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Summary
Background Glioblastoma (GBM) is the most aggressive type of primary brain tumor and is often resistant to current
therapies. Tumor microenvironment-centered therapies may unleash new hope for GBM treatment. Therefore, an in-
depth understanding of tumor-stroma communication is urgently needed to identify promising therapeutic targets.

Methods We systematically analyzed GBM single-cell RNA sequencing (scRNA-seq), bulk RNA-seq and spatial
scRNA-seq data from various human and mice studies to characterize the network within the microenvironment.
Moreover, we applied ex vivo co-culture system, flow cytometry analysis and immunofluorescent staining to validate
our findings.

Findings Our integrative analyses revealed that highly heterogeneous GBM tumor cells can be classified into MES-
like, AC-like, OPC-like and NPC-like subtypes based on molecular studying. Additionally, trajectory and regulatory
network inference implied a PN to MES cell state transition regulated by specific transcriptional factor (TF) regulons.
Importantly, we discovered that glycoprotein nonmetastatic B (GPNMB) derived from macrophages played a crucial
role in this transition through immune cell-tumor interplay. Besides, through deep signal transduction analyses and
cell co-culture studies, we further disclosed that these GPNMB-high macrophage subpopulations, originating from
monocytes, could also ineffectively retain T cells from activating by dendritic cells (DCs).

Interpretation Our study suggests that targeting this particular GPNMB-high macrophage subset may provide a
new strategy to control GBM plasticity and facilitate T cell-based immunotherapy.

Funding A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
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Introduction
Glioblastoma (GBM) is the most aggressive primary
brain tumor with a median survival less than 15
months despite surgery, chemotherapy, and
radiotherapy.1,2 Immunotherapy has revolutionized
cancer treatments in recent years, however, GBM, as
an immunologically cold tumor, is generally resistant
to this approach because of the severe
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immunosuppression.3,4 Molecular studies classified
GBM into proneural (PN), classical (CL) and mesen-
chymal (MES) subtypes.5,6 MES subtype has the worst
prognosis and can be transformed from PN subtype
during tumor development.7,8 In fact, multiple sub-
types exist within the same tumor, which makes GBM
even more refractory to current therapies. To date,
studies have examined intrinsic factors involved in
tumor heterogeneity and cancer progression. However,
how biological events extrinsically drive cancer devel-
opment and shape immunosuppressive tumor immu-
nity are still largely unknown. Thus, explicitly
understanding the GBM microenvironment and the
interplay between diverse cellular compositions will
provide new therapeutic avenues for both targeted
therapy and immunotherapy.
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Research in context

Evidence before this study

Glioblastoma (GBM) is one of the most lethal and treat-
ment-refractory cancers. Intra-tumoral heterogeneity is
one of the major reasons for therapy failure in GBM. The
highly immunosuppressive microenvironment, includ-
ing various types of immune and stromal cells, is
another crucial factor that promotes tumor progression
and orchestrates therapeutic resistance. Therefore, an
in-depth understanding of the GBM ecosystem, particu-
larly the interaction between different cell types using
single-cell-based approaches will facilitate the develop-
ment of new therapeutic opportunities.

Added value of this study

In this work, we reveal the heterogeneity and plasticity
of GBM cells on the transcriptomic level and identify a
dynamic transition from PN-to-MES subtype regulated
by GPNMB derived from macrophages using scRNA-seq
analysis. Besides, we constructed intercellular communi-
cation networks between myeloid cells and T cells, and
further demonstrate spatial colocalization and ineffec-
tive retention of GPNMB+ macrophages with T cells.

Implications of all the available evidence

Our study systemically characterizes the intercellular
interactions in the tumor microenvironment of GBM and
provides a potential strategy targeting GPNMB-high
macrophages for combination immunotherapy in the
future.
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Macrophages can comprise 30�50% of tumor
mass,9 constituting a distinct population with heteroge-
neous properties in GBM. Typically, tumor-associated
macrophages have M2-like characteristics, which pro-
mote tumor development and immune suppression.10

In contrast, M1-like macrophages that produce inflam-
matory cytokines can support anti-tumor immune
responses.11 Therefore, multiple strategies have been
developed for targeting macrophages switching through
particular signals (e.g., Pi3Kr, CSF1R, HDAC) in order
to slow tumor growth and limit the immunosuppressive
effects on T cells,12�14 but the benefits remain limited
and controversial. Importantly, this binary subset can-
not fully capture the complexity of macrophage-medi-
ated immunity in the tumor microenvironment (TME),
hence exploring the functional diversity of macrophage
subsets remains imperative for promising targets devel-
opment.

Recently, multi-omics approaches at single-cell resolu-
tion have been considered a promising method for tumor
biology study. Increasing numbers of single-cell RNA
sequencing data have revealed major characteristics of
GBM and complex immune microenvironment.15�20
Here, we analyzed various scRNA-seq data to discover a
PN to MES cell state transition regulated by key tran-
scriptional factor (TF)-regulons through trajectory and
regulatory network inference. Moreover, using a compu-
tational method that predicts the ligands from sender-
cell to interact with specific targets from receiver-cell
based on gene expression and prior knowledge on regula-
tory signaling paths, we uncovered glycoprotein nonme-
tastatic B (GPNMB) derived from macrophages as the
top ligand in regulating these TF-regulons implicated in
the PN-MES transition.

GPNMB, a transmembrane glycoprotein, presents
on the cell surface or resides in endosomes and lyso-
somes.21 The membrane-bound part can be cleaved by
metalloproteinases to produce the soluble isoform,22

which binds multiple receptors to promote intercellular
crosstalk, and its high expression level correlates with
therapy resistance in cancer treatment.23 GPNMB pro-
tein was originally discovered in tumor cells and
involved in tumor migration, invasion, metastasis,24,25

and also immune evasion through directly inhibiting T
cell activation.26 However, in our study, we show that
GPNMB is predominantly expressed on macrophages
rather than dendritic or tumor cells in the GBM micro-
environment. Through signal transduction networks
investigation, ex vivo cell co-culture, flow cytometry and
immunofluorescent staining, we demonstrate that
GPNMB-high macrophages not only promote tumor
progression by inducing PN-MES tumor cell state tran-
sition but also dampening T cell activation through
non-effective retention. Thus, targeting GPNMB-high
macrophages provides the susceptibility of GBM to
molecular-targeted therapies and creates a favorable
environment for T cell-based immune responses.
Methods

Ethics approval
Because our study used publicly available datasets, an
ethical committee approval was not required.
Data accessibility
The scRNA-seq data of GBM samples (GSE103224,
GSE138794, GSE139448 and GSE131928) were
obtained from Gene Expression Omnibus (GEO, http://
www.ncbi.nlm.nih.gov/geo/) database. The bulk RNA-
seq and microarray data of GBM samples were obtained
from TCGA and CGGA databases (http://gliovis.bio
info.cnio.es/).
scRNA-seq data process and integration
The scRNA-seq data including GSE103224, GSE138794,
GSE139448 and GSE131928 were explored using Seurat
package in R 4.0.5.27 The first step was to filter out low-
quality cells with a cutoff value of less than 200 total
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feature RNA and more than 5% mitochondrial RNA.
After normalizing the gene expression in each cell, the
data from each dataset were then integrated using
SCTransform integration workflow (https://satijalab.
org/seurat/articles/integration_introduction.html). A
total of 2000 integration anchors representing nearest
neighbors within datasets were identified, and the data
were further scaled by regressing out cell cycle effect
and total number of counts per cell, as well as percen-
tages of mitochondria-expressed genes per cell. To
reduce dimensions, principal component analysis
(PCA) was performed (npcs=30) and followed by t-dis-
tributed stochastic neighbor embedding (tSNE) and uni-
form manifold approximation and projection (UMAP)
algorithms (dims = 1:15). Afterward, 28 cell clusters
were found in the first place after applying the Find-
Neighbors and FindClusters functions (resolution=0.8).
Using the Wilcoxon rank-sum test, genes differentially
expressed in each cluster were identified using FindAll-
Markers function (cutoff:min.pct=0.25 and logfc.thresh-
old=0.25). Then, small clusters were merged together
by annotating with the singleR package28 and manual
verification based on canonical markers. Doublets were
removed using the doubletFinder R package.29 Last,
integration yielded a total 54,534 cells across 40 samples
with 11 major cell clusters named MES-like, AC-like,
NPC-like, OPC-like tumor cells, unknown cells, oligo-
dendrocytes (Oligo), Macrophages, Microglia cells, NK
and T cells (Lymphocyte), endothelial cells (EC) and
smooth muscle cells or GBM-associated endothelial
cells (SMC/GBM-EC) for further analysis. Gene signa-
tures for MES-like AC-like, NPC-like and OPC-like were
listed in Supplemental Table 1, and signature scores of
cells were performed with AddModuleScore function.
Inference of CNV
To distinguish malignant cells from normal cells, copy
number variation was estimated using infercnv pack-
age.30 Low-expression genes that expressed less than 10
cells and a median expression below 0.1 were removed.
Genes were then annotated according to chromosomal
position, and the CNV score was estimated from the
moving averages of 100 genes. Lastly, hierarchical clus-
tering was used to distinguish non-malignant cells from
malignant cells with clear chromosomal deletions or
amplifications.
Trajectory analysis
Data collected from Seurat can be easily imported into
Monocle 2 package31 using as.CellDataSet function for
trajectory analysis. First, genes were excluded if the
expression was less than 0.5 and expressed cells were
fewer than 200. Based on different gene expression pat-
terns, the dataset was re-ordered by highly different
genes with a q value of 1e-40. Next, a DDRtree dimen-
sional reduction algorithm was performed for data
www.thelancet.com Vol 83 Month , 2022
interpretation. Last, pesudotime analysis was under-
taken to identify significant genes along with their tra-
jectories, while cells in the same branch were
considered to be at the same differentiation stage.
Besides, the branch expression analysis modeling
(BEAM) test was used to identify differential expression
levels at a branch-dependent level. In addition, unsuper-
vised inference of developmental directions of tumor
cells was also confirmed using VECTOR algorithm.32

Briefly, all the UMAP dimensions regarding tumor cells
were treated as an image, and then were split by pixels,
and the largest connected pixel network by linking adja-
cent pixels in UMAP was generated to infer the develop-
mental direction.
Gene set enrichment analysis GSEA and pathway
analysis
Using the differentialGeneTest function in Monocle2,
the top 1000 expressed genes between cell types were
generated and further GSEA and pathway analysis was
conducted using msigdbr33 and clusterProfiler pack-
ages.34 Gene signatures from Hallmark, GO-biological
processes and REACTOME datasets were used as inputs
to evaluate the pathway activity of different cell clusters.
SCENIC
Activated regulons in different tumor subsets were iden-
tified using SCENIC package.35 The raw count matrix
used as input was calculated for co-expression activity
using a Spearman correlation by GENIE3 (treeMethod=
”RF”, K=”sqrt”, nTrees = 1000). These filtered targets
were then analyzed for motif enrichment using RcisTar-
get. Particularly, an AUCell with a Wilcoxon rank-sum
test was used to estimate regulatory activity scores for
gene motifs located 500 bp upstream of the TSS and 10
kb around the TSS. Last, important regulons modulated
by key TFs were identified. For example, these targets,
EPAS1-regulon (31g), FOSL2-regulon (30g), CEBPB-reg-
ulon (22g), SOX4-regulon (16g) and SOX11-regulon
(19g) were then used as signature scores for visualiza-
tion using AddModuleScore and FeaturePlot function
in Seurat.
Survival analysis
Expression data of GBM were obtained from HG-
UG133A, Agilent-4502A, and CGGA datasets in Gliovis.
The expression of each gene is formatted as Log2 (TPM
+1) scale with or without normalization. According to
the subtype categories in the meta files, samples were
divided into MES, PN, and CL groups. And a GSVA
score for MES or PN high-or-low subtype with particular
gene signatures was also analyzed in groups. Kaplan-
Meier survival curves were fitted using the survival
package36 in R with 50-50 percentiles, and survival plots
were visualized using the ggsurvplot function.
3
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Correlation analysis
In order to quantify the relative fractions of certain cell
types such as macrophages, dendritic cells and T cells,
deconvolution of bulk seq (TCGA and CGGA datasets)
was used with xCell (http://xCell.ucsf.edu/). A Pear-
son's correlation test was used to determine the correla-
tion between cells, target transcription factors, markers
of cells and GPNMB-correlated genes. P-value lower
than 0.05 and correlation coefficients more than 0.3
were considered significantly correlative.
Spatial transcriptomics data processing
The spatial transcriptomic data of GBM were down-
loaded from 10x Genomics (https://www.10xgenomics.
com/cn/resources/datasets/human-glioblastoma-whole-
transcriptome-analysis-1-standard-1-2-0), and analyzed in
R using the Seurat 4.0 package according to the recom-
mended data processing guidelines (https://satijalab.org/
seurat/articles/spatial_vignette.html). In briefly, The
SCTranform function was used for data normalization,
followed by PCA and UMAP for dimension reduction,
and clustering was conducted with the default resolution
of the first 30 PCs. The gene expression features were
visualized by SpatialFeaturePlot function, and signature
scoring (Supplemental Table 1) for MES-like, AC-like,
NPC-like and OPC-like malignant cells was performed
with the AddModuleScore function.
Nichenet
Nichenet package collects the protein-protein interac-
tion data from Omnipath, PathwayCommons, Consen-
susPathDB, KEA, DEPOD and the regulator interaction
data from TRRUST, HTRIDB, RegNetwork, Ontogenet,
CHEA, ENCODE, JASPAR, MOTIFMAP, MSigDB to
generate a network matrix.37 To estimate the interactive
ligands from sender cells (such as microglia cells, mac-
rophages, NK and T cells, ECs and GBM-ECs), all tumor
cells were combined as receiver cell and gene signa-
tures, such as EPAS1, FOSL2, and CEBPB as well as
downstream signals targets (Supplemental Table 2)
were used as targets. Only the top 15% expressed genes
in sender cells were calculated by regulatory potentials
and ligand activity was ranked with a cutoff of 0.5 using
Pearson test. The predicted ligands from stromal cells
as well as the potential targets and receptors of tumor
cells are listed afterward.
CytoTalk
Signal networks between two specific cell types were
analyzed using CytoTalk package.38 Cell-gene matrixes
from total T cells, total dendritic cells, Gpnmb-high mac-
rophages and monocytes along with a ligand-receptor
paired list were used as input to infer the gene interac-
tions. Genes expressed in less than 10% of each cell
type were filtered out. This algorithm constructed a
singling network using prize-collecting Steiner forest
(PCSF) based on node prize (size of each node, repre-
senting the specificity in each cell type) and edge cost
(lines connected to each node, corresponding to the
potential interaction between two genes). In particular,
PCSF yielded 175 signaling networks between macro-
phages and T cells, 250 signaling networks between
monocytes and T cells, and 164 signaling networks
between dendritic cells and T cells. The figures were
also automatically exported and can be visualized using
Cytoscape version 3.9.39 Cell color was used to distin-
guish cell type and color intensity indicated the expres-
sion levels.
GBM tumor induction
All studies were supervised and approved by the Shang-
hai University of Traditional Chinese Medicine Institu-
tional Animal Care and Use Committee (IACUC).
GL261 cell lines were kindly provided by Dr. Hao Duan
(State Key Laboratory of Oncology in South China,
Department of Neurosurgery/Neuro-oncology, Sun Yat-
sen University Cancer Center, Collaborative Innovation
Center for Cancer Medicine, Guangzhou, China. RRID:
CVCL_Y003). This cell line has been performed short
tandem repeat (STR) profiling analysis and tested nega-
tive for mycoplasma contamination using biolumines-
cent assays by Shanghai Fuheng Biology (Reagent
Validation Files). GL261 cells were cultured in DMEM
supplemented with 10% FBS and 2 mM L-glutamine
(Life Technologies) and pretreated with mycoplasma
removal agent (MP Biomedicals) before use. A synge-
neic GBM mouse model was induced by orthotopically
injecting 1 £ 105 GL261 cells into wild-type mice on the
C57BL/6J background (RRID: IMSR_JAX:000664) as
previously described.40,41 After 3�4 weeks, mice with
severe GBM symptoms including dome head and hemi-
paresis were euthanized and the single-cell suspensions
of GBM were prepared with the gentleMACS Dissocia-
tor (Miltenyi Biotech, 130-093-235) and the collagenase
II and dispase II enzymes (Millipore Sigma,
10269638001) for further analysis. All procedures were
approved by the Animal Ethic Review Committee of
Shanghai University of Traditional Chinese Medicine
(#PZSHUTCM210604002).
Immune cell isolation
Mouse T cells were isolated from wild-type C57BL/6J
mouse spleens using total an EasySep Mouse T Cell Iso-
lation Kit (Stemcell Technologies; 19851) and cultured
in RPMI 1640 medium supplemented with 10% FBS,
20 mM HEPES buffer and 50 U ml�1 interleukin-2
(Peprotech; 212-12). For monocytes isolation, the bone
marrow cells were initially obtained from femurs and
tibia by flushing RPMI-1640 medium (Life Technolo-
gies, 11875119), then passed through a 40 mm strainer,
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and subjected to an EasySep Mouse Monocytes Isolation
Kit (Stemcell Technologies; 19861). Tumor-derived sin-
gle-cells were incubated with FcBlock (Biolegend,
101319, RRID:AB_1574973), and followed by staining
with a mixture of fluorochrome-conjugated antibodies
including anti-CD45 (1:200, eBioscience, 48-0451-82,
RRID:AB_1518806), anti-CD11b (1:200, eBioscience,
69-0112-80, RRID:AB_2637405), anti-CD11c (1:200,
BioLegend, 117307, RRID:AB_313776), anti-F4/80
(1:200, BioLegend, 123107, RRID:AB_893500), anti-
MHCII (1:200, eBioscience, 47-5321- 80, RRID:
AB_1548792) and anti-GPNMB (1:100, Invitrogen, 50-
5708-80, RRID:AB_2574238). All antibodies were vali-
dated by the commercial vendor. CD11b+F4/80
+GPNMB+ macrophages and CD11c+MHCII+ dendritic
cells were sorted on a FACSAria II instrument (BD Bio-
sciences).
Realtime-PCR analysis
A PN-subtype of GBM cell line was authenticated and
tested negative in mycoplasma contamination by sup-
plying company (DSMZ, ACC 880, RRID:
CVCL_A5ED). Cell was cultured in DMEM supple-
mented with 10% FBS and 2 mM L-glutamine (Life
Technologies). Tumor-associated macrophages were
freshly sorted from GL261-derived tumor cells using
flow cytometer, and subsequently co-cultured with
GBM spheroids using transwell inserts (upper chamber
for macrophages and lower chamber for GBM cells) in
presence of neutralizing antibody against GPNMB
(0.5 µg/mL; Thermo Fisher; PA5-47301, RRID:
AB_2605801). GBM spheroids were split every three
days and then re-cultured with newly isolated macro-
phages again. After 15 days, the GBM cells at lower
chamber were collected for RNA isolation using TRIzol
(Invitrogen, 15596026), chloroform (Sigma�Aldrich,
C2432) and 2-propanol (Fisher Scientific, A416-1). RNA
was then transcribed into cDNA using SuperScript III
First-Strand Synthesis SuperMix (Life Technologies,
18080400), and a Real-time PCR was performed using
Fast SYBR Green Master Mix (Applied Biosystems,
4385612) with the following primer sequences: Gapdh
(forward: 5’-aactttggcattgtggaagg-3’; reverse: 5’-aca-
cattgggggtaggaaca-3’), Fosl2 (forward: 5’-ctttatcgcctcaagc-
caag-3’; reverse: 5’-atccatgctatgggcagaag-3’), Cebpb
(forward: 5’-acttcagcccctacctggag-3’; reverse: 5’-gaggtcg-
gagaggaagtcgt-3’) and Epas1 (forward: 5’-caacctgcagcct-
cagtgta-3’; reverse: 5’-gtgtggcttgaacagggatt-3’)
T cell activation and proliferation assay
GL261 cells were lysed by 3�5 cycles of freeze-thawing
(�80 °C to 37 °C). The lysates were centrifuged at
2000 rpm for 10 min and the supernatants were subse-
quently incubated with different myeloid subsets over-
night for further analysis. For T cell activation assay,
www.thelancet.com Vol 83 Month , 2022
monocytes, CD11c+MHCII+ dendritic cells or CD11b
+F4/80+GPNMB+ cells were isolated using BD Influx
(BD Biosciences) and subsequently pulsed with tumor
lysates prior to co-culturing with na€ıve T cells (1:1) for
3 days (Supplementary Fig.3). After incubation, cell mix-
tures were stained with anti-IFNg (1: 100, BioLegend,
505808, RRID:AB_315402), anti-GZMB (1: 100, BioLe-
gend, 372211, RRID:AB_2728378), anti-CD69 (1: 100,
BioLegend, 104511, RRID:AB_493565), anti-CD8a (1:
200, BioLegend, 100706, RRID:AB_312745) or control
IgG antibodies for FACs analysis. All antibodies were
validated by the commercial vendor. For T cell prolifera-
tion assay, freshly isolated T cells were labeled with
CFSE dye (Thermo Fisher Scientific; C34554) for
20 min. After several wash steps, T cells were further
co-cultured with pulsed cell populations for 3 days. The
data were acquired using CantoII flow cytometer (BD
Biosciences) and analyzed using FlowJo software.
siRNA treatment
Bone marrow-derived monocytes were obtained from
femurs and tibia of wild-type C57BL/6J. 10 ng/ml CSF-1
was treated for 3 days to differentiate M0 macrophages.
Macrophages were transfected with siRNA targeting
Gpnmb (Thermo, 175440) using Amaxa 4D-Nucleofec-
tor (Lonza) with program EA-100. 100 ng/ml of IL-4
was treated for another 2 days to induce M2 macro-
phage polarization. After treatment, the expression of
CD11b (1:100, BioLegend, 101211, RRID:AB_312794)
and CD206 (1:100, BioLegend, 141710, RRID:
AB_10900445) expression were determined by flow
cytometry.
Immunofluorescence
Immunofluorescence was carried out as previously
described.40 Briefly, after de-paraffinization and rehy-
dration, section samples were then applied to antigen
retrieval using Retrieve Solution (DAKO; S1699) at 95 °
C for 25 min. Sections were further blocked with 5%
horse serum and incubated with anti-GPNMB (1:50,
R&D Systems, AF2330, RRID:AB_2112934), anti-Mac-3
(1:100, BD, 550292, RRID:AB_393587) and anti-CD3
(1:100, Abcam, ab11089/ab16669, RRID:AB_2889189/
AB_443425) overnight at 4 °C. After washing in PBS,
sections were stained with anti-488, anti-568, and anti-
647 appropriate secondary IgGs (1:500, Life Technolo-
gies) for 1 h. All antibodies were validated by the com-
mercial vendor. Images were acquired using an Axio
Imager microscope (Zeiss).
Flow cytometry
Single-cell suspensions from mouse GBM were fur-
ther stained with fluorochrome-conjugated antibodies
for 30 min, including anti-CD45 (1:200, eBioscience,
48-0451-82, RRID:AB_1518806), anti-CD3 (1:100,
5
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BioLegend,100233, RRID:AB_2561387), anti-CD11b
(1:200, BioLegend, 101228, RRID:AB_893232), anti-
CD11c (1:200, BioLegend, 117309, RRID:AB_313778),
anti-F4/80 (1:200, BioLegend, 123107, RRID:
AB_893500), anti-MHCII (1:200, eBioscience, 47-
5321-80, RRID:AB_1548792) or control IgG antibod-
ies. All antibodies were validated by the commercial
vendor. Data were collected using CantoII flow cytom-
eter (BD Biosciences) and analyzed using FlowJo soft-
ware.
Statistical analysis
All statistical analyses and plots were performed using
R (4.0.5) and GraphPad Prism 8. Log-rank test was
used for Kaplan-Meier survival analysis and for linear
relationship evaluation, Pearson correlation coefficient
was utilized. A one-way ANOVA test was used for multi-
ple comparisons. P valued was marked within plots to
indicate statistical significance.
Role of Funders
The Funders do not participate in study design, data col-
lection, data analyses, interpretation or writing of report.
Results

Transcriptomic characterization of the TME and tumor
heterogeneity in GBM by scRNA-seq analysis
In order to study the heterogeneity of GBM, we inte-
grated and analyzed scRNA-seq data from different
independent datasets using Seurat. SCTransform algo-
rithm was performed to remove the batch effect and the
integrated data yields a total of 54,534 cells from 40
patients. After normalization of gene expression and
principal component analysis (PCA), uniform manifold
approximation and projection (UMAP) analyses
revealed 28 unsupervised clusters across all cells (Sup-
plementary Figure 1). By applying the annotation with
singleR and cell-type-specific markers, we merged small
cell clusters into big cell lineages based on the shared
transcriptomes (Figure 1a, Supplementary Figure 2).
Copy-number variation helps to distinguish the tumor
cells from normal cells. Therefore, we observed the
chromosome 7 gain along with chromosome 10 loss in
tumor cells but not in normal cells by analyzing the
average expression of 100 top genes in each cell type
(Figure 1b), which is consistent with published WES
data.42 Malignant cells including MES-like (12.2%,
marked with CHI3L1 and ADM), AC-like (36%, marked
with MLC1 and HOPX), NPC-like (4.9%, marked with
CD24 and DCX) and OPC-like (26.4%, marked with
PDGFRA and OLIG1) clustered together, whereas the
non-tumor cells such as macrophages (8.2%, marked
with CD163 and CD68), microglia cells (1.5%, marked
with CX3CR1 and TMEM119), lymphocytes (0.7%,
marked with CD3D and NKG7), endothelial cells (1.1%,
marked with VWF and PECAM1), and tumor-associated
endothelial cells (0.8%, marked with COL1A2 and
BGN), oligodendrocytes (4.3%, marked with PTGDS
and MBP) were scattered (Figure 1c-d). The percentage
of cell types varied across patients, especially for differ-
ent cellular states of tumor cells, indicating that hetero-
geneity is the major feature of GBM (Figure 1e-f).
Especially for one cell cluster, here referred to as
unknown cells, was highly dominated by one single
patient (PJ016). Chromosomal 7 amplification indicated
that this type of cell was more like tumor cells than
matured oligodendrocytes cells, although both express
PTGDS and MBP. Additionally, Gene set enrichment
analysis (GSEA) analyses verified the different tumor
subtypes of GBM by analyzing a panel of specific gene
expressions as Z-score (Supplementary Table 1,
Figure 1g). Collectively, molecular subtyping of single
cells suggests that GBM patients show a high level of
intratumor subtype heterogeneity.
Trajectory interference indicates key regulons in
proneural-mesenchymal subtype transition
Next, to explore the transition between different sub-
types of GBM (Figure 2a), we extracted all the tumor
cells and applied unsupervised trajectory analysis using
Monocle.31 Trajectory analysis revealed a major lineage
starting from NPC- and OPC-like tumor cells, corre-
sponding to the proneural (PN) type of GBM classified
by TCGA,6 to AC- and MES-like tumor subtypes, while
there was also a minor branch toward AC-like cell state
(Figure 2b). Moreover, the pseudotime analysis data
revealed the plasticity of GBM and a dynamic transition
from proneural to mesenchymal subtype (Figure 2c).
Also, the unsupervised developmental inference analy-
sis confirmed this dynamic change (Figure 2f). Impor-
tantly, bioinformatic analysis showed the different gene
expressions and pathway enrichments along the pseu-
dotime. For instance, DCX, CD24, OLIG1/2, SOX fam-
ily-related genes, corresponding to PN states, were
gradually decreased, while VIM, CH3L1, and LGALS3,
representing the mesenchymal state, increased dramati-
cally (Figure 2d, 2g). Pseudotime-dependent pathway
enrichment analyses indicated the presence of cell cycle,
G2M checkpoints, and glial cell differentiation gene sig-
natures within PN state cells (Figure 2d), suggesting
proneural cells are highly proliferative and plastic. In
contrast, the mesenchymal state was characterized by
epithelial-mesenchymal transition (EMT), hypoxia,
ECM organization and cell adhesion pathways
(Figure 2d). Importantly, we analyzed the survival rates
from TCGA dataset by dividing the patients into, MES-
high or MES-low, PN-high or PN-low groups. Survival
data showed that patients with MES-like transcriptome
signatures predicted poor overall survival compared
with PN subtype, while patients with higher MES-score
www.thelancet.com Vol 83 Month , 2022



Figure 1. Transcriptomic characterization of the TME and tumor heterogeneity in GBM by scRNA-seq analysis.
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(calculated by average expression of mesenchymal gene
signatures) were always associated with poor prognosis
compared to those with lower MES scores (Figure 2e).
Besides, there was no survival rate difference between
high or low PN scores (Figure 2e), all of which suggests
that GBM patients with mesenchymal signatures have
poor survival outcomes.

Transcriptional factors are the key regulators in cell
differentiation and transition, and TF-regulated net-
works are essential for tumor progression. Bioinfor-
matic approaches are able to identify the cis-regulatory
elements regulated by TFs among cell clusters, and
these downstream targets are termed regulons. Here,
we sought to discover the key regulatory network in PN
or MES cell state by conducting a regulon activity analy-
sis with single-cell regulatory network inference and
clustering (SCENIC).35 SCENIC nominated a set of key
regulons in tumor cell states driven by different TFs, for
example, E2F1, SOX9, RARA, SOX11 and SOX4 were
specially expressed in OPC and NPC cells, whereas
EAPS1, CEBPB, FOSL2, STAT2 and EGR1 were predom-
inant mediators in MES and AC cell states (Figure 2h).
Additionally, scoring regulon activity for each cell type
highlighted some master regulators, such as EAPS1 (31
regulated genes), CEBPB (22 regulated genes) and
FOSL2 (30 regulated genes) in MES state, and SOX4 (16
regulated genes) and SOX11 (19 regulated genes) in PN
state (Figure 2i). The module score activities verified the
expression of dominant regulons in different cell states
(Figure 2j). Among the downstream targets regulated
by each important TF, we discovered shared targets
mediated by mesenchymal TFs, such as VEGFA,
LGALS3, and CAV1 (Figure 2l), which have been impli-
cated in EMT.43�45 In addition, the pseudotime analysis
confirmed the induction of EPAS1, CEBPB, and FOSL2
as well as the reduction of SOX4 and SOX11 along with
the PN-MES transition (Figure 2k). Last, linear regres-
sion showed a negative correlation between MES-TFs
and PN-TFs using TCGA dataset (Figure 2m). In sum,
our data highlight a dynamic transition from PN to
MES cell states mainly driven by key regulators.
Immune tumor microenvironment in PN- and MES-
GBM tumors
To assess the tumor microenvironment between PN-
and MES-GBM, we assigned each patient to a high- or
(a) Integration of 40 human GBM scRNA-seq data collected from
analyzed using UMAP, and 10 significant cell clusters are color-code
tion analysis based on average expression of 100 genes shows th
tumor cells compared with normal cells. Each row corresponds to a
cell type in GBM. (d) Dot plot displays the represented markers fo
OPC-like, oligo, macrophages, microglia, lymphocyte, EC, and GBM-
ter by patient ID and (f) the distribution of cell population in each
plot, while each patient is represented by a distinct color as indicat
by Z-score, as determined by calculating the geometric mean of ge
color in this figure legend, the reader is referred to the web version
low-MES score group (Figure 3a). Importantly, patients
with high MES scores were accompanied by enriched
macrophages, T cells and endothelial cells infiltration in
the tumor microenvironment (Figure 3b). In contrast to
the well-established role of ECs and macrophages in
mesenchymal transition, a higher infiltration of T cells
is extremely unexpected due to the improved prognosis
associated with multiple types of cancer.46�48 Bulk-seq
analyses of TCGA datasets demonstrated that mesen-
chymal GBM subtypes expressed higher T cells and
myeloid cell markers and revealed a strong correlation
between T cells and macrophages (Figure 3c-d). Addi-
tionally, spatial scRNA-seq data confirmed the close
contact between T cells and myeloid cells (Figure 3e),
which may occur in vascular niches, as CD8+ T cells
colocalized with CD68+ myeloid cells and endothelial
cells. Deconvolution algorithms have been used to
determine the relative expression of various cell types
based on specific gene signatures in bulk RNA-seq
data.49 Employing the deconvolution strategy with
TCGA data, here we showed that T cells abundance was
highly associated with macrophages as well as dendritic
cells (DCs), which are two major myeloid cell lineages
(Figure 3f). To further support this, we analyzed the
immune cell profiles in mouse GBM using flow cyto-
metric analysis and confirmed the positive correlation
between CD11b+F480+ tumor-associated macrophages
(TAMs) or CD11c+MHCII+ DCs with total T cells
(Figure 3g). Thus, the higher proportion of T cells in
mesenchymal subtypes is largely due to the infiltration
of macrophages.
GPNMB derived from macrophages contributes to PN-
MES cell state transition
Cell fate is determined not only by intrinsic factors but
also by extrinsic events. To explore the possible role of
extrinsic regulations in the PN-MES transition, we ana-
lyzed the intercellular crosstalk within the tumor micro-
environment using NicheNet.37 NicheNet is a
computational approach that can predict intercellular
ligand-target communications based on gene regulatory
networks. First, we listed out the key regulons in mesen-
chymal transcriptome generated from our trajectory
analysis above, including EPAS1, FOSL2, and CEBPB as
well as downstream signals targets (Supplementary
Table 2). We then calculated the potential ligands from
four individual datasets by Seurat. A total of 54,764 cells were
d and labeled as indicated. (b) Inference of copy number varia-
e chromosome 7 gain (red) and chromosome 10 (blue) loss in
cell type. (c) A pie chart demonstrates the proportions of each
r each major cell cluster, including MES-like, AC-like, NPC-like,
ECs. (e) Stacked bar plots show the percentage of each cell clus-
patient. Cell type colors match those represented in the UMAP
ed. (g) Feature plot displays the heterogeneity of GBM subtypes
ne signature expressions. (For interpretation of the references to
of this article.)

www.thelancet.com Vol 83 Month , 2022



Figure 2. Trajectory interference reveals key TF-regulons in PN-MES transition.
(a) Unsupervised trajectory analysis of tumor cells was conducted using monocle. (b-c) Pseudotime analysis demonstrates a major transi-

tion starting from OPC- and NPC-like to mesenchymal cells. Each dot represents a single cell, colored by cell type. (d) Heatmap plot of repre-
sented genes and pathways across trajectory states. Arrow corresponds to the direction of pseudotime. (e) Overall Kaplan-Meier survivals of
different subtype patients based on Z-score of MES-or PN-like gene signatures. (f) Developmental inference analysis shows the dynamic shift
in cell state. Arrow predicates the direction of cell state transition. (g) Feature plot of represented gene expressions (PN- or MES-like) in all
tumor cells. (h) The SCENIC analysis identifies the master regulons in different cell states. (i) Top ranking regulons are listed. Z-score was
determined by calculating the geometric mean of transcriptional factors and the corresponding cis-regulatory targets. (j) Feature plot show-
ing the enriched expression of TF-regulons along with DNA binding motif sequences. (k) Pseudotime-ordered analysis of key regulators
including EPAS1, FOSL2, CEBPB, SOX4 and SOX11. (l) Sankey plot showing the master regulatory modules. (m) The correlation of SOX4, SOX11
expression (PN-TFs) with EPAS1, CEBPB and FOSL2 (MES-TFs) was analyzed by linear regression using HU133-datasets from GlioVis. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Articles

www.thelancet.com Vol 83 Month , 2022 9



Figure 2. Continued

Articles

10 www.thelancet.com Vol 83 Month , 2022



Figure 2. Continued

Articles
the stromal cells (sending cells) that could interact with
the targets in the tumor cells (receiving cells). Finally,
we prioritized the top ligands and identified GPNMB
derived from myeloid cells as the top 1 ligand that can
interact with most of the mesenchymal targets
(Figure 4a). HPA and TCGA datasets showed GPNMB
to be mainly expressed in macrophages and highly cor-
related with macrophage markers, which indicates mac-
rophages are the major source of GPNMB (Figure 4b-c).
Our flow cytometry data confirmed the predominant
expression of GPNMB on macrophages rather than den-
dritic or tumor cells (Supplementary Figure 3a). More-
over, GPNMB was also highly expressed in MES
subtype patients (Figure 4d), and this higher expression
predicted poor prognosis in both low- and high-grade
gliomas (Figure 4e). These findings imply that macro-
phages with a high expression of GPNMB could induce
a cell state transition toward MES phenotype, we there-
fore applied a co-culture system to investigate this
hypothesis. This system includes the genetic resem-
blance to the proneural type of glioma cells50 and fresh
isolated CD11b+ F4/80+ macrophages. In order to
induce a dramatic transcriptome change, we freshly co-
cultured macrophages every three days to eventually
assess the expression of three master transcription fac-
tors in mesenchymal phenotypes (EPAS1, CEBPB,
FOSL2) after continuous and long-term stimulation, as
obtained by our analysis. Our results revealed that long-
term macrophage contact induced mesenchymal regula-
tor expressions in tumor cells, and importantly,
www.thelancet.com Vol 83 Month , 2022
treatment with a neutralizing antibody against GPNMB
could partially abolish this effect, suggesting GPNMB
as an essential mediator for PN-MES transition
(Figure 4f).
Monocytes differentiate into Gpnmb-high
macrophages based on scRNA-seq analysis on GBM-
mouse model
Due to the very few immune cells obtained in current
human GBM scRNA-seq data for further analysis, we
included another scRNA-seq dataset focusing on CD45+
immune cells collected from GBM mouse at early (day
7) and late (day 28) stages.51 After re-analyzing the data,
we identified the main types of immune cells such as
NK cells, Cd8+ T cells, Cd4+ T cells, B cells, neutro-
phils, cDC1, cDC2, pDC, mDC, monocytes, TAM,
monocytes/TAM, and microglia cells based on cell
marker expressions (Figure 5a). As expected, macro-
phages dramatically invaded tumor sites while micro-
glia cells vanished during tumor development
(Figure 5b), showing consistency with other findings.52

In addition, trajectory analysis inferred two major cell
lineages, dendritic cells and macrophages, originated
from monocytes, and progressed along with tumor
development (Figure 5c). Interestingly, distinct path-
ways dominated the recruitment of tumor-infiltrating T
cells: monocytes predominately expressed Cxcl10, Cxcl9
and DCs specifically expressed Ccl17, Ccl22, while mac-
rophages expressed Ccl24 (Figure 5d). Besides, another
11
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set of important mediators including Saa3, Arg1, and
Gpnmb presented exclusively in macrophages
(Figure 5d). During tumorigenesis, expressions of Arg1
and Gpnmb were robustly induced in macrophages
(Figure 5e-g), which was in accordance with the findings
in human GBM datasets (Figure 4d). However,
GPNMB is not a driving factor for M2 macrophage
polarization, evidenced by unchanged CD206 expres-
sion (classic M2 macrophage marker) after Gpnmb
knockdown (Supplementary Fig. 4). Particularly, immu-
nofluorescence staining demonstrates the co-location of
Figure 3. Immune tumor microenvironment in PN- and MES-GBM
(a) MES gene signature was used to classify patients into the M

percentage of each cell type across different groups. (c) TCGA data
classical, and mesenchymal subtypes of GBM. Statistical analysis by
specific genes in the GBM-TCGA dataset, with blue representing a n
Spatial distribution of cell-type-specific scores/genes defined by scR
fractions, which were estimated by a cellular deconvolution algorith
sis in TCGA datasets. (g) Flow cytometry analysis of CD3+ T cells,
(n=18). Left, gating strategy. Right, a linear relationship was evaluate
to color in this figure legend, the reader is referred to the web versio
GPNMB+ macrophages with T cells (Figure 5h), sug-
gesting a potential interaction between them.
GPNMB-high macrophages ineffectively retain T cells
from activating by DCs
Current cell-cell interaction analyses examine the rela-
tive expression of ligands and receptors in different cell
types without examining the overall signaling networks.
To explicitly investigate the interaction of T cells with
APC-like cells in GBM, we thus applied the CytoTalk
tumors.
ES-high, MES-intermediate and MES-low groups. (b) The relative
set reveals gene expression patterns associated with proneural,
one-way ANOVA test. (d) Pearson correlation between cell-type-
egative correlation and red indicating a positive correlation. (e)
NA-seq. (f) Association of macrophage/dendritic cells with T cell
m. The correlation was conducted using linear regression analy-
CD11b+F4/80+ TAMs and CD11c+MHCII+ DCs in GBM mouse
d using Pearson correlation. (For interpretation of the references
n of this article.)
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algorithm to study the full signal transduction path-
ways.38 Chemokines, cytokines, co-stimulatory/inhibi-
tory and antigen-presentation pathways provided
insights into how T cells interact with monocytes,
Gpnmb-high macrophages and dendritic cells
(Figure 6a-c). For example, Gpnmb-high macrophages
and DCs expressed high levels of but totally different
MHCI/II molecules compared with monocytes, sug-
gesting that in the GBM tumor microenvironment,
macrophages and DCs are the dominant antigen-pre-
senting cells. A number of chemokines and cytokines in
monocytes, including Cxcl10, Il15, and Il18, could inter-
act with Cxcr3, Il2ra/b, Il18r1/Cd48 on T cells to promote
downstream signaling and infiltration. Well, Ccl2-Cxcr3,
Cxcl16-Cxcr6 and Ccl3-Ccr1 were the predominate
www.thelancet.com Vol 83 Month , 2022
chemokines involved in the interaction of Gpnmb-high
macrophages and T cells. Importantly, DCs shared the
same Cxcl16-Cxcr6 chemokine signals for T cell recruit-
ment, indicating a competent role within myeloid cells.
Furthermore, a study of enriched co-stimulatory signals
suggests that T cells can activate when encountering
DCs rather than macrophages (Figure 6d). To confirm
this potential non-effective retention by interacting with
Gpnmb-high macrophages, we extracted the F4/80
+GPNMB+ macrophages, CD11c+ DCs and bone mar-
row-derived monocytes from GBM tumor and normal
mouse, and then pulsed them with tumor lysates prior
to co-culturing with na€ıve T cells (Figure 6e). Our data
showed that CD11c+ DCs induced robust T cell activa-
tion when compared with GPNMB+ macrophages or
13
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monocytes, evidenced by much higher levels of CD69,
IFNg and GZMB (Figure 6f). Similarly, according to
the results of the T cell proliferation assay, CD11c+ DCs
significantly enhance T cell proliferation, in contrast to
monocytes or GPNMB+ macrophages (Figure 6g).
Taken together, all of the data indicate that Gpnmb-high
macrophages could not activate T cells due to the sus-
tained co-stimulatory signals but instead exert non-
effective retention.

In sum, taking advantage of the analysis of scRNA-
seq data, we identified a key GPNMB-high macrophage
subset as a hub in cell-cell communication. Our ex vivo
data verified that GPNMB+ macrophages not only
induced the PN-MES tumor cell transition but also
Figure 4. GPNMB derived from macrophages contribute to PN-M
Intercellular communications between stromal and tumor cel

sender cells (Macrophages, Microglia, Lymphocyte, EC and SMC/G
cells) based on interacting with MES-regulons. Red heatmaps indic
low. The ligand expressions across cell types are shown on the left.
is low, red is high), while the dot size corresponds to the percentag
cates the potential interaction between ligands and targets/recept
The relative expression of GPNMB in each cell type by analyzing the
the TCGA and CGGA datasets. (d) Relative GPNMB expression in di
patients with high- and low-expressed GPNMB. (f) Tumor-associate
cells, and subsequently co-cultured with proneural type of GBM sph
stant stimulation, the expressions of EPAS1, FOSL2, and CEBPB were d
(n=4 independent biological replicates, mean § SD). (For interpreta
referred to the web version of this article.)
impaired T cell activation through competing with DCs.
Therefore, targeting GPNMB+ macrophages could ben-
efit in treating GBM combined with other therapies.
Discussion
GBM, a typically heterogeneous and immunologically
cold tumor, is highly resistant to chemotherapy, radio-
therapy and immunotherapy. Microenvironment-tar-
geted immunotherapy holds new hope for GBM
treatment.40,41 Therefore, explicitly dissecting the
tumor microenvironment will help identify the determi-
nants of GBM tumor evolution and promising targets
for further combination therapy. Based on integrative
ES cell state transition.
ls were inferred using Nichenet. (a) Ligands ranking from the
BMEC) was predicted to communicate with target cells (tumor
ate the Pearson correlation of prioritized ligands from high to
Color encodes the average expression level across all cells (blue
e of cells expressing the feature gene. The right heatmap indi-
ors. Color indicates the high or low interaction, respectively. (b)
HPA dataset. (c) The highly correlated genes with GPNMB from
fferent GBM subgroups. (e) Kaplan-Meier analysis of survival in
d macrophages were freshly sorted from GL261-derived tumor
eroids in presence of neutralizing antibody of GPNMB. After con-
etermined using RT-PCR. Statistical analysis by one-way ANOVA
tion of the references to color in this figure legend, the reader is

www.thelancet.com Vol 83 Month , 2022



Figure 4. Continued

Articles

www.thelancet.com Vol 83 Month , 2022 15



Figure 5. Monocytes differentiate into Gpnmb-high macrophages or dendritic cells in the tumor microenvironment based
on scRNA-seq analysis on GBM-mouse model.

(a) Immune cells were re-clustered from GL261 mouse scRNA-seq and visualized in UMAP plot. Color encodes different cell clus-
ters. (b) The percentage of each cell type in early and late stages of tumors. (c) Monocytes, dendritic cells, and macrophages were
applied to trajectory analysis. Pseudo-temporal ordering of cells across cell types (top) and time points (bottom). (d) Heatmap plot
showing the bifurcation of gene expression starting from monocytes. Arrows correspond to the direction of either dendritic cells or
macrophages. Represented genes in this branched modeling are shown on the right. (e) The violin plot represents the gene expres-
sion levels in different transition states or (f) tumors collected at different time points. (g) Feature plot showing the expression of
Gpnmb in early and late stages of tumors. (h) Left, immunofluorescence staining of GPNMB, Mac-3, and CD3 in GBM sections. Green
color represents GPNMB, red color corresponds to Mac-3 and blue color indicates CD3 (Bar represents 200 mm). Right, quantitative
analysis of the distance between GPNMB+ macrophages and CD3+ T cells (n=5 mice). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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analyses with multiple scRNA-seq data and ex vivo
experiments, we identified a GPNMB-high subset of
macrophages that could (1) induce key regulons-medi-
ated PN to MES cell state transition, and (2) impede T
cell activation by non-effectively retention.

GBM has been classified as proneural, classical and
mesenchymal subtypes based on molecular classifica-
tion.6 GBM can undergo a phenotypic shift from PN to
MES upon stimulation, making them more aggressive
and resistant.53 This transition involves a whole range of
intrinsic molecular signals. Thus, taking advantage of
the unbiased SCNEIC analysis, we identified the top
three important transcriptional factors, FOSL2, CEBPB
and EPAS1 dominant in mesenchymal cells. Similarly,
previous studies have confirmed that CEBPB and
STAT3, the master regulators, can cooperate with
FOSL2 to mediate PN to MES transition through multi-
ple downstream signals.54 Besides, FOSL2 indepen-
dently participates in the PN-to-MES drift through
epigenetic mechanism.7 Hypoxia is also associated with
tumor progression and higher expression of HIF1a and
HIF2a (EPAS1) were observed in MES patients as
well.55,56 As such, targeting these regulators or the stim-
ulatory signals from the tumor microenvironment may
inhibit the transition and overcome the resistance to tra-
ditional therapies.

Besides exploring the intrinsic mechanism, we are
more interested in how the extrinsic factors affected the
transcriptomic plasticity of GBM. Tumor-associated
macrophages have been associated with transcriptome
shift toward mesenchymal signatures,5,57 although the
direct evidence is still lacking. One particular study
revealed NF-kB as a master signal transductor in medi-
ating mesenchymal differentiation upon TNFa stimula-
tion in GBM.58 Although they proposed that the source
www.thelancet.com Vol 83 Month , 2022
of TNFa could be macrophages or microglia, further
investigation seems to be needed. Our ex vivo studies
demonstrated that constant exposure of tumor-associ-
ated macrophages to proneural type of GBM triggered
mesenchymal differentiation. The present study pro-
vides clear evidence that extrinsic events can affect the
phenotypic plasticity of tumor cells. Furthermore, cou-
pled with modeling intercellular crosstalk by NicheNet
method, we investigated potential ligand-receptor-target
interactions between tumor and non-tumor cells. Our
unbiased analysis uncovered some interesting ligands,
such as TGFB1, a master inducer in the mesenchymal
transition,59,60 which can promote the majority of our
curative targets. LGALS3, produced by a variety of differ-
ent cells, including macrophages, and endothelial cells,
acts as another major source of this transcriptome
change. As shown in our results, mesenchymal regulon
expression was induced via integrin B1, the well-known
receptor that interacts with LGALS3 as well as CADM1
and PTPRZ1.45,61 In addition to macrophages, endothe-
lial and transformed endothelial cells played an essen-
tial role in the crosstalk. For example, CTGF, highly
expressed by these stromal cells, could induce this mes-
enchymal transcriptome. In different cancer types,
CTGF has been reported to be involved in cancer cell
migration, invasion, and epithelial-mesenchymal
transition.62,63 And LRP receptor discovered here has
been proved by other studies to be a coreceptor that
binds with CTGF and activates WNT signaling.64 The
TIMP-1 gene expressed by ECs can likewise be induced
to upregulate mesenchymal markers as well through
TWIST regulation, which is another intriguing target
worth examining.65 Among our most interesting find-
ings, we show that GPNMB is the top 1 ligand to inter-
act with EGFR to induce most of the mesenchymal
17



Figure 6. GPNMB-high macrophages ineffectively retain T cells from activating by DCs.
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targets. Other studies also demonstrated that GPNMB
engaged with EGFR as a heterodimer complex upon
HB-EFG stimulation in the breast cancer model.66 It is
intriguing to note that overexpressed GPNMB can cause
cancer cells to migrate, invade, and undergo EMT, and
EGFR inhibitor treatment can abolish these phenotype
changes, which supports our findings.67 Also, anti-
GPNMB antibody has been assessed in phase I/II trials
in treating breast cancer and melanomas,24,25 making
GPNMB an attractive target in cancer treatment. How-
ever, in our flow cytometry analysis study, GPNMB is
primarily expressed by macrophages as opposed to
tumor cells in other cancer types (Supplementary
Figure 3a), and neutralizing antibody can attenuate the
TAM-induced mesenchymal transition, further demon-
strating the significance of both GPNMB protein and
GPNMB-expressed macrophages to the tumor develop-
ment.

According to our trajectory analysis, monocytes can
differentiate into dendritic cells or macrophages, which
express a high level of GPNMB, hence we conducted a
transduction signal analysis to understand how these
cell types interact with T cells. Our analysis revealed a
large number of chemokines involved in this intercellu-
lar crosstalk, such as CXCR3, an important modulator
of T cell trafficking and activation. Recently, T cell
recruitment mediated by CXCR3 has been shown to be
required for effective immune checkpoint blockade.68

CXCR3 is highly expressed on T cells and responds to a
range of chemokines, such as CXCL9 and CXCL10,
which are demonstrated to promote anti-tumor activi-
ties by attracting both CD4+ helper T cells and CD8+
effector T cells.69 CXCL9 and CXCL10 are produced in
response to IFNg stimulation,70 here, we clearly observe
the signal transduction between monocytes and T cells
induced by Infg-Infgr2 interaction. Myeloid cells, espe-
cially cDC1 cells, are the primary sources of CXCL9 and
CXCL10 and are responsible for mediating antitumor
immune responses in response to checkpoint
inhibitors.71,72 Our analysis reveals the presence of
Cxcl9 and Cxcl10 in monocytes or dendritic cells, but
not in GPNMB-high macrophages, have a robust inter-
action with Cxcr3 in T cells. Another important chemo-
kine receptor identified by our analysis is Cxcr6.
Gpnmb-high macrophages, monocytes, total dendritic cells an
Major inter-and intracellular communications are shown between (a
dendritic cells and T cells. Important categories including chemok
machinery are displayed. Blue encodes monocytes/macrophages/d
nodes represents the proportional to the cell-type specificity. The s
cell type. (d) The relative expression of inhibitory and stimulatory m
80+GPNMB+ macrophages, CD11c+ dendritic cells and bone marr
with tumor lysates prior to co-culturing with naïve T cells for 3 days
proliferation of T cells were analyzed using flow cytometry. Statistica
licates, mean § SD). (For interpretation of the references to color in
this article.)
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CXCR6 is critical for CD8+ cytotoxic T cell-mediated
tumor control as well as the ability to augment the anti-
tumor efficacy of PD-1.73 Meanwhile, CXCR6 deficient
CD8+ T cells exhibit markedly decreased retention in
tumor tissues.74 As the ligand of CXCR6, CXCL16 is
primarily expressed by myeloid cells and associated
with antigen presentation genes. Most of the studies
demonstrated the important role of CXCL16 on DCs in
regulating T cell function and tumor growth,75,76 but
how CXCL16+ macrophages impact T cell’s recruitment
and function is truly needed in further exploration. But
one important finding supports our analysis: the inter-
action between CXCL16+ DCs and CXCR6+ T cells can
promote the production of Il15,76 a potent immune-
stimulating cytokine that enhances both reactive NK
and T cell survival.77,78 Consist with our analysis, this
Il15-Il2ra/rb signaling occurs in DC-T cell crosstalk, but
not in GPNMB-macrophages. Moreover, GPNMB has
been reported to directly inhibit T cell activation by com-
peting with syndecan-4, thereby leading to immune eva-
sion in melanoma models.26 And blockade of GPNMB
is correlated with an increase in CD4 and CD8 T cell
infiltration and the efficacy of immune checkpoint
blockade.23 But we suggest here not only the GPNMB
protein, but more importantly, the GPNMB-high mac-
rophages can impede T cell activation. Another remark-
able finding here reveals that GPNMB-macrophage
interacts with T cells via H2-t23 and KLrc1/Klrd1. Sev-
eral studies have suggested that HLA-E (homolog in
mice is called Qa-1b, also known as H2-t23) negatively
affects IL2 receptor-dependent proliferation and influ-
ences IFNg-mediated antitumor responses through
binding directly to the NKG2A (encoded by Klrc1)/
CD94 (encoded by Klrd1) receptor on tumor-specific T
cells.79 Additionally, current therapeutic vaccines that
block NKG2A with Qa-1 can enhance CD8+ T cells
immunity.80 NK- and T-cell mediated anti-tumor effects
were also promoted by an anti-NKG2A monoclonal anti-
body.81 All of this suggests that this particular macro-
phage subset may attract T cells to tumor sites through
competitive Cxcl16-Cxcr6 interaction with DCs; how-
ever, this interaction may not be able to induce co-stim-
ulatory signals, but rather impair T cell function
through CD94/NKG2A-MHC interactions. Our
d T cells were sub-clustered and applied to CytoTalk analysis.
) monocytes and T cells, (b) Gpnmb-macrophages and T cells, (c)
ines, cytokine, co-stimulatory signals, and antigen presentation
endritic cells, while red encodes T cells. Color shade of gene
ize of nodes indicates the average expression of genes in each
olecules on monocytes, macrophages and dendritic cells. (e) F4/
ow-derived monocytes were isolated and subsequently pulsed
. (f) The expressions of CD69, IFNg and GZMB as well as the (g)
l analysis by one-way ANOVA (n=3, independent biological rep-
this figure legend, the reader is referred to the web version of
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immunofluorescence staining verified the co-localiza-
tion of GPNMB-macrophages and T cells, and ex-vivo
isolation of GPNMB-high macrophages cannot activate
T cells as dendritic cells or even GPNMB-low macro-
phages did (Supplementary Figure 3b), all of which fully
support these findings conducted from the comprehen-
sive analysis. Besides, our data also suggest that in the
tumor microenvironment, tumor-associated dendritic
cells still possess the ability but maybe not the chance to
activate T cells, this in situ antigen presentation can be
enhanced when T cells either gain more mobility or
decrease the retention with non-effective interaction.

We thoroughly compared the MES- and PN-tumor
microenvironment and showed the higher infiltration
of T cells accompanied by macrophages and endothelial
cells. The correlation was also supported by deconvolu-
tion of bulk-seq, spatial scRNA-seq as well as in flow
cytometry analysis of the single-cell immune profiling
on syngeneic GBM mouse model, while another group
obtained the same results.82 Taken together, this raised
an important question that why MES-subtype GBM has
more T cell infiltration: (1) Can monocytes/macro-
phages release signals for T cells recruitment solely
before entering tumor sites? (2) or T cells and macro-
phages are both attracted by endothelial cells at the
www.thelancet.com Vol 83 Month , 2022
vascular niche, where more vessels are present in MES
subtype. As a result, simply targeting monocyte/macro-
phage depletion or anti-angiogenesis therapy may affect
T cell recruitment to some extent. Interestingly, knock-
down of GPNMB in macrophages did not reverse
immunosuppressive phenotype, as shown by
unchanged CD206 expression (Supplementary Figure
4), a classic M2 macrophage marker, indicating that
GPNMB is not a driving factor in alternative macro-
phage polarization.

Thus, we proposed that in further study, depletion of
this subset will be the best therapeutic option for suffi-
cient release of T cells to exert its function when
encountering dendritic cells as well as preventing the
transcriptomic transition of GBM into a high-grade
mesenchymal phenotype. In summary, our integrative
analyses suggest that targeting GPNMB-high macro-
phages can reshape a favorable and sensitive tumor
microenvironment for future combination therapy.
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