematic representation of (A) the laccase-mediator redox cycle; (B) of the mediator–
substrate oxidation via the (i) HAT route, (ii) the electron transfer (ET) route and (iii) the ionic
oxidation route. Adapted from [20].

3. Application of Laccases in Bio-Oxidative Synthesis of Heterocyclic Compounds

The vast majority of laccase biocatalytic synthetic processes have been reported using
phenols as substrates. The reactions involve the radical-coupling of phenolic monomers
and cross-coupling of substituted catechols and hydroquinones with nitrogen-based nucle-
ophiles via in situ generated ortho- and para-quinones and have provided new synthetic
routes to aminoquinones and other C–N coupling derivatives [9,60–64]. Far less reported
are the oxidative reactions of laccases with a wide range of different aromatic amines and
their radical-coupling reactions, involving the generated o- and p-benzoquinonediimine or
benzoquinoneimine intermediates, leading to relevant bio-products. Noteworthy, the dual
behaviour of these compounds as substrates vs. nucleophiles is a key feature for investigat-
ing alternative synthetic approaches to the synthesis of heterocyclic compounds [65–67].
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Several laccases have been employed in the enzymatic synthesis of oligomers of
arylamines, those of fungal origin such as from T. versicolor, Pycnoporous cinnabarinus,
Pleurotus ostreatus, Cerrena unicolor, T. villosa, Myceliophthora thermophila, Agaricus bisporus, as
well as the bacterial CotA laccase from Bacillus subtilus (see Table 1). The main products and
the product distribution were shown to be critically dependent of the reaction conditions
employed, namely ratio of laccase/arylamine concentration, buffer medium, the presence
of organic co-solvents, the pH and temperature conditions and duration of reactions.
We have undertaken systematic studies using a wide range of substituted arylamines
and the bacterial CotA-laccase [65–70] that showed the importance of the substitution
pattern and the electronic nature of the substituents in the product distribution as well
as the type of structures to be obtained (Figure 3). The efficiency of the CotA laccase
enzymatic system was found to be strictly dependent on (i) the difference between the
redox potential of the enzyme (550 mV) [71] and the substrates, and (ii) the pH of the
reaction that affects both the catalytic activity of laccase and the redox potentials of the
substrates, i.e., their susceptibility for oxidation [68]. For example, the susceptibility to
enzymatic transformation relies on the electron density at the amino group and electron-
donating substituents increasing the yields of reaction; likewise, anilines substituted by
electron-accepting groups in para positions did not undergo enzymatic transformations [68].
The CotA-laccase oxidation of o-phenylenediamines, substituted p-diphenylamines and
o-aminophenols, among others, at the neutral to the basic range of pH, yielded dimeric
and trimeric dyes [68–70] as well as substituted heterocyclic frameworks (phenazine,
phenoxazinone, carbazole derivatives) [65–67] at the neutral to basic range of pH values
(Figure 3). The formation of azo dyes was also observed as secondary products of laccase´s
biotransformation [65,67,68] or as the main products using appropriate arylamines as
substrates in the presence of ABTS as mediator [70].
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Regarding the cyclization reactions catalysed by laccases, several reports in the last
decades have arisen on the formation of several nitrogen-based heterocyclic cores (benzim-
idazoles, benzothiazoles, quinazoline and quinazolinone derivatives, phenazines, phenox-
azine and phenoxazinones, phenothiazines and benzothiadiazine-8-ones) as well as some
oxygen based heterocyclic moieties (benzoxazoles and benzofurans). The most relevant
synthetic pathways for N-based and O-based heterocyclic compounds mediated by laccases
are listed in Table 1, which summarize also the optimized reaction conditions and obtained
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yields. Most of these heterocyclic aromatic compounds are important active pharmaceu-
tical ingredients, associated to a wide range of biological and pharmacological activities
such as anti-tumour, anti-fungal, antiviral, anti-allergic, antidepressant, antioxidant, anti-
HIV, anticonvulsant, anti-diabetic, antipsychotic, anti-malarian and anti-inflammatory
activities [10,22,72–77].

Table 1. Synthetic pathways for nitrogen- and oxygen-based heterocyclic compounds mediated by laccases at optimized
reaction conditions.

Product Enzyme Laccase
Microbial Source Commercial Reaction Conditions Ref.

Five-membered rings

Benzofuran
derivatives

TvL Trametes versicolor –1 Acetate buffer (0.2 M), pH 4.37, r.t., 3–7 h, (51–99%) [78]

AbL Agaricus bisporus –1 Phosphate buffer (0.2 M), pH 6.0, r.t., 20–49 h,
(88–99%) [78]

TvL Trametes versicolor Fluka, Buchs Acetate buffer, pH 4.38, r.t., 5h, 67% [79]

AbL Agaricus bisporus Fluka, Buchs Phosphate buffer (0.2 M), pH 5.96, r.t., 18–24 h,
(70–97%) [79]

AbL Agaricus bisporus –1 Phosphate buffer (0.2 M), pH 6.0, r.t., 17–24 h,
(55–98%) [80]

MtL Myceliophthora
thermophila

Suberase®,
Novozymes

Phosphate buffer (0.1 M), pH 7.15, r.t., 24 h,
(37–98%)

[81,
82]

PcL Pycnoporus
cinnabarinus –2 O2, phosphate/citrate buffers (0.1 M), pH 7.0, HBT,

r.t., 12 h, (39–65%) [83]

2-
arylbenzimidazoles

– –
Novoprime Base

268,
Novozymes

Acetate buffer (0.1 M): CH3CN (50:50), pH 4.0, r.t.,
2–24 h, (56–88%) [10]

AbL Agaricus bisporus Fluka Phosphate buffer (0.2 M) or buffer: methanol (5:2),
pH 6.0, r.t., 3–18 h, (50–99%) [72]

TvL Trametes versicolor Sigma-Aldrich

TvL: TEMPO immobilized on magnetic iron (II,III)
oxide nanoparticles heterogeneous

catalyst, citrate buffer (10 mM), pH 4.5, 40 ◦C, 10 h,
(69–88%)

[84]

Benzothiazole
derivatives

– –
Novoprime Base

268,
Novozymes

Acetate buffer (0.1 M): CH3CN (50:50), pH 4.0,
25 ◦C, 24 h, (48–88%) [10]

TvL Trametes versicolor Sigma-Aldrich
TvL: DDQ (10% mol) catalytic system, phosphate

buffer (0.1 M):CH3CN (4%), pH 5.0, 45 ◦C, 24h,
(65–98%)

[85]

AbL Agaricus bisporus ASA
Spezialenzyme

Phosphate buffer (0.2 M): ethanol (10%), pH 6.0,
r.t., 12–28 h, (78–97%) [86]

Six-membered rings

Quinazoline
and

quinazolinone
derivatives

TvL Trametes versicolor Sigma-Aldrich
O2 or air, TvL: DDQ catalytic system, phosphate
buffer (0.1 M): CH3CN (4%), pH 4.5, 45 ◦C, 24 h,

(80–95%)
[85]

TvL Trametes versicolor Sigma-Aldrich
O2 or air, TvL: DBTC or TvL/TEMPO catalytic

systems, phosphate buffer (0.1 M): CH3CN (4%),
pH 4.5, 45 ◦C, 20–24 h, (40–96%)

[87]

Phenazines

MtL Miceliophthora
termophila –1 Britton–Robinson buffer (0.1 M), pH 5.0, 60 ◦C, 1h [88]

CotA-
laccase Bacillus subtilis –2 Phosphate buffer (0.1 M): ethanol (10%), pH 6–7,

r.t., 2–24 h, (30–96%)
[65,
67]

PoL Pleurotus ostreatus –2 Free PoL and immobilised on porous Purolite®

carriers, tartrate buffer (40 mM), pH 5.5, 28 ◦C, 48h
[89]

LAC Cerrena unicolor –2 Air, tartrate buffer (0.1 M), pH 4.0–4.5, 28 ◦C, 72 h,
(19–27%) [90]
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Table 1. Cont.

Product Enzyme Laccase
Microbial Source Commercial Reaction Conditions Ref.

Phenoxazines
and phenoxazi-

nones

TvL Trametes versicolor –2
Free and immobilized TvL on

polyacrylamide gel, phosphate buffer (0.1 M),
pH 5.0, 25 ◦C, 1 h, (38–74%)

[91]

TvL Trametes versicolor –2 Phosphate buffer (0.066 M): methanol (2%),
pH 5.0, 20 ◦C, 0.5–23 h, (24–72%) [92]

TvL Trametes versicolor Oxyzym LA,
Bioscreen e.K

Phosphate buffer (0.1 M), pH 6–7, 25 ◦C, 24 h,
(75–90%) [93]

TvL Trametes versicolor
Sigma-Aldrich
Oxyzym LA,
Bioscreen e.K

Acetate buffer (0.2 M): methanol (5%), pH
6.0, 25 ◦C, 16 h [94]

TvL Trametes versicolor Oxyzym LA,
Bioscreen e.K

Acetate buffer (0.2 M): methanol (5%), pH
4–6, 25 ◦C, 24h, (40–93%) [95]

CuL Cerrena unicolor –2 Tartrate buffer (0.1 M), pH 5, 25 ◦C, 24 h [96]
CotA-

laccase Bacillus subtilis –2 Phosphate buffer (0.1M): ethanol (10%), pH
6–7, r.t., 2–24 h, (59–97%)

[65,
67]

Phenothiazine
derivatives

TvL Trametes villosa Novo Nordisk
Biochem

Acetate buffer (0.1 M): methanol (15%), pH
5.0, r.t., 6 h, (24–61%) [97]

Not mentioned Sigma-Aldrich Phosphate buffer: CH3CN (3:1), pH 6.5, 12 h,
(83–95%) [98]

1 Not mentioned; 2 Not commercial. DDQ—2,3-dichloro-5,6-dicyano-1,4-benzoquinone; DBTC—3,5-di-tert-butylcathecol.

3.1. Synthesis of Five-Membered Ring Heterocycles
3.1.1. Synthesis of Benzofuran-Based Heterocycles

Benzofurans represent one of the most studied families of O-heterocycle compounds
owing to their relevance as potential natural drug lead compounds. The oxidative capacity
of laccases was explored to mediate the synthesis of benzofuran derivatives through
cascade reactions between catechols and 1,3-dicarbonyl compounds. The formation of
coumestans and related O-heterocycles was reported using the T. versicolor laccase as a
biocatalyst for the domino reactions between 4-hydroxy-6-methyl-2H- pyran-2-one or
substituted 4-hydroxy-2H-chromen-2-ones and catechols (Scheme 2A) [78]. A number of
different heterocyclic systems were also reported with the A. bisporus laccase in domino
reactions between catechols and several cyclic and heterocyclic (pyridinones, quinolinones,
thiocoumarins) 1,3-dicarbonyls [79,80,99]. For example, the reactions of cyclohexane-1,3-
diones with catechols in the presence of the A. bisporus laccase afforded 3,4-dihydro-7,8-
dihydroxy-2H-dibenzofuran-1-ones with yields ranging from 70% to 97% (Scheme 2A) [79].
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Scheme 2. (A) Laccase initiated domino reactions with catechols and 1,3-dicarbonyl compounds [78,79]; (B) Mechanistic
proposal for the reaction [78].

As outlined in Scheme 2B, the first step of the reaction is the laccase-catalysed oxidation
of catechol to give the o-benzoquinone, which then reacts with the nucleophilic 4-hydroxy-
6-methyl-2H-pyran-2-one in an intermolecular 1,4-addition leading to the non-isolable
intermediate (a). After a second laccase-catalysed oxidation of (a), an intramolecular
1,4-addition occurs giving the final heterocycle. Altogether, a domino oxidation/1,4-
addition/oxidation/1,4-addition process takes place [78,79].

Inspired by these initial studies, more work has been successfully performed with the
M. thermophila laccase Suberase® [81,82] and the P. cinnabarinus laccase [83] for the oxidation–
Michael addition of catechols and aliphatic, cyclic, and heterocyclic 1,3-dicarbonyls for
the synthesis of a variety of benzofuran derivatives (Scheme 3). Oxidations occurred in a
non-stereoselective mode but with complete regio- and/or monoselectivity and products
were obtained at excellent purity after a simple extraction. Overall, these studies exemplify
the versatility of the laccase-initiated cascade reactions as an useful synthetic tool for
organic chemists.
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3.1.2. Synthesis of 2-Arylbenzimidazoles

Benzimidazoles and structurally related compounds occupy a pivotal position in
medicinal chemistry and the efficient synthesis of benzimidazoles and their derivatives
remains highly important and a rewarding target for synthetic organic chemists [100,101].

Greener approaches for the formation of benzimidazole derivatives have been re-
ported, including a laccase-catalysed domino reaction between o-phenylenediamine (1,2-
PDA) and substituted benzaldehydes that exclusively afforded 2-aryl-1H-benzimidazoles
in good to very good yields (Scheme 4) [72]. The reaction was suggested to start with
the formation of the Schiff base from the reaction of 1,2-PDA with aldehyde, followed
by an intramolecular ring closure to produce the N,N-acetal. In the second step, the
laccase-catalysed oxidation of the acetal yielded the benzimidazole. The formation of the
1H-benzimidazole ring system was selective under the reaction conditions used, since no
dimerization of o-phenylenediamine into the 2,3-diaminophenazine was observed [72].
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2-aryl-1H-benzimidazoles [10,72].

The one-pot synthesis of 2-aryl-1H-benzimidazoles in good to excellent yields (56–88%)
was reported using the commercial laccases Novoprime Base 268, Suberase® and Denilite®

II Base at room temperature [10]. The selectivity of the reactions of o-phenylenediamine
with aryl aldehydes, bearing both electron-donating and electron-withdrawing substituents,
was studied, by varying several reaction conditions and the use of acetonitrile as co-solvent
was found to promote the selective formation of the 2-aryl-substituted benzimidazoles
(Scheme 4) [10].
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An elegant enzymatic oxidative cascade reaction was designed to synthesise benz-
imidazole (or benzoxazole) derivatives from salicyl alcohol using the T. versicolor laccase
and the mediator TEMPO immobilized separately on amine functionalized iron(II,III)
oxide nanoparticles [84]. Enzyme immobilization on magnetic nanoparticles allows an
easy, fast and clean separation of products, increasing the efficiency of catalytic LMS. In
the first step, aldehydes with electron-withdrawing groups were obtained in relatively
higher yields when compared to aldehydes bearing electron-donating groups. This process
was followed by the condensation of in situ-produced salicylaldehyde derivatives with
o-phenylenediamine (or o-aminophenol) followed by a biocatalytic aerobic dehydrogena-
tion process under mild reaction conditions to synthetise benzimidazole (or benzoxazole)
derivatives (Scheme 5A) [84].
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The proposed mechanism involves the disproportionation of TEMPO oxidized by
the laccase to form an oxoammonium ion at acidic conditions (Scheme 5B). The oxidized
TEMPO oxidizes the alcohol (a) via simultaneous reduction to hydroxylamine to produce
the corresponding aldehyde. This intermediate suffers a nucleophilic addition by the
arylamine to generate the intermediate (b) and produce the final 2-hydroxybenzimidazole.

The reaction conditions were optimized (pH, temperature, incubation time, concentra-
tion of reactants and organic solvents) and the recyclability of the catalytic LMS showed
up to 85% retention of initial activity after 10 runs. In addition to the potential for reuse
without significant losses in performance, other eco-friendly attributes of this catalytic
LMS include its high conversion yields and its ease recovery from the reaction mixtures
using magnets.
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3.1.3. Synthesis of Benzothiazoles

Benzothiazoles are members of the family of fused heterocycles that have attracted
much attention due to their medical applications. The most popular approach for the
synthesis of benzothiazoles is the condensation of 2-aminothiophenols with aldehydes
under oxidative conditions.

The laccase-catalysed cross-coupling reaction between the 2-aminothiophenol with
several substituted aldehydes to afford 2-phenylbenzothiazoles at pH 4.0 and in the pres-
ence of 50% of acetonitrile as a cosolvent was reported (Scheme 6A) [10]. More recently, the
T. versicolor laccase was used in a cooperative catalytic system with 2,3-dichloro-5,6-dicyano-
1,4-benzoquinone (DDQ) for the synthesis of 2-arylbenzothiazoles (65–98% yield) via ox-
idative cyclization of Schiff bases derived from the condensation of 2-aminothiophenol
with aldehydes (Scheme 6B) [85]. Numerous aldehydes such as benzaldehydes bearing
electron-donating and electron-withdrawing groups, heterocyclic and α-β,unsaturated
aldehydes, naphthaldehydes and 9-anthraldehyde were successfully applied to prepare
the corresponding products via the reaction with 2-aminothiophenol, although in some
cases the reactions were incomplete.
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Looking forward the synthesis of novel pyrimidobenzothiazoles with potential an-
ticancer activity, a laccase-catalysed method was set-up using a commercial laccase from
A. bisporus [86]. Catechol and 2,3-dihydro-2-thioxopyrimidin-4(1H)-ones were used as
substrates to synthesize pyrimidobenzothiazoles (one of the possible regioisomers) but,
although the high yields of the regioisomeric mixtures (up to 97%), generally the reactions
were not selective (Scheme 7) [86].
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3.2. Synthesis of Six-Membered Ring Heterocycles
3.2.1. Synthesis of Quinazoline and Quinazolinone Derivatives

Quinazoline and quinazolin-4(3H)-ones are important nitrogen-containing heterocy-
cles and the most convenient method for the synthesis of these valuable compounds is the
cyclization of o-anthranilamides with aldehydes followed by subsequent oxidation [85,87].
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Saadati et al. reported a simple and efficient method for the synthesis of 2-substituted
quinazolines through a cascade reaction of 2-aminobenzylamine and structurally diverse
aldehydes via aerobic oxidative cyclization at pH 4.5 in the presence of laccase/3,5-di-
tert-butylcatechol (DTBC) and laccase/TEMPO catalytic LMS (Scheme 8A). The oxidative
system showed to be compatible with the presence of various substituents at different
positions of the benzaldehyde ring and gave the desired products in moderate to high
yields (40–96%). The same catalytic systems showed to be effective for the synthesis of
other heteroaromatics such as quinoxaline, quinoline, indole and Hantzsch-type pyridine
from aerobic dehydrogenation of their partial saturated precursors [87].
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Recently, a laccase (from T. versicolor)/DDQ bioinspired cooperative catalytic LMS was
used for the synthesis of quinazolin-4(3H)-ones (80–95% yield) in aqueous media at ambient
temperature [85]. The chemoenzymatic synthesis of quinazolinones occurs in a two-step
sequence: (i) chemical cyclization of o-anthranilamide with aldehyde in the presence of
sulfamic acid to afford 2,3-dihydroquinazolin-4(1H)-one, and (ii) chemoenzymatic aerobic
oxidation in the presence of laccase/DDQ catalyst system (Scheme 8B).

The scope of the process was examined by replacing substituted benzaldehydes and
the results showed that both aromatic aldehydes containing electron-donating (methyl and
methoxy) and electron-withdrawing (fluoro and bromo) groups were efficiently converted
to the respective products in very good to excellent yields (80–95%).

3.2.2. Synthesis of Phenazine Derivatives

Phenazine cores are multifunctional and versatile building blocks widely distributed
in a vast array of biologically active compounds. Due to their importance and broad field
of applications, the development of new greener (bio)synthetic methodologies is crucial as
an alternative to chemical routes for the formation of these aromatic frameworks.

The oxidative transformation of o-phenylenediamine, under very mild reaction con-
ditions, in the presence of catalytic amounts of a commercial laccase from A. bisporus
exclusively delivered 2,3-diaminophenazine in 90% yield (Scheme 9A) [72]. The oxidative
dimerization of 2,5-diamino-benzenesulfonic acid by the M. termophila laccase resulted in
the formation of the 2,7-diaminophenazine-1,6-disulfonic acid (Scheme 9B) [88].

The formation of different heterocyclic scaffolds, e.g., symmetric and asymmetric
phenazines, phenoxazinones and carbazoles by oxidation of structurally different aro-
matic substrates assisted by the bacterial B. subtilis CotA-laccase was also reported by
us [65–67]. The CotA-laccase oxidative homocoupling reactions of ortho-para- or meta-para-
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disubstituted aromatic amines resulted in different symmetric and asymmetric phenazines
(Scheme 10) with good to excellent overall conversion yields.
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Scheme 10. Synthesis of phenazine derivatives by oxidative homocoupling reactions of aromatic
amines mediated by CotA-laccase [65–67].

A mechanistic pathway was proposed (Scheme 11) where the initial step of the enzy-
matic process is the two successive one-electron oxidations of the ortho-diamines generating
the ortho-quinone-diimine intermediates (a). These species suffer rapid nucleophilic ad-
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dition by other substrate molecules in its most electrophilic carbon atom, followed by a
proton shift, yielding the first coupling intermediate (b). The second two-step one electron
oxidation is enzymatic and an intramolecular Michael addition of an amino group to the
C5 atom, with the displacement of an R group, leading to aminophenazines, which are
spontaneously oxidised in air to produce the final asymmetric heterocyclic products [65,94].
For the meta-para-disubstituted aromatic amines, the first step is the in situ generation of
a para-benzoquinonediimine intermediate (a’) in a similar way as described above. This
intermediate further reacts with the nucleophilic amino group of another molecule at
the ortho position, adjacent to the R1 group resulting in the formation of dimeric struc-
tures. This second step, followed by a proton loss, yields the first coupling intermediate
(b’). This non-isolable product underwent a subsequent oxidation, probably mediated by
laccase, followed by an intramolecular Michael addition to form the symmetric substi-
tuted phenazines.
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The formation of a phenazine based orange dye by the homomolecular transformation
of the 2-amino-3-methoxybenzoic acid in the presence of free and immobilised laccase
from the P. ostreatus strain was very recently reported (Scheme 12A) [89]. Interestingly, the
enzyme, when immobilised on Purolite® carriers, showed a remarkable storage stability
(21 days) and thermostability at 40 ◦C and 60 ◦C as compared to its free form. The same
substrate 2-amino-3-methoxybenzoic acid can be involved in heterocoupling reactions with
aminonaphthalene sulfonic acid isomers, leading to phenazine dyes, with the C. unicolor
laccase, in mild conditions of pH, temperature and pressure (Scheme 12B) [90]. These dyes
exhibited excellent dyeing properties as well as antibacterial and antioxidative activities;
therefore, the proposed enzyme-mediated synthesis represents an alternative eco-friendly
route for the synthesis of novel antimicrobial compounds with high importance for the
medical textile industry.
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3.2.3. Synthesis of Phenoxazine and Phenoxazinone Derivatives

Phenoxazines and phenoxazinones are important classes of heterocyclic compounds
containing a tricyclic iminoquinone core structure, also being an important building block
present in compounds displaying significant biological activities and redox properties.
Simple 2-aminophenoxazin-3-ones and 3-aminophenoxazin-2-one exhibit antitumor, an-
timicrobial, and antiviral activity in vitro and in vivo [75,102–105]. Due to their importance,
a variety of synthetic procedures has been described [106,107].

Phenoxazinone derivatives have been synthesized by fungal laccases of different
origins [91,92,108]. In 1999, Osiadacz et al. reported the synthesis of cinnabarinic acid and
2-amino-4,6-dimethyl-3-phenoxazinone-1,9-carboxylic acid (actinocin), a pharmaceutical
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product proven to be effective in the fight against cancer, via a laccase-catalysed reaction
from 3-hydroxyanthranlic acid (3-HAA) and 4-methyl-3-hydroxyanthranilic acid (4-M-3-
HAA), respectively, as shown in Scheme 13A. The laccase isolated from T. versicolor was
immobilized in polyacrylamide gel and the reaction performed at pH 5.0 in water and an
acetonitrile/water mixture yielding actinocin with a 53% yield [91].
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Scheme 13. (A) Oxidation of 3-hydroxyanthranilic acid (3-HAA) and 4-methyl-3-hydroxyanthranilic acid (4-M-3-HAA) to
cinnabarinic acid and actinocin, respectively, using T. versicolor laccase [91,108]; (B) synthesis of 2-aminophenoxazin-
3-one derivatives [92] and (C) oxidation of sulphonamide derivatives of 3-hydroxyorthanilic acid and 3-amino-2-
hydroxybenzenesulfonic acid by T. versicolor and C. unicolor laccases into symmetrically and non-symmetrically substituted
phenoxazinones [94–96].

The synthesis of cinnabarinic acid and actinocin promoted by laccases was revisited
by Giurg et al., who compared chemical and enzymatic oxidative methods for the oxida-
tive homo-dimerizations of different 2-aminophenols promoted by laccases to afford the
respective 2-aminophenoxazin-3-one derivatives (Scheme 13B). For the enzymatic meth-
ods, the best results were achieved with the air/laccase system which allow to obtain the
correspondent 2-aminophenoxazin-3-ones in moderate to high yields (24–72%) [92].

Since then, other reports focused on the enzymatic condensation of o-aminophenols
have been reported. The oxidative dimerization of 3-HAA and its sulfonated analog
3-hydroxyorthanilic acid (3-HOA), mediated by the fungal laccase from P. cinnabarinus, af-
forded cinnabarinic acid and the 2-amino-3-oxo-3H-phenoxazin-1,9-disulfonic acid, respec-
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tively [93]. Looking forward to the synthesis of a new class of water-soluble chromophores
and potential bioactive molecules through a biocatalytic process, the oxidative homo- and
cross-coupling reactions of numerous sulphonamide derivatives of 3-hydroxyorthanilic
acid, as well as 3-amino-2-hydroxybenzenesulfonic acid, have been explored using the
commercial laccase from T. versicolor leading to symmetrically and non-symmetrically
substituted phenoxazinones [94,95]. The 3-amino-4-hydroxybenzene sulfonic acid has
also been transformed to corresponding phenoxazinones via laccase-catalysed oxidative
dimerization (Scheme 13C) [96].

More recently, we used the bacterial CotA-laccase to promote the biotransformation
of diverse 2-aminophenol derivatives (2-aminophenol, 2,5-diaminophenol and 1-amino-
2-naphthol) as model substrates. The corresponding phenoxazinone dyes were obtained
within 2 h, in good to excellent yields (59–97%) (Scheme 14). The scope of the substrates
oxidized by the CotA-laccase was further extended to a pyridine derivative yielding the
correspondent pyridyloxazinone [65,67].
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o-aminophenols mediated by CotA laccase [65,67].

The mechanistic pathway of phenoxazinones biotransformation was revisited consid-
ering the redox properties of the substrates and their relative enzymatic rates of conversion
(Scheme 15). The initial enzymatic step is the two successive one-electron oxidation of
the ortho-aminophenols, generating ortho-quinone-imine intermediates (a). These oxidized
electrophilic species suffer nucleophilic addition by another substrate molecule (or another
similar substrate) followed by a proton shift, yielding the first coupling intermediate (b).
A compound, non-substrate of the enzyme, could still act as a nucleophile to another sus-
ceptible o-aminophenol yielding a cross-coupled substituted phenoxazinone. The second
two step one-electron enzymatic oxidation and an intramolecular Michael addition of the
phenol group to the C5 atom, with the displacement of an R group, leads to a fully reduced
aminophenoxazine, which is spontaneously oxidised in air to produce the final heterocycle
product [65,94].
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3.2.4. Synthesis of Phenothiazine Derivatives

Phenothiazines are heterocyclic sulphur compounds applicable in many areas of
medicine, in particular in the treatment of neurodegenerative diseases such as Alzheimer’s
and Parkinson’s diseases [74]. Considering that laccases can oxidize hydroquinones and cat-
echols to produce in situ p- and o-quinones, the cross-coupling reactions involving sulphur-
based nucleophiles (1,2-ethanedithiol or 2-aminothiophenol) were exploited providing a
sustainable approach for the synthesis of 2,3-ethylenedithio1,4-quinone and phenothiazine
substructures (Scheme 16A) [97,109].

The coupling between 1,4-quinones and 2-aminothiophenol mediated by the T. villosa
laccase, yielded the correspondent phenothiazine derivatives at 24–61% yields (Scheme 16A)
providing a sustainable approach for the synthesis of this biologically important class of
compounds. However, relatively low yields were obtained (9–53%) when the reaction
started from the hydroquinones, due to the competitive reaction of dimerization of 2-
aminothiophenol [97].

Scheme 16B shows the reaction mechanism proposed, where the initial addition of
the aromatic amino group to a carbonyl group of the 1,4-quinone yields the correspondent
imine, followed by the addition of sulphur to an adjacent alkene carbon and subsequent
tautomerization to produce the N,S-cyclic intermediate, which final oxidation results in the
formation of the phenothiazine derivative.

Similar compounds were previously obtained by Bhalerao et al. through the reaction of
benzoquinone, generated from hydroquinone by an oxidative in situ reaction with laccase,
with various 5-substituted-4-amino-3-mercapto-1,2,4-triazoles (Scheme 16C). A mild and
efficient one step synthesis of 3-substituted-1,2,4-triazolo(4,3-b)(4,1,2) benzothiadiazine-8-
ones was proposed, giving rise to quantitative yields of corresponding products. In general,
the yields of the products have been good and seem not to depend on the substitution
pattern of the substrates [98].
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4. Final Remarks

The use of laccases in organic synthesis is a promising alternative to the classical
chemical oxidation methods resulting in the synthesis of a wide range of heterocyclic com-
pounds. The variety of different aromatic scaffolds obtained by this enzymatic approach
clearly shows that laccases are promising tools for both phenol and aromatic amines oxi-
dation, boosting new eco-friendly alternatives to the production of value-added aromatic
compounds. The inclusion of small quantities of green co-solvents is also well tolerated
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by the laccases, for the cases where the water solubility of the monomers is very low. This
tolerance also allows the combination/integration of chemical and biocatalytic steps in the
same synthetic route, broadening the scope of applications of laccases in organic synthesis.
From an environmental point of view, the use of enzymes as biocatalysts is also critical,
since the reactions can be carried out at ambient temperature in an aqueous medium, in
accordance with principles of green chemistry. The increasing number of characterized
laccases from different origin and displaying distinct properties, e.g., in the optimal pH and
temperature, is also very auspicious for biotransformations relying on the activity of these
enzymes. Moreover, the generation of tailor-made enzymes using protein engineering
techniques also represents a proficient way to design highly efficient and stable biocatalysts
required for handling other limiting factors such as thermostability, resistance to organic
solvents, extremes of pH (acid or basic) and inhibitors.
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