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Background. Vaccination is a cost-effective counter-measure to the threat of seasonal or pandemic outbreaks of influenza. To
address the need for improved influenza vaccines and alternatives to egg-based manufacturing, we have engineered an
influenza virus-like particle (VLP) as a new generation of non-egg or non-mammalian cell culture-based candidate vaccine.
Methodology/Principal Findings. We generated from a baculovirus expression system using insect cells, a non-infectious
recombinant VLP vaccine from both influenza A H5N1 clade 1 and clade 2 isolates with pandemic potential. VLPs were
administered to mice in either a one-dose or two-dose regimen and the immune responses were compared to those induced
by recombinant hemagglutinin (rHA). Both humoral and cellular responses were analyzed. Mice vaccinated with VLPs were
protected against challenge with lethal reassortant viruses expressing the H5N1 HA and NA, regardless if the H5N1 clade was
homologous or heterologous to the vaccine. However, rHA-vaccinated mice showed considerable weight loss and death
following challenge with the heterovariant clade virus. Protection against death induced by VLPs was independent of the pre-
challenge HAI titer or cell-mediated responses to HA or M1 since vaccinated mice, with low to undetectable cross-clade HAI
antibodies or cellular responses to influenza antigens, were still protected from a lethal viral challenge. However, an apparent
association rate of antibody binding to HA correlated with protection and was enhanced using VLPs, particularly when
delivered intranasally, compared to rHA vaccines. Conclusion/Significance. This is the first report describing the use of an
H5N1 VLP vaccine created from a clade 2 isolate. The results show that a non-replicating virus-like particle is effective at
eliciting a broadened, cross-clade protective immune response to proteins from emerging H5N1 influenza isolates giving rise
to a potential pandemic influenza vaccine candidate for humans that can be stockpiled for use in the event of an outbreak of
H5N1 influenza.
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INTRODUCTION
Vaccination is a potent and cost-effective counter-measure to the

threat of seasonal or pandemic outbreaks of influenza [1]. The

influenza virus is among the most devastating viral diseases due to

the ease of spread as an aerosol and ability to cause severe sickness

and mortality to susceptible humans. Currently licensed seasonal

influenza vaccines are only partially protective, particularly in

populations at highest risk of severe disease, the very young and the

elderly. In addition, there is a need for novel approaches for

enhancing immune responses to emerging influenza isolates of avian

origin harboring a potential of causing an influenza pandemic

outbreak that could infect and kill a considerable number of humans

over a short period of time. Enhanced immunity is particularly

important for vaccines protecting against such emerging strains,

since pre-clinical and clinical studies have shown that some of these

antigens such as those from H5N1 viruses are less immunogenic

than antigens from seasonal influenza subtypes (Reviewed in: [1–

4]). Recent research, however, has shown improved immunogenic-

ity of some H5N1 antigens if supplemented with proprietary

adjuvants [5]. If such approaches are shown to be well-tolerated in

humans, they might also be able to stretch the limited supply of

currently stockpiled vaccines. However, more research is needed in

the discovery of novel vaccines, adjuvants, and dosing regimens to

be able to supply the world with a safe and effective vaccine against

avian influenza viruses.

The next influenza pandemic may be caused by an avian H5N1

influenza subtype virus [1]. In 1997, 18 confirmed cases of human

infection with avian influenza A H5N1 viruses were identified in

Hong Kong that resulted in six deaths [6]. These cases represented

the first confirmed human outbreak associated with H5N1

influenza virus infection and raised global concerns about the

occurrence of an influenza pandemic. This event led to intensive

epidemiological monitoring of potential avian virus infection(s) by

the World Health Organization (WHO) influenza surveillance

network. Since 2003, outbreaks of avian influenza A (H5N1) have

emerged and spread throughout southeast and central Asia, the

Middle East, Africa, and Europe. Human cases increased between

2004 through 2007, with some H5N1 isolates showing resistance

to antiviral drugs amantadine and rimantadine [7–10]. In

addition, a second clade of H5N1 (represented by A/Indonesia/

05/2005) has been identified with several subclades. Clade 2
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isolates are genetically and antigenically distinct from clade 1

isolates (i.e. A/Viet Nam/1203/2004). In addition, there is

evidence of limited human-to-human transmission by new isolates

H5N1 influenza [11].

In August, 2006, the WHO advised that the choice of H5N1

strains for development of candidate vaccines should be

representative of the distinct groups (clades) of viruses that have

been afflicting humans recently [12]. The recent 2005–2006

outbreaks in Indonesia that were from clade 2 H5N1 viruses have

already resulted in more than 50 human deaths and infected

poultry in 28 of Indonesia’s 33 provinces [13]. This raises the need

for new studies to assess safety, immunogenicity, priming, cross-

reactivity and cross-protection of vaccines against a H5N1 clade 2

virus.

To meet the demand for pandemic influenza preparedness and

surge capacity following a newly identified pandemic influenza

outbreak, our research group has developed a non-infectious

influenza virus-like particle (VLP) platform for emerging isolates

with pandemic potential [14]. These influenza VLP vaccines do

not require the use of any live influenza virus during the

development, manufacturing, or administration of these vaccines.

As an alternative to conventional egg-based and mammalian cell-

produced influenza vaccine approaches, these recombinant-based

VLP vaccines are produced with a baculovirus system, which is a

promising, innovative technology for efficient, safe, high-yielding

and low-cost commercial vaccines for influenza virus.

Recently, our group described the development of influenza A

H3N2 and H9N2 VLP vaccines comprised of only three influenza

virus proteins, hemagglutinin (HA), neuraminidase (NA), and

matrix 1 (M1) [14,15] expressed in insect cells. These vaccines

elicited high-titer antibodies that were efficacious in mice and

ferret models [14,15]. In this study, using a similar approach, VLP

vaccines were constructed for from H5N1 isolates represented by

A/Viet Nam/1203/2004 (clade 1) and A/Indonesia/05/2005

(clade 2). These investigational pandemic influenza vaccines were

composed of non-infectious, non-replicating VLPs that maintained

viral hemagglutination and neuraminidase activities. Each vaccine

candidate was evaluated in mice for the ability to elicit an humoral

and cell-mediated immune response in dose-sparing experiments,

without the addition of adjuvants, and compared to those induced

by baculovirus-derived recombinant HA (rHA) proteins. Vacci-

nation with H5N1 VLPs showed protection against homologous

challenge, as well as cross-clade protection from viruses repre-

senting both H5N1 clades 1 and 2 avian influenza.

MATERIALS AND METHODS

Propagation of H5N1 reassortant viruses
The H5 HA and N1 NA of the reassortant H5N1 2005 viruses

were derived from influenza A/VN/1203/2004 (VNH5N1-PR8/

CDC-RG; termed VN/04) and A/Indonesia/05/2005 (Indo/05/

2005(H5N1)/PR8-IBCDC-RG2; termed Indo/05) viruses and the

internal protein genes came from the A/Puerto Rico/8/1934

(PR8) donor virus (kindly provided by Ruben Donis, Influenza

Division, Centers for Disease Control and Prevention, Atlanta,

GA, USA). Each virus requires the addition of 0.5 mg/ml TPCK-

treated typsin to induce plaques in minimal essential medium

(MEM) containing 0.8% agarose on chick embryo fibroblasts

(CEF) or MDCK cells, as determined by Ruben Donis at the

CDC. These reassortant viruses administered intranasally are not

pathogenic to chickens (Ruben Donis, CDC, personal communi-

cation) or ferrets (personal observation). However, we determined

that when these viruses (Indo/05; 1.8610+5 pfu/ml and VN/04;

1.6610+4 pfu/ml) were administered in 50 ul volume to

anesthetized 8 week old BALB/c mice, both viruses caused severe

weight loss within 8 days and 100% of mice died from

complications associated with viral infection. Therefore, we used

these viruses as challenge viruses for assessment of vaccine efficacy.

Virus stocks for the reassortant viruses were propagated in the

allantoic cavity of 9- to 11-day-old embryonated specific pathogen-

free (SPF) hen’s eggs at 37uC. The allantoic fluids from eggs

inoculated with each virus was harvested 24 h post-inoculation

and tested for hemagglutinating activity. Eggs inoculated with

reassortant viruses were incubated at 33uC and were harvested

3 days post-inoculation. Infectious allantoic fluids were pooled,

divided into aliquots, and stored at 280uC until used for studies.

The 50% tissue culture infectious dose (TCID50) for each virus was

determined by serial titration of virus in Madin-Darby canine

kidney (MDCK) cells and calculated by the method developed by

Reed and Muench [16]. All experiments, including animal studies

with infectious reassortant viruses, were conducted using enhanced

BSL-2 containment procedures in laboratories approved for use by

the USDA and Centers for Disease Control and Prevention.

Animal experiments were approved by the National Institutes of

Health Animal Care and Use Committee.

Plaque Assay with and without Trypsin
MDCK cells plated in 6-well tissue culture plates were inoculated

with 0.1 ml of virus serially diluted in Dubecco’s modified Eagle’s

medium (DMEM). Virus was adsorbed to cells for 1 h, with shaking

every 15 min. Wells were overlaid with 1.6% w/v Bacto agar

(DIFCO, BD Diagnostic Systems, Palo Alto, CA, USA) mixed 1:1

with L-15 media (Cambrex, East Rutherford, NJ, USA) containing

antibiotics and fungizone, with or without 0.6 mg/ml trypsin (Sigma,

St. Louis, MO, USA). Plates were inverted and incubated for 2–

3 days. Wells were then overlaid with 1.8% w/v Bacto agar mixed

1:1 with 26Medium 199 containing 0.05 mg/ml neutral red, and

plates were incubated for two additional days to visualize plaques.

Plaques were counted and compared to uninfected cells.

Cloning of HA, NA, and M1 genes and the

generation of recombinant baculoviruses
The HA, NA, and M1 genes for the H5N1 VLP vaccine were

synthesized by GeneArt (Germany) based upon sequences

ISDN125873, ISDN125875, ISDN125876 [17] and followed by

cloning into E. coli bacmids (Fig. 1A), plaque-purification of

recombinant baculoviruses with HA, NA, and M1 genes in a single

vector and expression in Spodoptera frugiperda Sf9 insect cells (ATCC

CRL-1711) as previously described [14]. At 72 h post-transfection,

cells were harvested for VLP production and recovery of

recombinant baculoviruses in the culture medium. Particle expres-

sion was analyzed by sucrose gradient ultracentrifugation and SDS-

PAGE followed by Western blot and purification of VLPs were

essentially as previously described [14]. Indo/05 rHA (Lot # 31-10-

06) was purified from the supernatants of Sf9 insect cells in-house

and VN/04 rHA (Lot # 15-06-06) was purified from the

supernatants of Sf9 insect cells acquired from Protein Sciences

Corp., Meriden, CT, USA. Vaccines and protein were stored at 4uC
prior to use.

Baculovirus infections and purification of rHA and

VLPs
Spodoptera frugiperda (Sf9) insect cells (ATCC CRL-1711) were

maintained as suspension cultures in HyQ-SFX insect serum free

medium (HyClone, Logan, UT, USA) at 28uC. Plaque isolates

expressing influenza proteins were amplified by infecting Sf9 cells

H5N1 Influenza VLPs
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seeded in shaker flasks at 2610+6 cells/ml at a multiplicity of

infection (MOI) = 0.05. At 72 h post-infection, culture superna-

tants containing the recombinant baculoviruses were harvested,

clarified by centrifugation, and stored at 4uC. Titers of

recombinant baculovirus stocks were determined by agarose

plaque assay in Sf9 cells.

Particle expression was analyzed by sucrose gradient ultracentri-

fugation and chromatography followed by Western blot as described

by Pushko et al. [14]. Briefly, Sf9 cells were infected in 200 ml volume

for 72 h at a cell density of 2610+6 cells/ml with recombinant

baculoviruses at a MOI = 3. Expression was determined by SDS–

PAGE using 4–12% gradient polyacrylamide gels (Invitrogen,

Carlsbad, CA, USA) and Coomassie staining and by Western

blotting using antigen-specific sera (Fig. 1B). H5N1 specific sera

included rabbit polyclonal sera raised against influenza A/

Indonesia/05/2005 virus. Indo/05 rHA was purified from Sf9

insect cells following baculovirus infection. Briefly, rHA was

extracted with a non-ionic detergent from Sf9 cells then purified to

.99% using ion exchange and affinity chromatography.

VLPs were purified from Sf9 cells infected with baculovirus

vectors expressing Indo/05 HA, NA, and M1 or VN/04 HA, NA,

and M1 at an MOI 3 pfu/cells. Seventy-two hours post-infection,

cultures were clarified to remove the cells and supernatants

containing VLPs were concentrated by tangent flow filtration with

a 500,000 molecular weight hollow fiber filter, then the concentrate

was diafiltered against PBS. The diafiltered concentrate was

centrifuged for 18 hr at 5,0006g on 20–60% sucrose gradients

and the particles containing primarily VLPs and baculoviruses were

recovered from a band in the gradients at about 30% sucrose.

Separation of VLPs from baculoviruses was performed using ion

exchange chromatography. The purity of VLPs was measured by

scanning densitometry of SDS-PAGE using OneDscan system (BD

Biosciences, Rockville, MD, USA) (Fig. 1B). VLPs were also

analyzed for particle formation and the presence of hemagglutinin.

Samples were coated on carbon-coated gold grids, stained with 5%

solution of Ammonium Molybdate and air dried. A Zeiss 902 CEM

electron microscope, operated at 80 kV, and digitally acquired with

an Olympus Soft Imaging Solutions, GMBH. Mega View II digital

camera at 128061024 pixel resolution was used. HA spikes on the

surface of 100–200 nm particles were confirmed using immunogold

staining with rabbit anti-HA or control antibody as shown in Fig. 1C

left and right panels, respectively.

Single-radial-immunodiffusion (SRID) assay
A quantitative single-radial-immunodiffusion (SRID) assay was

performed essentially as described by Wood, et al. [18]. Briely, VLPs

(lot# 07-14-06-WV-1/2) was analyzed using standardized CBER

reagents: CBER Antibody (rg A/Vietnam/1203/1204 Lot # S-

APSI Feb 5 2005) and CBER Reference Antigen (RG A/Vietnam/

1203/1204). The Indo rHA (lot #301P) and the Indo VLPs were

treated with 1% Zwittergent detergent (Calbiochem, EMD Biosci-

ences, San Diego, CA, USA) just prior use. VLP samples were diluted

and allowed to diffuse overnight in 1% agarose containing a dilution

the anti-HA sheep reference serum. The agarose gel was stained with

Coomassie and the diameter (mm) of antigen-antibody precipitation

rings were measured with a micro comparator.

Animals and vaccinations
BALB/c mice (Mus musculus, females, 6–8 weeks of age) were

purchased from Harlan Sprague Dawley, (Indianapolis, IN, USA).

Mice, housed in microisolator units and allowed free access to food

and water, were cared for under USDA guidelines for laboratory

animals. For vaccination, mice were anesthetized with 0.03–

0.04 ml of a mixture of 5 ml ketamine HCl (100 mg/ml) and 1 ml

xylazine (20 mg/ml). Mice (8 mice per group) were vaccinated

Figure 1. Expression of H5N1 virus-like particles. A) Baculovirus construct for expression of influenza A/Indonesia/05/2005 (H5N1) VLPs. Indicated
are the polyhedrin promoters (PolH), polyadenylation signals, Tn7 regions, gentamicin resistance gene (Gm), and influenza genes (HA, hemagglutinin,
M1, matrix 1 protein, NA, neuraminidase); B). Scanning densitometry analysis of purified Indo/05 VLPs. A sample of purified VLPs (4 mg) was
electrophoresed on 4–12% polyacrylamide gel and stained with Coomassie blue (right panel, lane 3). A scanned image (left panel, lane 3) was used to
determine the relative optical density (OD) of HA, NA, and M1. Purity is = OD HA+NA+M1/OD Total in the lane. Purity of this lot of Indo/05 VLPs was
96%. The location of HA, NA, and M1 structural proteins are marked. C). Immunogold electron microsopy of purified Indo/05 VLPs. Left Panel. Primary
antibody: Influenza A H5N1 Anti-HA antibody (Biodesign). Secondary antibody: Goat anti-rabbit conjugated to 10 nm gold beads. Right Panel.
Control antibody and goat anti-rabbit secondary antibody conjugated to 10 nm gold beads. Bar represents 100 nm scale.
doi:10.1371/journal.pone.0001501.g001
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with 3 mg or 600 ng doses (based on HA content) of either rHA or

purified VLPs. Vaccines and protein were stored at 4uC prior to

use. Animals were monitored for survival and morbidity (i.e.

weight loss, ruffling fur, inactivity) weekly during the vaccination

regimen and each day during viral challenge.

Blood was collected from anethesized mice via the retro-orbital

sinus. Blood was transferred to a tube containing a serum

separator and clot activator and allowed to clot at room

temperature. Tubes were centrifuged and sera was removed and

frozen at 28065uC. All procedures were in accordance with the

NRC Guide for the Care and Use of Laboratory Animals, the

Animal Welfare Act, and the CDC/NIH Biosafety in Microbio-

logical and Biomedical Laboratories.

ELISPOT assays
Spleens and lungs were harvested (weeks 5 and 8) from vaccinated

mice and cells were isolated for ELISPOT assays, as previously

described [19,20]. Briefly, cells were depleted of erythrocytes by

treatment with ammonium chloride (0.1 M, pH 7.4). Following

thorough washing with PBS, cells were resuspended in RPMI

medium with 10% fetal bovine serum (cRPMI). Cell viability was

determined by trypan blue exclusion staining. The number of anti-

HA or anti-M1 specific murine IFN-c (mIFN-c) secreting cells was

determined by enzyme-linked immunospot (ELISPOT) assay (R &

D Systems, Minneapolis, MN, USA). Briefly, pre-coated anti-

mIFN-c plates were incubated (25uC for 2 h) with cRPMI (200 ml)

and then were incubated with cell suspensions from the spleen or

lungs (16106/well) isolated from vaccinated mice. Spleen or lung

cell suspensions were stimulated (48 h) with pools of peptides (BEI

Resources; 5ng/ml per peptide) representing the regions of

influenza HA (Fig. 2) or M1 proteins. Additional wells of cells

were stimulated with PMA (50 ng)/ionomycin (500 ng) or were

mock stimulated. In addition, IL-2 was added to all wells (10

units/ml). Plates were washed with PBS-Tween (3X) and were

incubated (25uC for 2 h) with biotinylated anti-mIFN-c and

incubated (4uC for 16 h). The plates were washed and incubated

(25uC for 2 h) with strepavidin conjugated to alkaline phosphatase.

Following extensive washing, cytokine/antibody complexes were

incubated (25uC for 1 h) with stable BCIP/NBT chromagen. The

plates were rinsed with dH2O and air dried (25uC for 2 h). Spots

were counted by an ImmunoSpot ELISPOT reader (Cellular

Technology Ltd., Cleveland, OH, USA).

Serological assays
A quantitative ELISA was performed to assess anti-HA specific

IgG or IgG isotypes in immune serum. Purified rHA (30 ng) was

Figure 2. Amino acid sequence of hemagglutinin. Top line represents the sequence for A/Indonesia/05/2005, which is the isolate used to generate
vaccines studied. Middle line represents the sequence for A/Thailand/2004, which is the isolate used to generate the peptides used for analysis.
Bottom line represents the consensus amino acid sequence between the two sequences. Boxed, colored areas represent regions included in each of
the 6 peptides pools (15-16 peptides per pool, 15mers overlapping by 11) used for stimulating splenocytes and lung cells in ELISPOTs. The location of
the single H2-kd peptide (HA518; (IYSTVASSL) is underlined in peptide pool 6.
doi:10.1371/journal.pone.0001501.g002
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used to coat each well of a 96-well plate as previously described

[21–24]. Plates were blocked (25uC for 2 hr) with PBS containing

Tween 20 (0.05%) and nonfat dry milk (5%) and then incubated

with serial dilutions of each serum sample (25uC for 2 hr).

Following thorough washing in PBS-Tween 20 (0.05%), samples

were incubated (25uC for 1 hr) with horseradish peroxidase (HRP)

rabbit anti-mouse IgG (1:5000) diluted in PBS-Tween 20 (0.05%)

and nonfat dry milk (5%). The unbound antibody was removed,

and the wells were washed. Strepavidin-HRP (1:7000) was diluted

in PBS-Tween 20 (0.05%) and incubated (25uC for 1 hr). Samples

were incubated with TMB substrate (1 hr), and the colorimetric

change was measured as the optical density (O.D., 405 nm) by a

spectrophotometer (Dynex Technologies, Chantilly, VA, USA).

The O.D. value of the age-matched naı̈ve sera was subtracted

from the samples using antisera from vaccinated mice. Results

were recorded as the geometric mean titer (GMT)6the standard

error (SE).

Surface plasmon resonance (SPR) analysis
To assess the binding properties of serum antibodies, SPR

technology was performed using a Biacore 3000 (Biacore AB,

Uppsala, Sweden). Protein A (Pierce, Rockford, IL, USA) was

immobilized to the surface of a CM5 sensor chip (Biacore, Inc.,

Piscataway, NJ, USA) using standard amine coupling chemistry.

The surface of the chip was activated using a 1:1 mixture of N-

hydroxysuccinimide and 1-ethyl-3-(3-dimethyl aminopropyl) car-

bodimide hydrochloride (EDC) (Biacore, Inc.) followed by a 20-

minute injection of protein A (70 mg/ml) to capture ,5000 RU of

protein A on two adjacent flowcells on a CM5 sensor chip.

Remaining active carboxyl groups were inactivated with an

injection of 1 m ethanolamine, and remaining non-covalently

associated protein A was washed from the surface using four 30

sed injections of 100 mm HCl (100 ml/min). The second flowcell

of the protein A-coated CM5 sensor chip was then used to capture

polyclonal IgG antibody from VLP or rHA vaccinated mice.

Serum was diluted in HBS-EP buffer such that a 5 ml injection at a

flow rate of 10 ml/min yielded ,100-300 RU total IgG antibody

captured by the protein A on the CM5 chip. After capture of IgG,

varying concentrations (0.7–300 nm, series of threefold dilutions)

of rHA representing the Indonesia/05/2005 or Viet Nam/1203/

2004 strains were passed sequentially over both flowcells of the

sensor chip. A blank (0 nm) injection was also included. Binding

isotherms were then analyzed using BiaEvaluation 4.1 (Biacore

AB). It is important to realize that kinetic rates returned using

these binding models for polyclonal serum represent only apparent

rates of binding due to the multiple specificities inherent to a

polyclonal response and do not define the kinetics of the polyclonal

antibody anti-HA antibody response.

Hemagglutination inhibition activity
The hemagglutination inhibition (HAI) assay was used to assess

functional antibodies to the HA able to inhibit agglutination of

horse erythrocytes. The protocol was adapted from the CDC

laboratory-based influenza surveillance manual [1]. To inactivate

non-specific inhibitors, sera were treated with receptor destroying

enzyme (RDE) prior to being tested [21–23,25,26]. Briefly, three

parts RDE was added to one part sera and incubated overnight at

37uC. RDE was inactivated by incubation at 56uC for ,30 min

and six parts PBS were added for a final 1:10 dilution of the sera.

RDE-treated sera was two-fold serially diluted in v-bottom

microtiter plates. An equal volume of reassortant virus, adjusted

to approximately 8 HAU/50 ml, was added to each well. The

plates were covered and incubated at room temperature for

20 min followed by the addition of 1% horse erythrocytes (HRBC)

(Lampire Biologicals, Pipersville, PA, USA) in PBS. Red blood

cells were stored at 4uC and used within 72 hours of preparation.

The plates were mixed by agitation, covered, and the RBCs were

allowed to settle for 1 h at room temperature [27]. The HAI titer

was determined by the reciprocal dilution of the last row which

contained non-agglutinated RBC. Positive and negative serum

controls were included for each plate. All mice were negative

(HAI#10) for pre-existing antibodies to currently circulating

human influenza viruses prior to vaccination [28].

Isolation of cells from spleen and lung tissue
Spleens and lungs were excised, carefully rinsed with sterile PBS,

and a single cell suspension was generated using a cell strainer (BD

Biosciences, Bedford, MA, USA). Collected cells were centrifuged

(10006g for 5 min at 4uC). The cells were gently resuspended in

5 ml of RBC lysis buffer and incubated for 5 min at RT. PBS

(5 ml) was added to each sample to neutralize RBC lysis buffer and

then the cells were centrifuged (10006g for 5 min at 4uC). The

supernatants were discarded, and the cells were then resuspended

in 3 ml of PBS. 200 ml of the cell suspension were aliquoted into

1.5 ml microcentrifuge tubes and stored at 280uC.

Protection from lethal viral challenge
Mice that received either the VLP or rHA antigen were challenged

with a lethal dose (10LD50) of one of the two H5N1 reassortant

viruses. To determine the lethal dose of each reassortant H5N1/

PR8 virus [16], mice were administered various dilutions of virus

(50 ml) via the nares under one of two conditions: light or deep

anesthetic. For light anesthetic, mice were administered a 1/10

dose of ketamine/xyalzine (as described above) that resulted in

mice that were anesthetized for ,5 minutes with light breathing.

Mice returned to a normal state in ,15 min. For deep anesthetic,

mice were administered full dose of ketamine/xyalzine that

resulted in mice being unconscious for greater than 30 min and

the mice returned to a normal state in ,1 h. Only, mice

challenged with reassortant viruses under deep anesthetic showed

signs of severe weight loss and mortality (data not shown). Mice

were monitored daily for clinical signs of influenza infection and

body weight was recorded each day. Mice that lost greater than

25% of body weight were euthanized. The ability of each vaccine

to protect against homologous or heterologous challenge was

compared to separate groups of naı̈ve, unvaccinated control mice

that were challenged with each reassortant virus.

Lung virus titers were determined using a plaque assay [29,30].

Briefly, lungs from mice infected with virus were collected and

single cell suspensions via passage through a 70 mM mesh (BD

Falcon, Bedford, MA, USA) in 4 ml of PBS. Cell suspensions were

frozen (280uC) for 1 h, and then thawed, centrifuged at 10006g

for 10 min, and then the supernatants were collected and stored at

280uC.

Madin-Darby Canine Kidney (MDCK) cells were plated

(56105) in each well of a six-well plate. Virus was diluted (1:100

to 1:1000) and overlayed onto the cells in 100 ul of DMEM

supplemented with penicillin-streptomycin and incubated for 1 hr.

Virus-containing medium was removed and replaced with 2 ml of

L-15 medium plus 0.8% agarose (Cambrex, East Rutherford, NJ,

USA) and incubated for 48 hrs at 37uC with 5% CO2. Agarose

was removed and discarded. Cells were fixed with 70% EtOH,

and then stained with 1% crystal violet for 15 min. Following

thorough washing in dH2O to remove excess crystal violet, plates

were allowed to dry, plaques counted, and the plaque forming

units (pfu)/ml were calculated.

H5N1 Influenza VLPs
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Statistical analysis
Statistical analyses were performed using a two-tailed t-test with

equal variance. Samples from VLP-vaccinated animals were

compared to rHA-vaccinated animals and significance was

considered at a p-value,0.05.

RESULTS

Cell-mediated immunity elicited by VLP and rHA

vaccines
Mice (BALB/c; n = 8) were vaccinated (week 0 and 3) via

intramuscular injection or intranasal inoculation with purified

influenza VLPs or purified rHA proteins representing the H5N1

isolate A/Viet Nam/1203/2004 (clade 1) or the A/Indonesia/05/

2005 (clade 2) isolate. Collected splenocytes and lung cells were

stimulated in vitro with pools of peptides specific for influenza

H5N1 isolates (Fig. 2). Mice vaccinated with the influenza VLPs

had a robust cell-mediated immune response against peptide pools

from either the HA (Fig. 3) or M1 (Fig. 4). Cell-mediated immune

responses were directed against epitopes in both the HA1 and

HA2 subunits in mice vaccinated with VLPs, however, only

peptides in pool 2 were recognized from rHA-vaccinated mice

(Fig. 3A and B). Splenocytes stimulated with an immunodominant

H-2d peptide (HA518) contained in pool 6 had as strong a

response as cells stimulated with the entire peptide pool 6. Only

VLP-vaccinated mice had cellular responses to M1 (Fig. 4).

Mice vaccinated with VLPs intranasally had cell-mediated

immune responses, as measured by mIFN-c production, in both

splenocytes and lung cells (Fig. 3C and D) however, mice

vaccinated with VLPs intramuscularly had a robust cellular

response in the spleen, but a limited cellular response in the lung.

There was a limited or undetectable cellular response from

isolated lung cells or splenocytes following vaccination with rHA

protein (intranasally or intramuscularly). The number of mIFN-c
secreting splenocytes from age-matched mice, as well as

splenocytes from mice vaccinated with VLPs and stimulated with

an irrelevant peptide or unstimulated was negligible (10–12 spots)

following in vitro re-stimulation (data not shown).

Antibody responses to immunizations
At week 5, mice vaccinated intramuscularly with VLPs or rHA

had anti-HA antibodies that recognized the homologous rHA-

coated plates with endpoint dilution titers that ranged between

104-105 (i.e. antibodies elicited by an Indonesia-derived vaccine

binding to HA in an Indonesia rHA-specific ELISA) (Table 1).

Mice vaccinated intranasally with Indonesia VLPs had an anti-HA

endpoint dilution titer against Indonesia rHA that ranged between

105-106. The homologous anti-HA antibody titer in Viet Nam

VLP vaccinated mice was 104-105, regardless of the route of

inoculation. In contrast, anti-HA antibodies were low or

undetectable in mice that received an intranasal inoculation of

rHA antigen. Each serum sample was also tested for binding to the

cross-clade HA in an ELISA. Interestingly, all serum samples that

detected a homologous HA, also detected the heterologous H5N1

HA protein, albeit at a lower titer. As previously reported for

H3N2 VLPs [15], the dominant serum IgG isotype subclasses

elicited in VLP-vaccinated mice were IgG2a and IgG2b, indicative

of a T helper type 1 response (Fig. 5A). In contrast to VLP

Figure 3. Elicitation of HA interferon-c producing splenocytes and lung cells. ELISpots were performed on isolated splenocytes or lung cells from
vaccinated mice (n = 8) collected at week 8. Cells (16106) were stimulated independently with pools of peptides representing different regions of HA.
Splenocytes or lung cells were also stimulated independently with pools of peptides (15mers overlapping by 11 amino acids) or a single peptide
HA518 (IYSTVASSL). Following stimulation, cells were assayed for mIFN-c. HIV-1 Env peptides were used as a non-specific negative control.
Splenocytes or lung cells stimulated with PMA/ionomycin were used as a positive control. (A) VLP vaccinated intramuscularly against all peptide
pools, (B) rHA vaccinated intramuscularly against all peptide pools, (C). Lung responses using HA peptide pool 2. (D). Spleen responses using HA
peptide pool 2.
doi:10.1371/journal.pone.0001501.g003
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vaccination, mice vaccinated with rHA elicited primarily an IgG1

(Th2) response. In a similar ELISA used to evaluate humoral

responses directed to the NA, only mice vaccinated with VLPs had

anti-NA antibodies (Table 2).

Vaccine induced hemagglutination-inhibition

activity
Antibodies elicited by each vaccine were evaluated for the ability

to inhibit virus-induced agglutination of horse red blood cells

(Table 3). At week 5, 100% of the mice vaccinated with either

clade 1 Viet Nam or clade 2 Indonesia VLPs had HAI titers $1:40

against a reassortant virus containing HA and NA surface proteins

matching the vaccine composition (homologous virus) (Table 3),

regardless of the route of inoculation. Six of eight (75%) mice

vaccinated intramuscularly with rHA had HAI titers greater than

$1:40, but none of the mice vaccinated intranasally with rHA had

a measurable HAI titer. HAI titers elicited by Indonesia clade 2

VLPs against the clade 2 reassortant virus were .1 log higher than

HAI titers elicited by Viet Nam clade 1 VLPs against the clade 1

reassortant virus. In contrast, serum from mice vaccinated with

Indonesia clade 2 VLPs had .1 log lower HAI titers against the

heterologous Viet Nam clade 1 reassortant virus compared to HAI

titers against the homologous clade 2 reassortant virus, regardless

the route of inoculation (Table 3). Viet Nam VLPs elicited similar

HAI titers against both the homologous clade 1 reassortant virus,

as well as the heterologous clade 2 reassortant virus.

Protection against heterologous H5N1 viral

challenge
Mice that received either H5N1 clade 1 or clade 2 vaccines or

unvaccinated control mice were challenged intranasally with a

predetermined lethal dose of either a reassortant homologous or

heterologous virus to evaluate the protective efficacy of each

vaccine candidate. All mice vaccinated intramuscularly or

intranasally with either VLP vaccine or intranasally only with

rHA vaccines were protected from death following the lethal

challenge of homologous virus whereas, all non-vaccinated, naı̈ve

mice lost greater than 25% of their original body weight and died

from complications associated with infection by day 6 post-

challenge (Fig. 6). Mice vaccinated with either VLP vaccine lost

Figure 4. Elicitation of M1 interferon-c producing splenocytes. ELISPOTs were performed as described in the legend to Fig. 3. Four pools (15mers,
overlapping by 11) representing four regions of M1 were used to stimulate cells. HIV-1 Env peptides were used as a non-specific negative control.
Splenocytes stimulated with PMA/ionomycin were used as a positive control. Number of IFN-c ELISPOTs detected using each of the four M1 peptide
pools from intramuscularly vaccinated mice with (A) VLP or (B) rHA vaccines.
doi:10.1371/journal.pone.0001501.g004

Table 1. Anti-HA Titer
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Intramuscular Intranasal

Clade Vaccine (Dose)a VN/1203/2004b Indo/05/2005 VN/1203/2004 Indo/05/2005

Clade 1-Vietnam

VLP (3 ug) 200,000c 12,500 200,000 12,500

VLP (600 ng) 25,000 25,000 12,500 25,000

rHA (3 ug) 6,400 12,500 200 ,100

rHA (600 ng) 800 3,200 ,100 ,100

Clade 2-Indonesia VLP (3 ug) 12,500 200,000 400,000 2,000,000

VLP (600 ng) 25,000 200,000 25,000 200,000

rHA (3 ug) 3,200 12,500 ,100 400

rHA (600 ng) 1,600 6,400 ,100 400

Mock ,100 ,100 ,100 ,100

aDose based upon HA content
bIsolate from which the HA was used.
cAnti-HA GMT titer.
doi:10.1371/journal.pone.0001501.t001..
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less than 5% of their original weight by day 6 following

homologous viral challenge, regardless of the route of inoculation.

In addtion, all VLP-vaccinated mice survived challenge, with little

weight loss, following heterologous challenge (i.e. Indonesia clade 2

VLP vaccinated mice were protected against Viet Nam clade 1

challenge). However, there was more pronounced weight loss in

mice vaccinated intramuscularly with either of the H5N1 rHA

antigens following heterologous challenge, even though all mice

survived. By day 21 post-challenge, all mice recovered to their

original body weight, despite little or no detectable serum HAI

antibodies against heterologous H5N1 virus prior to challenge

(Table 3). In contrast, all mice vaccinated intranasally with rHA

showed considerable weight loss and mortality similar tonaı̈ve

unvaccinated animals. Despite lower HAI titers compared to mice

vaccinated with clade 2 vaccines, similar results were observed

with mice vaccinated with Viet Nam VLPs and rHA vaccines

(data not shown).

Binding characteristics of serum antibody as

determined by surface plasmon resonance
In order to determine binding characteristics of polyclonal serum

antibodies using surface plasmon resonanace (SPR), recombinant

HA proteins, representing both H5N1 clades, were characterized

(Fig. 7). Serum samples were diluted, polyclonal IgG was captured,

and binding experiments were carried out as previously described

[31,32]. At week 5 post-vaccination, mice vaccinated intranasally

with VLPs had a more dynamic pattern of antibody responses

against the homologous HA antigen than mice vaccinated

intramuscularly with the same vaccine (Fig. 7). Mice vaccinated

with VLPs had one population of antibody that bound specifically

to each homologous HA at an apparent association rate (ka1) that

ranged from 1.556104 to 1.656105, regardless of the vaccine

strain (Viet Nam clade 1 or Indonesia clade 2) or the route of

vaccination (IM or IN). This apparent association rate was similar

to antibodies elicited by rHA following intramuscular injection

(1.136104). In contrast, the apparent dissociation rate (kd1) differed

between intranasally or intramuscularly vaccinated mice against

homologous HA. Following the boost, mice vaccinated intrana-

sally with Indonesia clade 2 VLPs had antibodies with an apparent

Figure 5. Anti-HA IgG Isotypes. The specific IgG isotype was assayed from the serum of each mouse group and the endpoint dilution titer was
reported. (A) Week 5, pre-challenge. (B) Week 7, post-challenge. Each bar represents the average of 8 mice.
doi:10.1371/journal.pone.0001501.g005

Table 2. Anti-NA Titer.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Intramuscular Intranasal

Clade Vaccine (Dose)a Anti-NA Anti-NA

Clade 1-Vietnam VLP (3 ug) 1600b 800

rHA (3 ug) ,100 ,100

Clade 2-Indonesia VLP (3 ug) 3200 3200

rHA (3 ug) ,100 ,100

Mock ,100 ,100

aDose based upon HA content
bAnti-NA GMT titer at week 5.
doi:10.1371/journal.pone.0001501.t002..
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Table 3. Hemagglutination-Inhibition Titer
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Intramuscular Intranasal

Clade Vaccine (Dose)a VN/1203/2004b Indo/05/2005 VN/1203/2004 Indo/05/2005

Clade 1-Vietnam VLP (3 ug) 400665c* 80653** 256654 121620

VLP (600 ng) 121620 44610 30616 30629

rHA (3 ug) 46615 1060 1060 1060

rHA (600 ng) 139645 2266 1060 1060

Clade 2-Indonesia VLP (3 ug) 101627** 337761599* 80653* 33776809**

VLP (600 ng) 60610 8456202** 1262 19406314^

rHA (3 ug) 1060 2116100 1060 1060

rHA (600 ng) 1060 16060 1060 1060

Mock 1060 1060 1060 1060

aDose based upon HA content
bInfluenza viruses used in the HAI assay against sera collected at week 5.
cHAI GMT plus or minus SEM.
dVLP vs. rHA comparing same dose, t-test, *p,0.05, **p,0.01, ^p,0.001
doi:10.1371/journal.pone.0001501.t003..
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Figure 6. Protection from influenza virus challenge. At week 5, mice vaccinated with H5N1 clade 2-dervied vaccines were challenged intranasally
with a lethal dose of reassortant influenza virus (A/Viet Nam/1203/2004 (clade 1) or A/Indonesia/05/2005 (clade 2)) and monitored daily for weight
loss and mortality. The data are plotted as percentage of the average initial weight. Percentage of (A) original weight or (B) survival following
challenge with clade 2 AIndonesia/05/2005 reassortant virus. Percentage of (C) original weight or (D) survival following challenge with clade 1 A/Viet
Nam/1203/2004 reassortant virus. Mice that lost greater than 75% body weight were euthanized. Naı̈ve mice were unvaccinated.
doi:10.1371/journal.pone.0001501.g006
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dissociation rate of 2.1261025 compared to sera from intramus-

cularly VLP-vaccinated mice that had a dissociation rate of

1.7161023, which was similar to the dissociation rate from mice

vaccinated intramuscularly with Indonesia clade 2. rHA

(4.1161023) (Fig. 7). Surprisingly, there was little change in the

dissociation rate of VLP elicited antibodies when tested against the

heterologous Viet Nam clade 1 HA antigen (3.0161024), but a

significant decline in the association rate to the Viet Nam clade 1

HA (2.466102) compared to the Indonesia clade 2 HA. Similar

results were observed with sera from mice vaccinated with Viet

Nam clade 1 VLPs or rHA vaccines (data not shown). Therefore,

the ability of antibody to bind to the heterologous HA antigen

appears to be associated with the apparent association rate

compared to antibody binding to the homologous HA antigen.

Single vaccination elicits protection against

challenge
To determine if a single vaccination could elicit protective

immunity to a lethal viral challenge, a second set of mice were

vaccinated with a single intramuscular immunization (week 0) with

purified influenza Indo/05 VLPs or rHA proteins and the

responses were compared to mice vaccinated with two immuni-

zations (week 0 and 3). Mice vaccinated with a single

immunization of VLPs or rHA had no detectable HAI titers

during the 5 week regimen (data not shown), but survived a

challenge with 10LD50 of homologous reassortant Indonesia clade

2virus. Interestingly, mice vaccinated with the 3 ug dose of VLP

had little to no weight loss (Fig. 8), which was similar to mice

vaccinated with two doses of VLP or rHA vaccines (Fig. 4A).

However, mice vaccinated with lower doses of VLPs or rHA lost

,15% of their body weight by day 6 post-challenge, but recovered

by day 10 post-challenge (Fig. 8). Naı̈ve mice lost 80% of their

body weight by day 5 post-challenge and all mice died from

challenge by day 8.

Additional groups of vaccinated mice were euthanized on day 3

post-challenge and virus titers were determined from homogenized

lung tissue (Table 4). Mice vaccinated with two doses of VLPs (3 ug)

had no detectable Indo/05 virus (dilution 1:100) and no gross signs

of infection. Unvaccinated naı̈ve mice had an average titer of

1.566106 pfu/ml. These mice had ruffled fur, dyspnea, and lethargy

by day 6 post-challenge. Sixty-six percent of the mice vaccinated

with rHA (3 ug) had a detectable viral titer that was ,3 logs lower

than virus titers from unvaccinated mice (Table 4), but few gross

pathological signs. Interestingly, mice vaccinated with a single

immunization of VLPs had no detectable viral titers, whereas mice

vaccinated with rHA had an average titer of 4.56104.

DISCUSSION
Influenza virus-like particle vaccines described in this report are

non-replicating particle-based vaccine candidates for influenza

based upon a influenza A H5N1 clade 1 and 2 isolates. Our results

show that BALB/c mice immunized with VLP vaccines were

effectively protected from disease and death when challenged with

viruses with antigenically distinct HA and NA proteins from H5N1

influenza viruses. These results highlight the potential of VLP

vaccine as an effective immunogen and delivery system for

influenza antigens, particularly to the respiratory tract. Our VLPs

have the advantage of inducing strong humoral and cellular

immune responses against multiple influenza viruses without the

need of a supplemental adjuvant. The inclusion of the highly

Figure 7. Kinetics of Indonesia VLP elicited antisera binding to H5N1
rHA antigens. Kinetics of antisera binding to homologous, Indonesia
clade 2 rHA (black square) and heterologous, Viet Nam clade 1 rHA
(white square). Values on x-axis represent the apparent association rate
of antibody binding to HA and the values on the y-axis represent the
apparent disassociation rate of antibody from the HA antigen.
doi:10.1371/journal.pone.0001501.g007

Figure 8. Protection from influenza virus challenge. At week 5, mice vaccinated with clade 2-dervied vaccines were challenged intranasally with a
lethal dose of reassortant influenza virus (A/Indonesia/05/2005 (clade 2)) and monitored daily for weight loss and mortality. The data are plotted as
percentage of the average initial weight. Percentage of original weight (A) Mice vaccinated with two doses of vaccine (week 0 and 3) and (B) mice
vaccinated with a single dose of vaccine (week 0). All mice challenged at week 5. Mice that lost greater than 25% body weight were euthanized.
doi:10.1371/journal.pone.0001501.g008
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conserved M1 protein is also advantageous, since CD8+ T cells

against conserved epitopes within M1 can contribute to protection

against morbidity and mortality from influenza [33–38]. Pools of

peptides representing M1 were used to identify cellular responses

elicited by our VLPs (Fig. 4). In addition, these vaccines have the

potential to elicit protective immune responses as effectively as

live-attenuated influenza without safety issues associated with the

isolation, production, and delivery of live vaccines [4].

Currently licensed seasonal influenza vaccines elicit immunity that

is subtype- and sometimes strain-specific and do not protect against

avian H5N1 viruses with pandemic potential. Our influenza VLPs

are a new generation of egg-independent candidate vaccines

expressed from insect cells infected by a recombinant baculovirus

that encodes genes for three influenza virus proteins, HA, NA, and

M1 [14,15]. These VLPs may have an advantage over HA-only

based vaccines by the inclusion of these additional viral proteins,

especially against evolving H5N1 isolates from various clades. These

VLPs elicited anti-NA antibodies against an N1 NA protein that was

not matched to the vaccine. Antibodies against the same subtype of

NA, but not the exact NA molecule, can contribute to protective

immune responses [39]. When delivered via parenteral or mucosal

routes, VLPs may be particularly effective immunogens at priming T

cells and targeting antigen-presenting cells, as described for other

VLPs [40–43], as well as inducing high titered antibody responses

[44,45]. Another key factor is the authentic presentation of surface

HA and NA in native, three-dimensional conformation. Recent

clinical trials of human papillomavirus (HPV) VLPs have led to FDA

approval [46,47] and therefore, this may bode well for the approval

of additional VLP-based vaccines, including influenza VLPs. Our

influenza VLPs are easy to develop, produce, and manufacture.

They are not labor-intensive and they do not require costly

production schemes typically associated with manufacturing vac-

cines in eggs. VLP vaccines, like other recombinant influenza

vaccines, are particularly advantageous to address future pandemics

because these vaccines 1) need shorter lead times for development of

vaccines matched to circulating strains of viruses, 2) use recombinant

DNA technology to alleviate safety restrictions and bottlenecks

associated with dependence on live viruses, 3) use cell culture based

methods with disposable bioreactors to provide rapid response and

higher yields (scalable and transferable) for improved surge capacity.

In studies reported here, all mice vaccinated intramuscularly with

either vaccine or intranasally with the VLP vaccines survived

challenge with lethal doses of reassortant viruses. However,

intranasal delivery of the VLPs did elicit a broader immune response

than the same vaccine delivered intramuscularly. Cellular responses,

in particular, were reduced in the lung mucosa in mice vaccinated

intramuscularly compared to intranasally vaccinated mice. The

ability to elicit mucosal immune responses in the respiratory tract,

including the lungs, is desirable for an influenza vaccine.

Neutralization of influenza by pre-existing sIgA and IgG in the lung

reduces infection of susceptible epithelial cells [48–50] and thereby

reduces the deleterious effects induced by elevated cytokine levels,

which typically lead to the development of fever and respiratory

symptoms [51–53]. H5N1 infection in humans activates cytokine/

chemokine secretion resulting in the occurrence of a ‘‘cytokine

storm’’ that may contribute to the severity of disease by these viruses

[53–56]. The levels of these pro-inflammatory cytokines, triggered

by influenza gene products, are higher during H5N1 virus infection

compared to seasonal influenza virus infection [57]. Therefore,

vaccines, such as VLPs studied here, that prevent infection by

antibody or quickly clear infected cells by cell-mediated immune

responses [58–63] in the lung mucosa may blunt the activation of

this deleterious immune activation by reducing viral replication.

Compared to particulate antigens, intranasal vaccination of

soluble proteins, in the absence of an adjuvant, induces low or

undetectable immune responses in rodents and primates

[41,42,64]. In the nasal mucosa, VLPs are most likely phagocy-

tosed by microfold epithelial cells (M cells) in the nasal lumen and

then directly deposited to the NALT (nasal associated lymphoid

tissue) via M cell transcytosis [65], which preferentially drains into

lymph nodes. This process induces strong local (NALT) and

distant immune responses in both peripheral and mucosal immune

compartments [66]. In contrast, soluble antigens can penetrate the

nasal epithelium and directly interact with dendritic cells,

macrophages and lymphocytes and then these antigens are

transferred to posterior lymph nodes [67]. Soluble antigens can

bypass the NALT and be directly fed into superficial lymph nodes

by antigen presenting cells in the nasal lumen resulting in a lower

local immune response [66]. Therefore, VLP immunogens can

potentially interact directly with the mucosal immune system to

elicit high titer immunity.

Several approaches are in progress to develop vaccines against

H5N1 viruses. To date, products tested in humans have not been

effective at producing a strong immune response in a large

percentage of subjects tested in clinical trials [68]. However, many

of these previous H5N1 vaccine candidates were derived from

clade 1 or clade 3 isolates that required multiple doses and/or the

use of various adjuvants to achieve levels of antibodies believed to

correlate with seroprotection in a majority of subjects tested

[34,48,69–78]. Results presented in this report indicate that our

A/Indonesia/05/2005 (clade 2) VLP vaccine elicited higher HAI

antibody titers than the A/Viet Nam/1203/2004 (clade 1) VLP

vaccine without the use an adjuvant and elicited a robust and

broadly reactive immune response following two vaccinations.

Interestingly, a single immunization was able to protect mice from

virus-induced death, albeit mice administered lower doses of VLPs

or rHA had viral replication in the lungs and transient weight loss.

These results are similar to recent live attenuated vaccines that

required two vaccinations to prevent weight loss, but were able to

protect ferrets following a single vaccination [4]. The ability to

protect humans using a ‘‘one-shot’’ vaccination regimen is highly

desirable for a vaccine against influenza isolates with pandemic

potential. Following an outbreak, vaccines that reduce viral titers

in the lung and nasal mucosa may slow the transmission of the

virus among humans; there may not be sufficient time for a

booster shot of vaccine to achieve optimal antibody titers. The

VLP vaccine described in this report demonstrates that a one-dose

regimen is potentially possible in rodents using a non-replicating

Table 4. Pathological and Virological Analysis.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vaccinea pfu/mlb Weightc Activityd Dyspneae Survivalf

VLP (2 doses) ,1.00E+02 98% 0 0 100%

rHA (2 doses) 6.00E+03 91% 0 0 100%

VLP (1 dose) ,1.00E+02 97% 0 0 100%

rHA (1 dose) 4.50E+04 86% 1 0 100%

Mock 1.57E+06 80% 2 1 0%

aVaccine (3 mg) administered at weeks 0 (1 dose) or week 0 and 3 (two doses).
bParticle forming untis (pfu) per milliliter (ml) in the lungs of mice at day 3 post-
challenge. ,1.00e+2 = viral titers less than 100 pfu/ml.

cPercentage of original weight at day 6 post-challenge.
dActivity score. 0 = Full activity. 1 = slow to respond to touch, but still mobile.
2 = little response to touch.

eDyspnea. 0 = no shortness of breadth. 1 = heavy breathing and shortness of
breadth.

fPercentage of mice that survived challenge at day 8 post-challenge.
doi:10.1371/journal.pone.0001501.t004..
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immunogen that can elicit cross-clade protective immune

responses and is worthy of evaluation in the clinic.

One of the challenges faced by influenza vaccine developers is the

ability to protect populations in the face of a spreading pandemic.

The next influenza pandemic may be caused by a H5N1 virus and if

so, it is not known which clade or subclade will be responsible.

Correlates for protection from infection by H5N1 isolates have not

been determined. Historically, the HAI assay is the most widely used

serological assay for monitoring influenza immunity and is the

accepted standard for measuring functional influenza-specific serum

antibodies to the hemagglutinin following vaccination. An HAI titer

that is greater than 1:40 ($40) against a seasonal influenza strain is

believed to be protective for ,50% of the vaccinated population

[18]. However, this does not appear to hold true for avian H5N1

viruses, since no correlation between HAI titer and protective

efficacy against H5N1 infection has been reported in animal or

human systems. Therefore, new correlates may be necessary to assess

the efficacy of potential H5N1 vaccines. One interesting finding in

this study was the correlation between the slower disassociation rates

of the VLP-elicited antibody to HA compared to antibodies

produced in response to rHA vaccines. In addition, antibodies

elicited to the homologous clade 2 rHA had faster association rates

compared to antibody binding the heterologous clade 1 rHA. The

increase in antibody association rates in vivo could bind HA on viruses

quickly and perhaps decrease the number of infected cells in the

lung, and thus could act to reduce the amount of viral replication to

allow the immune system opportunity to better control the infection.

In addition, antibodies that are slow to dissociate from the virion

may continue to reduce the ability to uncoat and thus restrict the

virus post-infection. Further analysis is needed; however, the use of

antibody association/dissociation rates may be a more accurate

assessment of vaccine efficacy that could potentially correlate with

enhanced efficacy.

One of the more interesting findings in this study was the

severity of disease induced by the 6:2 H5N1/PR8 reassortant

viruses in the BALB/c mouse model. Previous publications using

1997 H5N1/PR8 clade 3 reassortant viruses generated by

Subbarao and colleagues were not lethal for mice [79]. Therefore,

we were expecting the clade 1 and clade 2 reassortant viruses to

also be non-lethal and to be able to culture viruses from lungs of

infected mice to compare the efficacy of each vaccine based only

upon reduction of virus titers. Instead, we found both the clade 1

and clade 2 reassortant viruses to cause precipitous weight loss and

to be lethal for mice. However, lethality was only observed in mice

infected under deep anesthetic, since mice infected under lighter

anesthesia conditions showed less dramatic weight loss (,7%) and

no mortality (data not shown). Therefore, we speculate that these

reassortant viruses are lethal under conditions when the virus is

allowed to infect the lower respiratory tract. Interestingly, we

found that not all clade 2 H5N1/PR8 reassortant viruses were

lethal to mice, since mice administered a similar high dose (106

pfu/ml) of the PR8 reassortant viruses with HA and NA proteins

from A/Anhui/1/2005 (clade 2.3) did not cause mortality. In

addition, none of these reassortant viruses were lethal in a ferret

model (data not shown), which may be a reflection of the

difference in anatomy, sites of replication, and distribution of viral

receptors between BALB/c mice and ferrets. We acknowledge that

wild-type H5N1 isolates may result in more pathology in mice

compared to the H5N1 HA/NA reassortant viruses used in this

study. Many components of avian H5N1 isolates have been

attributed to the highly pathogenic nature of these viruses,

including the H5N1 PB2 and NS1 proteins, which are not

included in the H5N1-PR8 reassortant viruses used here.

Nonetheless, reassortant viruses can be useful tools to evaluate

immune responses raised to H5N1 HA and NA components in the

absence of a high containment facility and special permits required

to work with wild-type H5N1 viruses. We will soon have

additional capacity to be able to do future immunogencity studies

against highly pathogenic wild-type H5N1 isolates.

This is the first report of an H5N1 VLP vaccine derived from a

clade 2 influenza isolate. These clade 2 H5N1 VLP and rHA

vaccines elicited protection against a lethal challenge from an

antigenically similar reassortant virus strain without including an

adjuvant. However, rHA only vaccines, administered at the same

dose, did not prevent morbidity and weight loss following a cross-

clade challenge even though all animals did eventually recover. In

contrast, a 3 mg dose of VLPs provided cross-clade protection

against a H5N1 challenge with little to no observed weight loss. It is

reasonable to expect that use of VLP-based vaccines will provide

substantial clinical protection and reduce mortality in humans and

appropriate clinical studies should be initiated to further evaluate the

potential of VLP vaccines for both seasonal and pandemic influenza.
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