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Abstract
In tropical forest ecosystems leaf litter from a large variety of species enters the de-
composer system, however, the impact of leaf litter diversity on the abundance and 
activity of soil organisms during decomposition is little known. We investigated the 
effect of leaf litter diversity and identity on microbial functions and the abundance 
of microarthropods in Ecuadorian tropical montane rainforests. We used litterbags 
filled with leaves of six native tree species (Cecropia andina, Dictyocaryum lamarcki-
anum, Myrcia pubescens, Cavendishia zamorensis, Graffenrieda emarginata, and Clusia 
spp.) and incubated monocultures and all possible two- and four-species combina-
tions in the field for 6 and 12 months. Mass loss, microbial biomass, basal respiration, 
metabolic quotient, and the slope of microbial growth after glucose addition, as well 
as the abundance of microarthropods (Acari and Collembola), were measured at both 
sampling dates. Leaf litter diversity significantly increased mass loss after 6 months 
of exposure, but reduced microbial biomass after 12 months of exposure. Leaf lit-
ter species identity significantly changed both microbial activity and microarthropod 
abundance with species of high quality (low C-to-N ratio), such as C. andina, improv-
ing resource quality as indicated by lower metabolic quotient and higher abundance 
of microarthropods. Nonetheless, species of low quality, such as Clusia spp., also in-
creased the abundance of Oribatida suggesting that leaf litter chemical composition 
alone is insufficient to explain variation in the abundances of soil microarthropods. 
Overall, the results provide evidence that decomposition and microbial biomass in 
litter respond to leaf litter diversity as well as litter identity (chemical and physical 
characteristics), while microarthropods respond only to litter identity but not litter 
diversity.
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1  | INTRODUC TION

The great majority of plant material enters the soil as litter, in the 
form of leaves, stems, and roots. Decomposition of these mate-
rials is an essential process for nutrient cycling and provides the 
basal resources of the soil food web (Berg et  al.,  1993; Berg & 
McClaugherty,  2008). In addition to providing food resources, 
leaf litter accumulating on the soil surface forms a variety of 
microhabitats for soil organisms, with more diverse litter mate-
rials increasing habitat variability, but also providing the opportu-
nity for enhanced nutrient acquisition (Bardgett,  2005; Gessner 
et  al.,  2010). Therefore, high diversity of leaf litter in mixtures 
is expected to be an important determinant of the diversity and 
structure of decomposer communities and, consequently, litter 
decomposition (Gessner et al., 2010; Hättenschwiler et al., 2005; 
Trogisch et al., 2016).

Tropical montane rainforest ecosystems harbor an excep-
tional diversity of plant species (Beck & Ritcher,  2008; Homeier 
et al., 2008; Myers et al., 2000) and are associated with high num-
bers of animal species above- and belowground (Brehm et al., 2008; 
Maraun et al., 2008; Paulsch & Müller-Hohenstein, 2008). However, 
the effect of plant litter diversity on decomposer communities 
and decomposition of litter in this ecosystems is little studied (Illig 
et  al.,  2008; Krashevska et  al.,  2017). Controlled experiments are 
needed to assess the effect of diversity and composition of litter 
species in mixtures on litter decomposition and microarthropod 
abundance.

Differences in leaf litter chemical composition are recognized 
as the main drivers of decomposition rates at the ecosystem level 
(Coûteaux et al., 1995; Hättenschwiler et al., 2005). Studies have 
reported positive, negative, but also no effects of litter mixtures on 
decomposition, with mixture effects typically related to variations 
in litter nutrient concentrations (Gartner & Cardon, 2004; Handa 
et al., 2014; Makkonen et al., 2012). However, differences in lit-
ter chemistry are not the only factors contributing to variations in 
litter decomposition in mixtures (Hättenschwiler, 2005; Hoorens 
et al., 2003). Physical leaf litter traits, such as toughness, surface 
structure, and shape, also contribute to microhabitat diversity and 
modify microenvironmental conditions of decomposer organisms, 
resulting in either accelerated or decelerated litter decomposition 
(Hansen & Coleman, 1998; Kaneko & Salamanca, 1999). Therefore, 
species identity, which encompasses chemical and physical char-
acteristics, may well explain diversity effects on decomposition. 
Indeed, the effect of litter species identity has been found to 
be more powerful in explaining colonization of litter by inverte-
brates than litter diversity (Eissfeller et  al.,  2013; Korboulewsky 
et  al.,  2016; Schädler & Brandl,  2005; Vos et  al.,  2011; Wardle 
et al., 2006).

Commonly, studies investigating effects of litter diversity on 
litter decomposition focused on microorganisms and detritivore 
invertebrates (Gessner et  al.,  2010). Microorganisms are assumed 
to respond more sensitively to litter diversity than invertebrates as 
they directly depend on the variety of litter chemical compounds 

needed for metabolism and growth (Bardgett & Shine,  1999; 
Chapman et  al.,  2013). By contrast, the response of invertebrate 
detritivores, particularly the key decomposer groups Acari and 
Collembola, more strongly depends on the identity rather than di-
versity of leaf litter species and varies with the stage of litter de-
composition (González & Seastedt, 2001; Illig et al., 2008; Kaneko 
& Salamanca, 1999; Korboulewsky et al., 2016; Wardle et al., 2006). 
Indeed, many decomposer microarthropods have the ability to se-
lect among co-occurring leaf litter species according to litter palat-
ability and/or the microorganisms colonizing the litter (Klironomos 
et al., 1992; Korboulewsky et al., 2016; Schneider & Maraun, 2005). 
Studies linking microbial-dominated litter decomposition processes 
and colonization of litter by detritivore invertebrates are needed to 
uncover the mechanisms responsible for litter diversity effects on 
the structure and functioning of the decomposer system, particu-
larly in tropical ecosystems characterized by high diversity of plant 
(tree) species.

In the present study, we investigated the effect of leaf litter di-
versity and identity on the colonization of litter by microorganisms 
and microarthropods including Acari and Collembola after 6 and 
12 months of incubation in Ecuadorian montane rainforests. We hy-
pothesized that (1) microbial growth and activity increase with litter 
diversity, but that the abundance of both Acari and Collembola relies 
more on litter identity. Additionally, assuming that microorganisms 
are limited by multiple nutrients (Demoling et al., 2007; Krashevska 
et al., 2010), we hypothesized that (2) nutrient availability increases 
and microbial stress conditions decrease with time and that (3) the 
presence of high-quality litter benefits microorganisms. Further, as-
suming that Acari and Collembola prefer similar food resources and 
consume both leaf litter tissue and microorganisms (Dhooria, 2016; 
Ruess & Lussenhop, 2005; Seastedt, 1984), we hypothesized that (4) 
the abundance of Acari and Collembola increases as decomposition 
proceeds, particularly in presence of high-quality litter.

2  | MATERIAL S AND METHODS

2.1 | Study site

The study area is located in southern Ecuador on the eastern slopes 
of the Andean Cordillera. The site forms part of the Reserva Biológia 
San Francisco located on the northern borders of the Podocarpus 
National Park at 2,000  m a.s.l. (3°58′S, 79°04′W). The region is 
characterized by a semihumid climate with annual precipitation of 
about 2,200 mm and average annual temperature of 15.2°C (Bendix 
et  al., 2006; Wullaert et  al., 2009). The soil is Gley Cambisol with 
a soil pH of ~3.5 and a thick organic layer up to 35 cm comprised 
of mainly fermentation/humus material overlaid by litter material 
(Moser et  al.,  2007). The tropical rainforest is mostly undisturbed 
and holds an exceptionally high diversity of fauna and flora with 
Rubiaceae, Melastomataceae, and Piperaceae as dominant plant 
families (Beck & Ritcher,  2008; Brehm & Fiedler,  2005; Homeier 
et al., 2010; Maraun et al., 2008).
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2.2 | Experimental design

In September 2008, freshly fallen leaves of six common plant spe-
cies at the study sites [Cecropia andina (Cuatrec.) (CA), Dictyocaryum 
lamarckianum (H. Wendl.) (DL), Myrcia pubescens (Humb. & Bonpl. 
ex Willd.) (MP), Cavendishia zamorensis (A. C. Sm.) (CZ), Graffenrieda 
emarginata (Ruiz & Pav.) (GE), and Clusia spp. (L.) (Cs); ordered by 
increasing C-to-N ratio, see Appendix 1] were collected, dried (60°C 
for 72  hr), and used to fill 20  ×  20  cm and 4  mm nylon mesh lit-
terbags. Initial chemical composition of the litter species is given in 
Appendix 1. The leaves used had no signs of herbivory, fungal infec-
tion or atypical texture or color. Large leaves exceeding the size of 
the litter bags were cut into ~5  ×  5  cm pieces. Single-species lit-
terbags (12 g each) and mixtures with all possible two- (6 g per spe-
cies) and four-species combinations (3 g per species) were prepared, 
resulting in a total of 36 litterbag types with three levels of species 
diversity (1, 2, and 4 leaf litter species). Litterbags were randomly 
placed in the field on top of the undisturbed litter layer and fixed 
with nails in four blocks. Minimum distance between the blocks was 
20 m. One replicate of each treatment was harvested after 6 and 
12 months.

2.3 | Analytical procedures

After harvest, material in each litterbag was separated into two sub-
samples of equal weight, disturbing the fauna as little as possible but 
ensuring that all litter types were present in both halves. One half 
was used for microarthropod extraction and the other for analysis 
of microbial parameters. Microarthropods were extracted by heat 
over one week using a modified high gradient extractor and then 
stored in 70% ethanol (Kempson et  al.,  1963; Macfadyen,  1961). 
Microarthropods were determined to group level [Collembola 
(Insecta), Oribatida, Mesostigmata, and Prostigmata (Acari)] using 
Schaefer (2018). The dry litter was sorted to species, weighed and 
used to measure litter chemical composition.

Microbial basal respiration (BR) and microbial biomass (Cmic) were 
determined using an automated respirometer system (Scheu, 1992). 
BR (μl O2 g−1 dry weight hr−1) was measured at 22°C and calculated 
as mean of O2 consumption rates 10 to 20 hr after attachment of the 
samples to the respirometer system. Cmic was measured by the sub-
strate-induced respiration method (SIR; Anderson & Domsch, 1978; 
Beck et al., 1997). The maximum initial respiratory response (MIRR; 
µl O2 g−1 dry weight hr−1) was measured at 22°C after the addition of 
glucose to saturate the catabolic activity of microorganisms. MIRR 
was calculated as the average of the lowest three readings within 
the first 10 hr, and Cmic was calculated as Cmic = 38 × MIRR (mg/g dry 
weight). Respiration rates between the lowest (usually 3–6 hr after 
glucose addition) and highest reading were taken to calculate the 
slope of microbial growth (+CSlope). Data were ln-transformed, and 
the slope determined by linear regression. The microbial metabolic 
quotient (qO2; μl O2 mg−1 Cmic hr−1) was calculated by dividing BR 
by Cmic.

Leaf litter mass loss (Mloss) was calculated as Mloss 
(%) = (m0 – m1/m0) × 100, where m0 is the initial dry weight and m1 
the dry weight of leaf litter at harvest. To measure chemical compo-
sition, leaves from each of the six species were dried (65°C for 72 hr) 
and milled to particles <1  mm. Carbon (C) and nitrogen (N) were 
measured using a CN elemental analyzer (Vario EL III, Elementar). 
Total element analysis was measured by an ICP-OES system (ICP-
OES, Optima 5300 DV, Perkin Elmer). Lignin and cellulose concen-
tration were measured based on the methanol–chloroform–water 
(2:2:1) extraction method detailed in Allen et  al.  (1974). For litter 
mixtures, the proportion of elements per litterbag was calculated 
by proportionally summing the amount of the respective elements 
in the individual litter species. The chemical concentrations of el-
ements, lignin and cellulose, were expressed as milligram per gram 
litter dry weight (dw).

2.4 | Statistical analyses

Analyses were performed using R version 3.6.0 (R Core Team, 2014). 
Data were checked for normality and homoscedasticity using 
Shapiro–Wilk test and Bartlett's test (package “stats”). To improve 
normality and homoscedasticity, data were transformed using 
the “bestNormalize” function (package “CRAN”). Changes in Mloss, 
Cmic, BR, qO2, +CSlope, and the abundance of microarthropod taxa 
(Collembola, Oribatida, Mesostigmata, and Prostigmata) were ana-
lyzed using individual linear mixed-effects models (package “nlme”). 
In each model, the fixed factors litter diversity (LD; 1, 2, and 4 lit-
ter species), time of exposure (6 and 12 months), and the presence/
absence all leaf litter species (litter identity; 1,0; CA, DL, MP, CZ, 
GE, and Cs), as well as the interactions (time  ×  LD and time  ×  lit-
ter identity), were fitted in a hierarchical design. Block was fitted 
first as random factor followed by the fixed factors litter diversity, 
time, interaction between litter diversity and time, and litter iden-
tity. To assess the relative importance of the six leaf litter species, 
analyses were repeated changing the order of fitting individual 
litter species and their interactions. F- and p-values for individual 
litter species in the text and tables refer to those when fitted first 
(Schmid et  al.,  2002, 2017). Differences between means were in-
spected using Tukey's honestly significant difference test (package 
“emmeans”). Values presented in text are means ± SD of non−trans-
formed data. Pearson correlation coefficients were calculated to 
investigate relationships between C-to-N ratio, Cmic, qO2 and Mloss, 
and the abundance of Collembola and Acari (package “stats”).

3  | RESULTS

3.1 | Initial litter chemistry

Initial N concentrations were highest in C. andina, followed by D. 
lamarckianum, M. pubescens, C. zamorensis, G. emarginata, and Clusia 
spp. (1.08%, 0.73%, 0.60%, 0.50%, 0.40%, and 0.40%, respectively), 
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resulting in C-to-N ratios between 36.3 in C. andina and 107.2 in 
Clusia spp. (see Appendix 1 for details on litter chemistry). Lignin 
concentrations were generally high and varied between 63.9% in 
Clusia spp. to 42.6% in G. emarginata. By contrast, concentrations 
of cellulose were lowest in Clusia spp. (13.0%), low in C. andina 
(29.6%), but similar in the other four litter species varying between 
35.8% and 40.7%. Concentrations of P and other litter elements 
also varied markedly between leaf litter species with P, Ca, Mg, K, 
and Fe being highest in C. andina, and P and Ca being lowest in G. 
emarginata.

3.2 | Mass loss

Generally, Mloss was higher after 12 than after 6 months of incuba-
tion with averages of 52.6% ± 7.1% and 41.8% ± 6.9% of initial, re-
spectively (Table 1). Mloss varied significantly with species diversity 
but the effect depended on time (Table 1; Figure 1a); after 6 months 
Mloss was lower in single species (average of 29.6%  ±  6.9%) com-
pared to the two and four litter species treatments (43.1%  ±  3.8 
and 44.9% ± 3.6%, respectively), while after 12 months decomposi-
tion was similar in each of the litter diversity treatments. Further, 
Mloss varied significantly with litter species identity; however, this 
depended on time, with the effect generally being restricted to the 
first sampling date and to four of the six litter species (Table 1). At 
the first sampling date, Mloss increased in presence of C. andina from 
39.7% ± 7.4% to 44.4% ± 5.1%, in presence of C. zamorensis from 
40.5% ± 7.9% to 43.2% ± 5.3%, in presence of G. emarginata from 
39.4% ± 7.6% to 44.8% ± 4.2%, and in presence of Clusia spp. from 
39.6% ± 7.3% to 44.6% ± 5.1%. Mloss positively correlated with Cmic, 
BR, qO2, +CSlope, and the abundance of Collembola and Oribatida, 

but negatively with the litter C-to-N ratio (Pearson correlation coef-
ficients; Table 2).

3.3 | Microbial parameters

Parallel to Mloss, the microbial parameters Cmic, BR, qO2, and +CSlope 
significantly increased from 6 to 12  months (Table  1; for means 
see Appendix  2). Among microbial parameters, only Cmic varied 
with litter diversity. Unlike Mloss, the effect of litter diversity was 
restricted to the second sampling date, decreasing in the order 
one > two > four litter species (Figure 1b). Further, Cmic also varied 
with litter species identity, but the effect was restricted to treat-
ments with G. emarginata and depended on time. At the second sam-
pling date, Cmic decreased from 15.23 ± 11.74 to 11.58 ± 7.37 mg 
Cmic g

−1 dw in litterbags without and with G. emarginata, respectively. 
The other microbial parameters only were significantly affected by 
litter species identity, with the effects in part varying with time 
(Table  1). BR decreased significantly in presence of M. pubescens 
from an average of 157.3 ± 107.7 to 133.1 ± 69.40 μl O2 mg−1 Cmic 
hr−1 in litterbags without and with M. pubescens, respectively. qO2 
decreased from 14.90 ± 5.65 to 13.50 ± 4.18 μl O2 mg-1 Cmic hr−1 in 
presence of C. andina, irrespective of sampling date, but it increased 
from 14.44 ± 5.37 to 16.91 ± 7.45 45 μl O2 mg-1 Cmic hr−1 in pres-
ence of C. zamorensis at the second sampling date. +CSlope decreased 
significantly from 0.0097 ± 0.0149 to 0.0061 ± 0.0131 in presence 
of C. zamorensis irrespective of sampling date, but in presence of D. 
lamarckianum it increased from 0.0086 ± 0.0195 to 0.0151 ± 0.0180 
after the second sampling.

Pearson correlation coefficients indicated that Cmic positively 
correlated with Mloss, BR and +CSlope, but negatively with qO2 and 

df Mloss Cmic BR qO2 +CSlope

LD 2, 239 26.32*** 3.01* 1.12 2.01 2.03

Time 1, 239 244.03*** 31.48*** 78.10*** 21.15*** 24.61***

CA 1, 239 0.51 1.63 1.04 7.76** 1.21

DL 1, 239 1.09 <0.01 1.78 1.93 4.59*

MP 1, 239 2.09 <0.01 3.91* 0.46 0.70

CZ 1, 239 0.02 0.53 <0.01 4.49* 4.33*

GE 1, 239 0.43 0.11 0.04 <0.01 0.05

Cs 1, 239 0.97 0.05 0.02 <0.01 0.01

Time × LD 2, 239 43.44*** 4.37** 1.43 1.27 1.73

Time × CA 1, 239 23.01*** 0.12 0.01 <0.01 2.30

Time × DL 1, 239 0.91 0.47 0.11 0.66 3.89*

Time × MP 1, 239 1.76 0.60 3.13 0.60 0.59

Time × CZ 1, 239 7.25** 0.71 0.80 3.76* 2.48

Time × GE 1, 239 35.12*** 6.76** 2.29 0.60 <0.01

Time × Cs 1, 239 21.73*** 1.77 0.07 0.02 2.72

Note: F-values represent those where the respective factor was fitted first. Significant effects are 
given in bold (*p < .05; **p < .01; ***p < .001).
Abbreviation: df, degrees of freedom.

TA B L E  1   F-values of linear mixed-
effects models on the effect of litter 
species diversity (LD), time of exposure 
(Time), and leaf litter species identity 
[Cecropia andina (CA), Dictyocaryum 
lamarckianum (DL), Myrcia pubescens (MP), 
Cavendishia zamorensis (CZ), Graffenrieda 
emarginata (GE), and Clusia spp. (Cs)] on 
mass loss (Mloss), microbial biomass (Cmic), 
basal respiration (BR), microbial metabolic 
quotient (qO2), and the slopes of microbial 
growth after C addition (+CSlope)
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the litter C-to-N ratio. BR positively correlated with Mloss, Cmic, qO2, 
+CSlope, and the abundance of Oribatida, but negatively with the 
abundance of Mesostigmata and the litter C-to-N ratio. qO2 posi-
tively correlated with Mloss and BR, but negatively with Cmic and the 
abundance of Mesostigmata. +CSlope positively correlated with Mloss, 
Cmic, and BR, but negatively with the litter C-to-N ratio (Table 2).

3.4 | Microarthropods

The number of Collembola, Oribatida, and Prostigmata significantly 
increased from 6 to 12 months, but the abundance of Mesostigmata 
decreased (Table 3; Figure 2; for means, see Appendix 3). None of 
the soil microarthropod taxa investigated varied with litter diver-
sity, although they did vary significantly with litter species identity 
(Table  3). Collembola abundance (25.3% of total microarthropods; 
overall mean of 70 ± 80 ind. 10 g−1 litter dw) increased significantly 
in presence of C. andina by 43.4% and in presence of G. emargi-
nata by 29.2%, but decreased in presence of D. lamarckianum and 
C. zamorensis by 39.1% and 38.1%, respectively (Appendices 3 and 
4). However, the effect varied with time for D. lamarckianum and C. 
zamorensis (Table 3); in the presence of these species, the reduction 
was most pronounced after 12 months (from 60 ± 42 to 123 ± 132 
and from 62 ± 38 to 124 ± 135 ind. 10 g−1 litter dw, respectively). 
The abundance of Oribatida (53.7% of total microarthropods; overall 
mean 146 ± 119 ind. 10 g−1 litter dw) increased significantly in lit-
terbags containing G. emarginata or Clusia spp. from 133 ± 119 to 
162 ± 118 and from 131 ± 99 to 163 ± 138 ind. 10 g−1 litter dw, re-
spectively. Further, Mesostigmata abundance (11.1% of total micro-
arthropods; overall mean of 30 ± 27 ind. 10 g−1 litter dw) decreased 
significantly by 24.5% from 34 ± 31 to 26 ± 21 ind. 10 g−1 litter dw 
in the presence of C. zamorensis. Prostigmata abundance (9.5% of 
total microarthropods; overall mean of 26 ± 22 ind. 10 g−1 litter dw) 

F I G U R E  1   Effect of litter species diversity (LD; 1, 2, and 4 
species) on (a) litter mass loss (Mloss) and (b) litter microbial biomass 
(Cmic) after 6 and 12 months of incubation in the field. Boxplots 
show medians and quantiles for each LD level. Violin plots illustrate 
kernel probability density. Different letters indicate significant 
differences (Tukey's HSD test, p < .05)

TA B L E  2   Pearson correlation coefficients between mass loss (Mloss), microbial biomass (Cmic), basal respiration (BR), microbial growth 
after C addition (+Cslope), metabolic quotient (qO2), the abundance of Collembola, Oribatida, Mesostigmata, and Prostigmata, and litter 
C-to-N ratio

Mloss Cmic BR qCO2 +CSlope Collembola Oribatida Mesostigmata Prostigmata

Mloss 1 — — — — — — — —

Cmic 0.30*** 1 — — — — — — —

BR 0.42*** 0.53*** 1 — — — — — —

qO2 0.20** −0.16 *** 0.50*** 1 — — — — —

+Cslope 0.20** 0.23*** 0.38*** 0.07 1 — — — —

Collembola 0.16** 0.09 0.04 −0.10 0.12 1 — — —

Oribatida 0.25*** 0.08 0.13* 0.04 0.12 0.50*** 1 — —

Mesostigmata −0.05 −0.07 −0.15* −0.16* −0.05 0.40*** 0.40*** 1 —

Prostigmata 0.05 0.02 <0.01 −0.11 0.07 0.37*** 0.39*** 0.48*** 1

C-to-N −0.24*** −0.16* −0.19** 0.05 −0.15* −0.15* −0.01 −0.07 −0.19***

Note: Significant correlations are given in bold (*p < .05; **p < .01; ***p < .001).
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increased significantly in litterbags where C. andina or Clusia spp. 
were present. With the former, it increased by 28.1% from 23 ± 22 
to 29 ± 22 ind. 10 g−1 litter dw, while in the presence of the latter 
the effect was restricted to the second sampling date, increasing by 
23.1% from 27 ± 25 to 33 ± 26 ind. 10 g−1 litter dw.

Pearson correlation coefficients indicated that Collembola 
abundance positively correlated with Mloss and the abundance of 
Oribatida, Mesostigmata, and Prostigmata, but negatively with the 
litter C-to-N ratio. Oribatida abundance positively correlated with 
Mloss, BR, and the abundance of Collembola, Mesostigmata, and 

Prostigmata. Mesostigmata abundance positively correlated with 
the abundance of Collembola, Oribatida, and Prostigmata, but nega-
tively with BR and qO2. Prostigmata abundance positively correlated 
with the abundance of Collembola, Oribatida, and Mesostigmata, 
but negatively with litter C-to-N ratio (Table 2).

4  | DISCUSSION

4.1 | Litter diversity

Contrary to our first hypothesis, Cmic decreased rather than increased 
with increasing litter diversity after one year of exposure in the field 
(Figure 1). Leaves of tropical forest trees are of low nutritional qual-
ity and contain high concentrations of structural compounds and 
secondary metabolites, typically higher than those in trees of tem-
perate forests (Cárdenas et al., 2015; Coley & Barone, 1996; Hallam 
& Read,  2006). Secondary metabolites, particularly polyphenols 
known to suppress microorganisms by inhibiting enzyme activity 
(Hättenschwiler & Vitousek,  2000; Hoorens et  al.,  2003), are im-
portant drivers of decomposition processes particularly in tropical 
rainforests (Coq et  al.,  2010). Potentially, secondary compounds, 
such as polyphenols, detrimentally affected litter microorganisms 
in a systemic way resulting in a decrease in Cmic, thereby resulting 
in a negative complementarity effect in leaf litter mixtures (Chomel 
et al., 2016; Ristok et al., 2019). The fact that BR, qO2, and +CSlope 
were not significantly affected by litter diversity suggests that higher 
leaf litter diversity does not necessarily result in an increase in the 
availability of nutrient and carbon resources in this tropical rainforest. 
Rather, the results suggest that litter diversity increases the exposure 
of microorganisms to secondary leaf litter compounds, detrimentally 

df Collembola Oribatida Mesostigmata Prostigmata

LD 2, 239 0.15 1.41 0.75 0.74

Time 1, 239 28.08*** 78.95*** 4.93* 4.22*

CA 1, 239 15.83*** 1.50 2.86 7.92**

DL 1, 239 13.34*** 0.34 0.05 0.66

MP 1, 239 <0.01 0.85 0.37 2.74

CZ 1, 239 8.80** 2.73 4.61* 2.06

GE 1, 239 7.59** 5.98** 2.43 1.56

Cs 1, 239 <0.01 4.24* 0.07 0.02

Time × LD 2, 239 2.80 0.61 0.71 0.39

Time × CA 1, 239 0.14 0.59 2.26 3.08

Time × DL 1, 239 8.04** 0.02 1.01 0.42

Time × MP 1, 239 0.85 0.30 0.23 0.03

Time × CZ 1, 239 4.52* 0.01 0.01 <0.01

Time × GE 1, 239 0.22 0.03 0.14 0.33

Time × Cs 1, 239 0.44 0.02 0.04 4.25*

Note: F-values represent those where the respective factor was fitted first. Significant effects are 
given in bold (*p < .05; **p < .01; ***p < .001).
Abbreviation: df, degrees of freedom.

TA B L E  3   F-values of linear mixed-
effects models on the effect of litter 
species diversity (LD), time of exposure 
(Time), and leaf litter species identity 
[Cecropia andina (CA), Dictyocaryum 
lamarckianum (DL), Myrcia pubescens (MP), 
Cavendishia zamorensis (CZ), Graffenrieda 
emarginata (GE), and Clusia spp. (Cs)] on 
the abundance of Collembola, Oribatida, 
Mesostigmata, and Prostigmata

F I G U R E  2   Abundance of Collembola, Oribatida, Mesostigmata, 
and Prostigmata in litterbags after 6 and 12 months of incubation 
in the field. Boxplots show medians and quantiles for each date 
of exposure. Violin plots illustrate kernel probability density. 
***p < .001; *p < .05
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affecting their activity. Due to the preferential decay of labile litter 
compounds, the concentration of secondary compounds as well as 
recalcitrant structural compounds, such as lignin, may increase during 
litter decomposition, thereby reducing litter decomposition at later 
stages of litter decay, as has previously been suggested for litter at 
our study sites (Butenschoen et al., 2014; Marian et al., 2017).

Similar to Cmic, Mloss significantly increased in single litter species 
treatments after one year of exposure underscoring the correlation 
between (Table 2). Changes in the chemical composition of litter ma-
terial throughout the decomposition process alter the structure and 
functioning of microbial communities and thus affect the rate at which 
litter material is decomposed (Berg & McClaugherty, 2008). Notably, 
Mloss increased with litter diversity after 6 months of exposure; how-
ever, the effect was no longer present after 12 months. Presumably, 
this reflects reliance of the early microbial community on labile litter 
compounds, which were more abundant in leaf litter mixtures (Pérez 
Harguindeguy et al., 2008; Rinkes et al., 2014). However, as decom-
position proceeded, the remaining more recalcitrant compounds accu-
mulated and their decomposition was independent of litter diversity.

In contrast with Cmic and Mloss, the abundance of microarthropods 
was not affected by litter diversity (Table  3). Some previous stud-
ies found mixtures to promote the abundance of microarthropods 
(Hansen,  2000; Hättenschwiler & Gasser,  2005; Migge et  al.,  1998; 
Schädler & Brandl, 2005), while others did not find evidence that lit-
ter diversity beneficially affects microarthropods (Bluhm et al., 2019; 
Ilieva-Makulec et  al.,  2006; Korboulewsky et  al.,  2016; Patoine 
et al., 2020; Scheu et al., 2003). Our results agree with the latter find-
ings and support the results of Marian et  al.  (2018) suggesting that 
litter diversity in this tropical rainforest neither improves habitat con-
ditions nor the availability of resources for microarthropods, at least 
during early stages of decomposition. Indeed, detritivore microarthro-
pods are considered to comprise predominantly generalist feeders 
colonizing a range of forest types and therefore are rather insensi-
tive to changes caused by litter mixing (Ball et al., 2014; Gergócs & 
Hufnagel, 2016; Patoine et al., 2020; Wardle et al., 2006). However, 
even though litter diversity did not affect microarthropod abundance, 
it may still have fostered the diversity of microarthropods, as has been 
shown for other soil organisms, such as testate amoebae at our study 
site (Krashevska et al., 2017).

4.2 | Exposure time

Generally, Mloss increased with time parallel to microbial parameters. 
Litter decomposition at our study site can be divided into three 
phases, with the early phase lasting for about 12  months (Marian 
et al., 2017). This early phase of decomposition is characterized by 
the loss of labile C compounds via leaching and by the growth of 
opportunistic microorganisms that form new soluble compounds 
(Berg & McClaugherty, 2008), and this likely explains the close link 
between Mloss and microbial activity and growth (Table 2). However, 
contrary to our second hypothesis, the increase in qO2 values be-
tween 6 and 12 months of exposure indicates that microorganisms 

increasingly suffered from stress conditions later during expo-
sure. Stress conditions result in less efficient use of C compounds 
and increased investment into maintenance metabolism (Ndaw 
et al., 2009; Yan et al., 2003). Presumably, toward the end of the early 
litter decomposition stage microorganisms increasingly competed 
for resources as easily decomposable leaf litter compounds vanished 
(Fontaine et al., 2003; Poll et al., 2008; Rinkes et al., 2011). The par-
allel increase in the +CSlope with time suggests that this was associ-
ated with less efficient nutrient capture by microorganisms pointing 
toward a switch from predominant limitation by nutrients early dur-
ing exposure to the limitation by easily available carbon resources 
later (Laganière et al., 2010; Sall et al., 2003). Early stages of litter 
decay in the studied tropical montane rainforest might be associated 
with high abundance of mycorrhizal fungi (Marian et al., 2017). The C 
input that mycorrhizal fungi obtain from plants may allow them to ef-
ficiently compete with saprotrophic fungi for nutrients, even though 
their enzymatic capability is typically inferior to that of saprotrophic 
fungi (Camenzind & Rillig, 2013; Hodge et al., 2001). Indeed, the as-
sumption that mycorrhizal and saprotrophic fungi interact antagonis-
tically early during litter decomposition at our study site is supported 
by earlier studies (Marian et al., 2019; Sánchez-Galindo et al., 2019).

Parallel to microbial parameters, the abundance of all microar-
thropod taxa studied increased with time, with the exception of 
Mesostigmata. Mesostigmata commonly hunt in the litter for other 
microarthropods, particularly Collembola, Astigmata and weakly 
sclerotized Oribatida (Koehler,  1997; Schneider & Maraun,  2009). 
Although variations in the abundance of Mesostigmata were closely 
linked to the abundance of Collembola and Oribatida (Table 2), the 
fact that their abundance decreased with time likely reflects that 
Mesostigmata in the litterbags were not only feeding on microar-
thropods, but also on other organisms, presumably Nematoda, in-
sect larvae and eggs. Indeed, some species of Mesostigmata may 
preferentially colonize certain microhabitats to hunt for prey such as 
Nematoda (Heidemann et al., 2014; Klarner et al., 2013).

The increase in the abundance of the microarthropod decompos-
ers Collembola and Oribatida with time indicates that changes during 
the initial stages of decomposition influence both groups in a simi-
lar way. Surprisingly, Collembola and Oribatida abundance was not 
closely associated with microbial biomass (Table 2) even though mi-
croorganisms are their major food resource (Dhooria, 2016; Maraun 
et  al.,  2003; Scheu et  al.,  2005). Rather, the stage of litter decom-
position within the early decomposition phase (i.e., 6 vs. 12 months) 
appears to be the more important driver of the abundance of microar-
thropod decomposers. Indeed, litter material that is highly colonized 
by microorganisms becomes more palatable for microarthropods 
(Bardgett, 2005; Das & Joy, 2009), which at least in part is due to the 
reduction in plant secondary compounds such as phenols (Asplund 
et  al.,  2013; Coulis et  al.,  2009). Overall, our results support earlier 
findings at this study site in that the role of litter resources for the 
nutrition of decomposer microarthropods increases with litter decom-
position (Marian et al., 2018). Moreover, the parallel increase in the 
abundance of Prostigmata suggests that the increase in the abundance 
of decomposer microarthropod prey benefitted higher trophic levels.
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4.3 | Leaf litter identity

The presence of specific plant leaf litter species in mixtures might 
increase or decrease the rate at which the litter decomposes (Hector 
et al., 2000; Hoorens et al., 2003, 2010). Variation can be attributed 
predominantly to differences in litter quality among the compo-
nent species in mixtures (Gartner & Cardon, 2004; Hättenschwiler 
et  al.,  2005). Indeed, litter decomposition and colonization of the 
litter by microarthropods in our study were related to the initial 
chemical composition of the litter species. Our third hypothesis was 
supported by the beneficial effects of high-quality C. andina litter. 
Presence of this litter species significantly decreased qO2 values and 
increased the abundance of Collembola and Prostigmata. C. andina 
had high initial N and P concentrations, and low lignin content (see 
Appendix 1), providing readily available nutrients, reducing nutrient 
stress for microorganisms, and thereby contributing to an increase 
in Cmic. Increased microbial C use efficiency may also have resulted 
from a shift in microbial community composition toward high-
energy-efficient species (Dilly & Munch,  1996), for example, from 
opportunistic bacteria to fungi able to break down complex litter 
compounds (Chapman et al., 2013). Changes in microbial community 
composition probably were driven by increasing concentrations of 
recalcitrant litter compounds favoring saprotrophic fungi able to de-
grade these compounds, which in turn beneficially affected decom-
posers, such as Collembola and Oribatida, feeding on these fungi and 
the litter materials degraded by them.

The high qO2 and the +CSlope values after 12 months of expo-
sure reflected the low quality of D. lamarckianum, C. zamorensis, and 
G. emarginata litter, and presumable scarcity of easily accessible C 
resources to microorganisms. All these litter species were character-
ized by low initial N and P concentrations, and high concentrations 
of lignin and cellulose (Appendix 1). The concentrations of lignin and 
cellulose serve as indicator of litter quality and as predictor of litter 
decomposition (Berg, 2014; Fioretto et al., 2005). Cellulose not en-
trapped in lignin degrades rapidly during early stages of decomposi-
tion, and this contributes to the release of N and P, typical elements 
limiting microbial growth (Berg, 2014; Berg & McClaugherty, 2008; 
Hobbie et al., 2012). However, during this stage, labile compounds 
are commonly used by opportunistic microorganisms (Cornelissen 
et  al.,  1999; Fioretto et  al.,  2005), impeding the growth of micro-
organism able to degrade recalcitrant litter compounds (Ilieva-
Makulec et  al.,  2006). Therefore, by the end of the early stage of 
litter decomposition, structural compounds become relatively more 
abundant and reduce resource quality, which differentially affects 
microorganisms and microarthropods, as indicated by the lower 
abundance of Collembola in litter of C. zamorensis and D. lamarck-
ianum. Interestingly, the decrease in Cmic after 12 months in litterb-
ags containing G. emarginata was associated with high abundance 
of decomposer microarthropods, suggesting that there is no close 
relationship between decomposer microarthropods and bulk micro-
bial biomass in litter. This conclusion is also supported by the lack of 
significant correlations between Cmic and decomposer microarthro-
pod abundances (Table 2).

The correlation between the abundance of Collembola and 
Oribatida and litter Mloss presumably reflects that these microar-
thropods benefited from both higher quality litter and by microor-
ganisms colonizing the litter at later stages of decay. The significant 
negative correlation between Collembola abundance and litter 
C-to-N ratio (Table 2) indicates that Collembola heavily rely on litter 
quality. However, contrary to our fourth hypothesis, the differential 
responses of microarthropods to litter species suggest that leaf litter 
chemical composition alone is insufficient to explain variations in the 
abundance of soil microarthropods, as has been suggested in earlier 
studies (González & Seastedt, 2001; Hoorens et al., 2010; Kaneko 
& Salamanca, 1999). This is most strongly supported by the greater 
abundance of Oribatida in litterbags containing Clusia spp. litter, 
which was of particular low quality. This indicates that physical litter 
characteristics such as toughness and structure might play a more 
important role in driving soil microarthropod abundance than litter 
chemistry and the degree of microbial colonization.

5  | CONCLUSIONS

The results of our study showed that higher levels of litter diver-
sity may negatively affect soil microbial biomass and mass loss in 
the studied tropical montane rainforest, presumably due to the ac-
cumulation of recalcitrant compounds and the generally low quality 
of the leaf litter material. Notably, the response of microbial param-
eters and microarthropod abundance to litter identity was more pro-
nounced than to litter diversity, with the differential responses of soil 
biota to litter identity in part being due to differences in the initial 
chemical composition of litter species. Generally, the results indicate 
that both microarthropods and microorganisms benefit from larger 
amounts of easily available litter resources during early stages of de-
composition, highlighting the importance of litter quality as driver of 
the abundance and activity of decomposer organisms. However, the 
results also indicate that litter traits, related to the physical structure 
of litter, may be more important to decomposer invertebrates than 
litter chemistry and gross microbial characteristics of litter such as 
microbial biomass. Overall, our findings indicate that litter species 
identity functions as major driver of the abundance and activity of 
soil organisms, and thereby exert distinct effects on ecosystem pro-
cesses such as decomposition and nutrient mobilization.
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APPENDIX 1
Initial chemical composition of the litter species used in the experiment. The analyses were performed in triplicate using bulk samples. Data 
are given in percentages of dry mass; nd = not detected.

Cecropia andina
Dictyocaryum 
lamarckianum Myrcia pubescens

Cavendishia 
zamorensis

Graffenrieda 
emarginata Clusia spp.

C 39.30 ± 3.65 41.25 ± 1.70 39.61 ± 3.65 41.74 ± 0.01 40.28 ± 1.68 42.80 ± 3.65

N 1.08 ± 0.02 0.73 ± 0.01 0.60 ± 0.02 0.50 ± 0.01 0.40 ± 0.16 0.40 ± 0.02

C-to-N 36.29 ± 2.91 58.59 ± 1.25 65.64 ± 4.62 84.64 ± 0.01 91.29 ± 1.68 107.21 ± 6.00

Lignin 46.67 ± 6.37 52.40 ± 9.83 50.53 ± 9.07 51.73 ± 13.95 42.60 ± 8.40 63.93 ± 10.10

Cellulose 29.60 ± 6.28 40.73 ± 4.29 35.80 ± 7.27 39.53 ± 3.33 40.40 ± 6.73 13.00 ± 3.37

Al 1.88 ± 0.65 0.14 ± 0.08 0.18 ± 0.06 0.23 ± 0.02 2.41 ± 0.33 0.13 ± 0.01

Ca 17.32 ± 0.82 1.13 ± 0.08 1.07 ± 0.02 6.11 ± 0.83 1.07 ± 0.02 3.07 ± 0.82

Fe 2.03 ± 0.05 1.18 ± 0.02 0.29 ± 0.08 0.09 ± 0.03 0.30 ± 0.03 0.06 ± 0.02

K 3.05 ± 0.01 0.37 ± 0.09 1.23 ± 0.09 1.08 ± 0.01 1.08 ± 0.03 1.65 ± 0.09

Mg 3.22 ± 0.73 1.25 ± 0.09 1.22 ± 0.09 1.72 ± 0.09 1.72 ± 0.09 1.55 ± 0.09

Mn 0.11 ± 0.01 0.31 ± 0.03 0.14 ± 0.09 0.06 ± 0.01 0.26 ± 0.09 0.48 ± 0.09

Na nd 0.03 ± 0.02 0.30 ± 0.02 nd nd nd

P 0.48 ± 0.08 0.21 ± 0.08 0.22 ± 0.10 0.27 ± 0.10 0.12 ± 0.08 0.25 ± 0.08

APPENDIX 2
Means of microbial parameters (Cmic, microbial biomass carbon; BR, basal respiration, qO2, microbial specific respiration; +CSlope, the slopes of mi-
crobial growth after C addition). LD, litter diversity (LD1, one species; LD2, two species; LD4, four species); CA, Cecropia andina; DL, Dictyocaryum 
lamarckianum; MP, Myrcia pubescens; CZ, Cavendishia zamorensis; GE, Graffenrieda emarginata; Cs, Clusia spp. Values are means ± SD.

Cmic (mg Cmic g
−1 

dw)
BR (μl O2 mg−1 Cmic 
hr−1)

qO2 (μl O2 mg−1 
Cmic hr−1) +CSlope

LD 1 13.30 ± 8.99 154.57 ± 97.62 12.97 ± 5.55 0.0113 ± 0.0208

2 11.01 ± 9.74 152.42 ± 105.28 14.78 ± 5.71 0.0066 ± 0.0111

4 10.10 ± 6.12 138.35 ± 79.27 14.27 ± 4.22 0.0084 ± 0.0121

Time 6 months 8.28 ± 4.19 101.7 ± 19.5 12.90 ± 2.21 0.0042 ± 0.0035

12 months 13.62 ± 10.18 191.1 ± 114.0 15.65 ± 6.56 0.0117 ± 0.0190

CA Presence 11.12 ± 6.22 148.50 ± 94.82 13.50 ± 4.18 0.0089 ± 0.0157

Absence 10.81 ± 9.56 144.73 ± 91.97 14.90 ± 5.65 0.0075 ± 0.0114

DL Presence 10.58 ± 6.98 150.09 ± 89.94 14.74 ± 4.06 0.0097 ± 0.0140

Absence 11.28 ± 9.20 143.14 ± 96.06 13.85 ± 5.82 0.0067 ± 0.0130

MP Presence 10.53 ± 9.53 133.07 ± 69.40 14.15 ± 4.14 0.0074 ± 0.0104

Absence 11.29 ± 6.97 157.33 ± 107.72 14.37 ± 5.75 0.0088 ± 0.0156

CZ Presence 10.33 ± 8.53 143.71 ± 89.58 14.94 ± 5.75 0.0065 ± 0.0117

Absence 11.54 ± 7.89 149.02 ± 96.61 13.63 ± 4.27 0.0097 ± 0.0149

GE Presence 10.31 ± 6.80 141.93 ± 94.72 14.34 ± 5.10 0.0079 ± 0.0121

Absence 11.46 ± 9.17 149.98 ± 91.98 14.21 ± 5.08 0.0084 ± 0.0146

Cs Presence 10.36 ± 6.53 142.19 ± 90.71 14.32 ± 5.05 0.0080 ± 0.0101

Absence 11.42 ± 9.33 149.78 ± 95.13 14.24 ± 5.12 0.0083 ± 0.0157

Time × LD

LD1 6 months 7.79 ± 1.85 96.07 ± 18.97 12.65 ± 2.50 0.0045 ± 0.0031

12 months 18.81 ± 9.92 213.06 ± 109.53 13.29 ± 7.53 0.0182 ± 0.0280

LD 2 6 months 8.03 ± 1.71 103.05 ± 19.08 13.03 ± 1.91 0.0041 ± 0.0036

12 months 13.97 ± 13.06 201.79 ± 130.59 16.53 ± 7.48 0.0091 ± 0.0149

(Continues)
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Cmic (mg Cmic g
−1 

dw)
BR (μl O2 mg−1 Cmic 
hr−1)

qO2 (μl O2 mg−1 
Cmic hr−1) +CSlope

LD 4 6 months 8.67 ± 5.94 102.47 ± 20.01 12.86 ± 2.38 0.0043 ± 0.0036

12 months 11.52 ± 6.01 174.23 ± 98.28 15.69 ± 5.11 0.0126 ± 0.0158

Time × Litter identity

CA Presence 6 months 8.64 ± 1.66 103.19 ± 19.44 12.12 ± 2.00 0.0037 ± 0.0044

Absence 6 months 7.99 ± 5.44 100.50 ± 19.58 13.53 ± 2.20 0.0047 ± 0.0026

Presence 12 months 13.61 ± 7.91 193.81 ± 116.56 14.89 ± 5.23 0.0142 ± 0.0206

Absence 12 months 13.63 ± 11.76 188.97 ± 112.63 16.27 ± 7.46 0.0104 ± 0.0155

DL Presence 6 months 8.25 ± 5.81 103.55 ± 19.70 13.62 ± 2.31 0.0044 ± 0.0034

Absence 6 months 8.31 ± 1.79 100.05 ± 19.29 12.24 ± 1.92 0.0041 ± 0.0037

Presence 12 months 12.90 ± 7.31 196.63 ± 107.35 15.86 ± 5.04 0.0151 ± 0.0180

Absence 12 months 14.29 ± 12.21 186.23 ± 120.22 15.45 ± 7.71 0.0094 ± 0.017

MP Presence 6 months 8.27 ± 5.94 98.27 ± 16.49 13.03 ± 2.36 0.0041 ± 0.0033

Absence 6 months 8.29 ± 1.74 104.52 ± 21.33 12.79 ± 2.10 0.0043 ± 0.0038

Presence 12 months 12.80 ± 11.71 167.88 ± 83.56 15.27 ± 5.14 0.0106 ± 0.0136

Absence 12 months 14.30 ± 8.76 210.15 ± 131.38 15.96 ± 7.56 0.0133 ± 0.0209

CZ Presence 6 months 8.07 ± 1.52 103.63 ± 18.99 12.98 ± 1.81 0.0039 ± 0.0028

Absence 6 months 8.48 ± 5.68 99.88 ± 19.92 12.82 ± 2.56 0.0046 ± 0.0041

Presence 12 months 12.59 ± 11.57 183.80 ± 112.03 16.91 ± 7.45 0.0092 ± 0.0160

Absence 12 months 14.60 ± 8.61 198.16 ± 116.24 14.44 ± 5.38 0.0149 ± 0.0194

GE Presence 6 months 9.03 ± 5.98 105.82 ± 20.97 12.71 ± 2.31 0.0039 ± 0.0031

Absence 6 months 7.69 ± 1.62 98.45 ± 17.71 13.04 ± 2.14 0.0045 ± 0.0038

Presence 12 months 11.58 ± 7.37 178.04 ± 122.51 15.98 ± 6.45 0.0119 ± 0.0159

Absence 12 months 15.23 ± 11.74 201.52 ± 106.48 15.39 ± 6.68 0.0122 ± 0.0196

Cs Presence 6 months 8.40 ± 6.07 99.02 ± 21.32 12.88 ± 2.48 0.0056 ± 0.0042

Absence 12 months 8.18 ± 1.60 103.83 ± 17.76 12.91 ± 1.99 0.0032 ± 0.0026

Presence 6 months 12.32 ± 6.44 185.36 ± 111.16 15.75 ± 6.41 0.0105 ± 0.0133

Absence 12 months 14.65 ± 12.31 195.73 ± 116.75 15.57 ± 6.72 0.0133 ± 0.0210

APPENDIX 3
Means of microarthropod abundance. Values are means ± SD. For legend, see Appendix 2.

Collembola (ind. 
10 g−1)

Oribatida (ind. 
10 g−1)

Mesostigmata (ind. 
10 g−1)

Prostigmata 
(ind. 10 g−1)

LD 1 73 ± 79 132 ± 116 26 ± 24 22 ± 18

2 71 ± 67 150 ± 128 32 ± 29 26 ± 23

4 67 ± 91 147 ± 113 30 ± 26 27 ± 23

Time 6 months 46 ± 31 90 ± 55 32 ± 23 22 ± 17

12 months 93 ± 104 201 ± 137 29 ± 30 29 ± 26

CA Presence 83 ± 99 141 ± 117 33 ± 27 29 ± 22

Absence 58 ± 59 150 ± 121 28 ± 27 23 ± 22

DL Presence 52 ± 37 141 ± 106 30 ± 27 25 ± 23

Absence 85 ± 103 150 ± 130 30 ± 27 27 ± 22

MP Presence 71 ± 98 144 ± 125 30 ± 28 24 ± 22

Absence 69 ± 63 147 ± 114 30 ± 26 27 ± 22

(Continues)
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Collembola (ind. 
10 g−1)

Oribatida (ind. 
10 g−1)

Mesostigmata (ind. 
10 g−1)

Prostigmata 
(ind. 10 g−1)

CZ Presence 53 ± 35 132 ± 95 26 ± 21 25 ± 23

Absence 85 ± 105 159 ± 137 34 ± 31 27 ± 22

GE Presence 80 ± 99 162 ± 118 34 ± 29 28 ± 24

Absence 62 ± 61 133 ± 119 27 ± 25 24 ± 20

Cs Presence 75 ± 104 163 ± 138 30 ± 28 27 ± 23

Absence 65 ± 56 131 ± 99 30 ± 26 25 ± 22

Time × LD

LD1 6 months 35 ± 24 76 ± 59 27 ± 23 18 ± 13

12 months 111 ± 96 189 ± 132 25 ± 25 26 ± 22

LD 2 6 months 47 ± 35 93 ± 53 32 ± 26 21 ± 14

12 months 94 ± 82 207 ± 154 32 ± 32 32 ± 28

LD 4 6 months 48 ± 29 93 ± 57 33 ± 21 25 ± 21

12 months 87 ± 123 200 ± 128 27 ± 31 28 ± 25

Time × Litter identity

CA Presence 6 months 56 ± 34 88 ± 54 37 ± 26 28 ± 20

Absence 6 months 37 ± 26 92 ± 57 27 ± 20 17 ± 15

Presence 12 months 111 ± 131 193 ± 137 28 ± 28 30 ± 24

Absence 12 months 78 ± 74 208 ± 140 29 ± 32 28 ± 27

DL Presence 6 months 44 ± 30 90 ± 56 33 ± 25 23 ± 20

Absence 6 months 47 ± 32 91 ± 55 30 ± 21 21 ± 15

Presence 12 months 60 ± 42 192 ± 119 27 ± 28 26 ± 25

Absence 12 months 123 ± 132 209 ± 154 30 ± 33 32 ± 27

MP Presence 6 months 43 ± 27 87 ± 48 30 ± 20 22 ± 20

Absence 6 months 48 ± 34 93 ± 61 33 ± 25 22 ± 15

Presence 12 months 98 ± 131 201 ± 151 31 ± 35 26 ± 24

Absence 12 months 89 ± 77 201 ± 129 27 ± 27 32 ± 27

CZ Presence 6 months 44 ± 30 85 ± 54 28 ± 20 21 ± 16

Absence 6 months 47 ± 32 96 ± 57 34 ± 26 23 ± 19

Presence 12 months 62 ± 38 179 ± 103 23 ± 22 28 ± 27

Absence 12 months 124 ± 135 222 ± 163 34 ± 37 30 ± 24

GE Presence 6 months 50 ± 34 102 ± 61 35 ± 22 25 ± 20

Absence 6 months 42 ± 29 81 ± 49 29 ± 23 20 ± 15

Presence 12 months 109 ± 131 221 ± 130 33 ± 35 32 ± 28

Absence 12 months 81 ± 76 185 ± 144 25 ± 26 27 ± 24

Cs Presence 6 months 45 ± 27 100 ± 57 30 ± 19 21 ± 17

Absence 6 months 46 ± 34 82 ± 53 33 ± 26 23 ± 18

Presence 12 months 106 ± 138 226 ± 165 31 ± 33 33 ± 26

Absence 12 months 84 ± 66 181 ± 111 27 ± 27 27 ± 25

A P P E N D I X  3   (Continued)
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APPENDIX 4
Abundance of Collembola as affected by the presence of leaf lit-
ter species [Cecropia andina (CA), Dictyocaryum lamarckianum (DL), 
Myrcia pubescens (MP), Graffenrieda emarginata (GE), Cavendishia 
zamorensis (CZ), and Clusia spp. (Cs)]. Boxplots show medians and 
quantiles of Collembola abundance for presence and absence of 
each leaf litter species. Violin plots illustrate kernel probability den-
sity. ***p < .001; **p < .01.


