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Abstract

Motivation: As genomics moves into the clinic, there has been much interest in using this medical

data for research. At the same time the use of such data raises many privacy concerns. These cir-

cumstances have led to the development of various methods to perform genome-wide association

studies (GWAS) on patient records while ensuring privacy. In particular, there has been growing

interest in applying differentially private techniques to this challenge. Unfortunately, up until now

all methods for finding high scoring SNPs in a differentially private manner have had major draw-

backs in terms of either accuracy or computational efficiency.

Results: Here we overcome these limitations with a substantially modified version of the neighbor

distance method for performing differentially private GWAS, and thus are able to produce a more

viable mechanism. Specifically, we use input perturbation and an adaptive boundary method to

overcome accuracy issues. We also design and implement a convex analysis based algorithm to

calculate the neighbor distance for each SNP in constant time, overcoming the major computa-

tional bottleneck in the neighbor distance method. It is our hope that methods such as ours will

pave the way for more widespread use of patient data in biomedical research.

Availability and implementation: A python implementation is available at http://groups.csail.mit.

edu/cb/DiffPriv/.

Contact: bab@csail.mit.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWAS) are a cornerstone of

genotype–phenotype association in humans. These studies use vari-

ous statistical tests to measure which polymorphisms in the genome

are important for a given phenotype and which are not. With the

increasing collection of genomic data in the clinic, there has been a

push towards using this information to validate classical GWAS

findings and generate new ones (Weber et al., 2009). Unfortunately,

there is growing concern that the results of these studies might lead

to loss of privacy for those who participate in them (Erlich and

Narayanan, 2014; Homer et al., 2008; Lumley and Rice, 2010).

These privacy concerns have led some to suggest using statistical

tests that are differentially private (Jiang et al., 2014; Johnson and

Shmatikov, 2013; Tramer et al., 2015; Uhler et al., 2013; Wang

et al., 2014; Yu and Ji, 2014; Yu et al., 2014). On the bright side,

such methods, properly used, can help ensure a high degree of priv-

acy. Moreover, recent work has suggested that differentially private

methods can be used to help avoid overfitting and related problems

that plague much of biomedical science (Dwork et al., 2015). These

gains, however, have traditionally come at a high cost in utility and

efficiency. Moreover, since the genome is extremely high dimen-

sional, this cost is especially pronounced, as was noted in previous

works (Uhler et al., 2013). In order to help balance utility and priv-

acy, new methods are needed that provide greater utility than cur-

rent methods while achieving equal or greater privacy.

Here we improve upon the state of the art in differentially pri-

vate GWAS. We build on previous work (Johnson and Shmatikov,

2013), which applied the ideas of differential privacy to common
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analysis approaches in case-control GWAS. In particular, we show

how to use non-convex optimization to overcome many of the limi-

tations of their method for picking high scoring SNPs in a differen-

tially private way, making the approach computationally tractable

(Johnson and Shmatikov 2013; Yu et al., 2014). Unlike previous

work (Yu and Ji, 2014), we are able to achieve this while protecting

the genomic data of all study participants. Second, we demonstrate

how to give improved significance estimates for the chosen SNPs

using input, as opposed to output, perturbation-based methods.

Taken together, these results substantially advance our ability to

perform differentially private GWAS.

1.1 Previous work
Previous works have looked at using differentially private versions

of the Pearson v2 and allelic test statistics (defined below) to find

high scoring SNPs, beginning with the work of Uhler et al. Since

then numerous others have worked on this problem (Jiang et al.,

2014; Johnson and Shmatikov, 2013; Wang et al., 2014; Yu and Ji,

2014; Yu et al., 2014), and there has even been a competition where

teams attempted to improve on the state of the art (Jiang et al.,

2014). There have also been suggestions of using similar perturb-

ation based techniques in other areas of biomedical data analysis

(Wieland et al., 2008).

Previous works focused on using three different approaches for

picking high scoring SNPs—namely a neighbor distance based one, a

Laplacian mechanism based one, and a score-based one (see Yu et al.,

2014 for details). These studies have suggested the score-based

method is an improvement on the Laplacian-based method. The rela-

tion between the neighbor-based method and the other two is more

complicated, however. Though it often outperforms them, it turns

out that the ranking of SNPs favored by the neighbor method is not

always the same as that favored by the other methods. Moreover, the

neighbor method is more computationally demanding, leading others

to use approximate versions of it (Yu et al., 2014).

Previous work on speeding up the neighbor method has assumed

that the control groups genotypes are publicly available (Yu and Ji,

2014). Though this assumption is reasonable for some studies (if one

uses a public database, such as the 1000 genomes cohort, for the con-

trols), it does limit the settings in which their technique can be applied.

Beyond just choosing high scoring SNPs, others have also looked

at ways of estimating significance after choosing the SNPs of inter-

est. This goal has been achieved by calculating the sensitivity of the

allelic test statistic and applying the Laplace mechanism directly to

it, or by performing similar procedures for P-values (Uhler et al.,

2013; Yu et al., 2014).

2 Our contributions

We significantly improve upon the promising neighbor distance

based mechanism for releasing top SNPs (which was introduced by

Johnson and Shmatikov, 2013) and further refined by Yu et al.

(2014) and Yu and Ji (2014). We introduce an adaptive threshold

approach which overcomes accuracy issues arising from the fact that

the neighbor mechanism might favor a different ordering than the

true ordering given by the allelic test statistic. We then introduce a

faster algorithm for calculating the neighbor distance (defined

below) used in this method, making it tractable for large datasets.

Moreover, unlike some previous approaches (Yu and Ji, 2014), our

method ensures the privacy of individuals in both the case and con-

trol cohorts.

This algorithm works in three steps: (i) stating the problem as an

optimization problem; (ii) solving a relaxation of this problem in

constant time; and (iii) rounding the relaxed solution to a solution

to the original problem.

We also show how to obtain accurate estimates of the allelic test

statistic. In particular, we show that the input perturbation based

method greatly improves accuracy over traditional output perturb-

ation-based techniques when applied to the allelic test statistic (as

opposed to some other statistics (Uhler et al., 2013).

Finally, we apply our methods to real GWAS data, demonstrat-

ing both our greatly improved computational performance and ac-

curacy compared with the state of the art.

3 Methods

3.1 Differential privacy
We begin with a data set D ¼ ðd1; . . . ; dnÞ 2 Dn for which we want

to calculate f(D) for some f : Dn ! X, where X and D are both sets.

For example, D might be the set of all possible genotypes. Often,

however, f(D) releases private information about di for some i. For

example, if D is a set of patients with a given disease then f(D) may

reveal the fact that di is in D, and thus has the disease. In order to

deal with this worry we want to release a perturbed version of f, let

us call it F, that does not have the same privacy concerns. This idea

is formalized using differential privacy (Dwork and Pottenger,

2013). We say that D and D0 ¼ ðd01; . . . ; d0nÞ are neighboring data-

bases if they differ in exactly one entry (aka there is exactly one i

such that di 6¼ di
0). We then have the following definition.

DEFINITION 1. A random function F : Dn ! X is �-differentially

private for some � > 0 if, for all neighboring databases D and D0

and all sets S � X, we have that

PðFðDÞ 2 SÞ � expð�ÞPðFðD0Þ 2 SÞ

Intuitively, the above definition says that if D and D0 differ by

one entry then F(D) and FðD0Þ are statistically hard to distinguish.

This ensures that no individual has too large an affect on F(D), so

no participant loses too much privacy. The parameter � is a privacy

parameter: the closer to 0 it is the more privacy is ensured, while the

larger it is the weaker the privacy guarantee. Clearly this means we

would like to set � as small as possible, but unfortunately this comes

at the cost of having less useful output. The problem of figuring out

the correct � to use is quite tricky (Hsu et al., 2014).

Our goal is to find a differentially private F that closely approxi-

mates f. One of the simplest ways to do this is with what is known

as the Laplacian mechanism (Dwork and Pottenger, 2013).

Formally, if X � Rk, we define the sensitivity of a function f,

denoted Df , to be equal to

Df ¼ max
D;D0neighbors

jf ðDÞ � f ðD0Þj1

More than that, let LapkðkÞ 2 Rk be a random variable that re-

turns a k-dimensional vector with probability density, pk;k, given by

pk;kðxÞ / exp � jxj1
k

� �

We let LapðkÞ ¼ Lap1ðkÞ. The Laplacian mechanism works by

letting

FðDÞ ¼ f ðDÞ þ Lapk

Df

�

� �

Theorem 1 (Dwork and Pottenger, 2013). If F is defined as above

than F is �-differentially private.
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3.2 Allelic test statistic
The allelic test statistic is used to test for associations between SNPs

and disease status. In order to define it, assume we have a case-con-

trol cohort. For a given SNP let s0, s1 and s2 be the number of indi-

viduals in the control population with 0, 1 or 2 copies of the minor

allele, respectively. Similarly, let r0, r1 and r2 be the corresponding

quantities for the case cohort, and n0, n1 and n2 be the same quanti-

ties over the entire study population. Let S be the number of cases, R

the number of controls, and N the total number of participants. We

assume that R, S and N are known.

The allelic test statistic is given by

Yðr0; r1; r2; s0; s1; s2Þ ¼
2Nðð2r0 þ r1ÞS� ð2s0 þ s1ÞRÞ2

RSð2n0 þ n1Þðn1 þ 2n2Þ

Note that Y only depends on x ¼ 2r0 þ r1 and y ¼ 2s0 þ s1, so

we can overload notation and let

Yðx; yÞ ¼ 2NðxS� yRÞ2

RSðxþ yÞð2N � x� yÞ

3.3 Neighbor distance
Our goal is to pick the top mret highest scoring SNPs (where mret is a

user chosen parameter). In order to do this we shall use the neighbor

method. We begin by introducing some notation. For a set, S, we

use jSj to denote the number of elements in S. Similarly, for a vector,

v, let jvj denote the length of v. Moreover, for a given study cohort,

denoted D, let YiðDÞ be the allelic test statistic of the ith SNP.

The neighbor method for picking SNPs (Johnson and Shmatikov,

2013) starts with a user defined threshold, x. All SNPs with an al-

lelic score higher than x are considered significant, while all others

are considered not significant.

In order to understand how the neighbor method works, we

must define the neighbor distance. The neighbor distance of a given

SNP to the threshold x is the minimum number of individuals whose

genotypes need to be changed in our database to flip a given SNP

from significant to not significant or vice versa—i.e. to say the min-

imum Hamming distance from our databases to a significant data-

base if the SNP is not significant or vice versa. We can then use this

distance measure to pick our SNPs in a differentially private manner,

as shown in Algorithm 1.

Intuitively, the idea is that the neighbor distance is closely related

to the allelic test statistic. For significant SNPs, the more strongly

the SNP is associated to the disease, the larger the neighbor distance

tends to be. Conversely, for SNPs that are not significant, a stronger

association tends to correspond to a smaller neighbor distance. The

neighbor mechanism harnesses this intuition by attempting to pick

significant SNPs with large neighbor distances and SNPs that are

not significant but have small neighbor distance.

3.4 Modified neighbor method
Though the neighbor method is much more accurate than other

methods for most databases, it sometimes leads to incorrect results

(Yu et al., 2014). This is due to the fact that the ordering given by

the allelic test score differs slightly from the ordering given by the

neighbor distance. We show, however, that this can be dealt with by

slightly changing Algorithm 1. Instead of picking a boundary x be-

forehand, we use part of the privacy budget to choose an optimal

boundary, xdp, with the Laplacian mechanism (more details in the

Supplementary Materials), then use the rest of the privacy budget to

choose the SNPs. This algorithm is given in Algorithm 2.

Note, in practice, we pick � and let �1 ¼ :1� and �2 ¼ :9�. This is

arbitrary, and it would be worthwhile looking at the trade-off be-

tween �1 and �2.

3.5 Quick neighbor distance
The major computational bottleneck of the neighbor method for

picking high scoring SNPs has been the calculation of the neighbor

distance. This bottleneck has led some to calculate approximate

neighbor distances (Yu et al., 2014) or use methods that leak infor-

mation about the control cohort (Yu and Ji, 2014). We are able to

overcome this bottleneck using Algorithm 3.

To help remedy the situation we introduce a new method for cal-

culating the neighbor distance. Our method involves only a constant

number of arithmetic operations per SNP. To understand our ap-

proach, assume we want to calculate the neighbor distance for a

given SNP and a given threshold, x. To simplify notation, let

q ¼ ðr0; r1; r2; s0; s1; s2Þ. Note that the neighbor distance can be ex-

pressed as the solution to the following optimization problem:

minimize
q02Z6

1

2
jq� q0j1

subject to q0i � 0; i ¼ 1; . . . ; 6

q00 þ q01 þ q02 ¼ R; q03 þ q04 þ q05 ¼ S

x0 ¼ 2q00 þ q01; y
0 ¼ 2q03 þ q04

uxðqÞðYðx0; y0Þ � xÞ � 0

Algorithm 1. The neighbor method for picking top mret SNPs

(Johnson and Shmatikov, 2013)

Require: Data set D, number of SNPs to return mret, privacy

value �, and boundary x.

Ensure: A list of mret SNPs that is �- differentially private.

for i ¼ 0; . . . ;m do

if YiðDÞ > x then

di ¼ min
D0
ðfjD�D0j : YiðD0Þ < x; jD0j ¼ jDjgÞ

else

di ¼ 1�min
D0
ðfjD�D0j : YiðD0Þ > x; jD0j ¼ jDjgÞ

end if

end for

Let xi ¼ exp �
2mret

d
� �

i
for all i.

Choose mret SNPs without replacement, where

PrðChooseSNPiÞ / xi.

return Chosen SNPS

Algorithm 2. Our modified neighbor method for picking top

mret SNPs

Require: Data set D, number of SNPs to return mret, privacy

values �1 and �2.

Ensure: A list of mret SNPs that is - �1 þ �2—differentially

private.

Let x be the mean score of the mretth and mret þ 1-st high-

est scoring SNP.

Let xdp be an �1-differentially private estimate of x (use

the Laplacian Mechanism).

return Chosen SNPS using Algorithm 1 with � ¼ �2
and boundary value xdp.

Realizing privacy preserving GWAS 1295

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw009/-/DC1


where uxðqÞ denotes the sign of YðqÞ � x. By removing the integral-

ity constraints and projecting down onto two dimensions we get the

following relaxation:

minimize
x;y

gðx; yÞ ¼ g1ðxÞ þ g2ðyÞ

subject to 0 � x � 2R; 0 � y � 2S

uxðqÞðYðx; yÞ � xÞ � 0

where

g1ðxÞ ¼

x� 2r0 � r1

2
2R� r1 � x � 2r0 þ r1

2r0 þ r1 � x

2
r1 � x � 2r0 þ r1

r2 þ x� 2ðr0 þ r2Þ � r1 2R � x � 2R� r1

r0 þ r1 � x otherwise

8>>>>>>>><
>>>>>>>>:

and

g2ðyÞ ¼

y� 2s0 � s1

2
2S� s1 � y � 2s0 þ s1

2s0 þ s1 � y

2
s1 � y � 2s0 þ s1

s2 þ y� 2ðs0 þ s2Þ � s1 2S � y � 2S� s1

s0 þ s1 � y otherwise

8>>>>>>>><
>>>>>>>>:

See the Supplementary Materials for a more detailed derivation.

We say that (x, y) is feasible if it satisfies the constraints for this

relaxed problem.

Algorithm 3 first solves this relaxed problem by iterating over a

small set of possible solutions (each of which can be found in con-

stant time using the quadratic equation and some basic facts about

convex optimization) then rounding to find a solution to the original

problem. A proof of correctness as well as a few other details is

given in the Supplementary Materials. Note that the algorithm in-

volves b1 and b2, where

b1ðxÞ ¼
g1ðxÞd e þ 1 if r1 ¼ 0 and x� 2r0 � r1 odd

g1ðxÞd e else

(

and

b2ðyÞ ¼
g2ðyÞd e þ 1 if s1 ¼ 0 and y� 2s0 � s1 odd

g2ðyÞd e else

(

Note that our algorithm assumes that x � 2N
2N�1. This restriction,

however, is not a problem, since in practice this corresponds to a ra-

ther large p-value (>.05 as long as N > 5). To accommodate this re-

striction, the only change we need to make to the neighbor method

is to round xdp up to 2N
2N�1 if this condition is not met. It is also

worth noting that this algorithm relies on being able to check, for a

given d, if there exists a feasible x; y 2 Z with b1ðxÞ þ b2ðyÞ ¼ d. We

show how to check these conditions in the Supplementary

Materials.

THEOREM 2. Algorithm 3 returns the true neighbor distance for

the specified SNP and involves only a constant number of arithmetic

operations.

PROOF. See the Supplementary Materials.

3.6 Input perturbation
In addition to returning high scoring SNPs, we want to return esti-

mates of the allelic test statistic for those high scoring SNPs. In the

past this has been achieved by applying the Laplacian mechanism to

the output allelic test statistic (Yu et al., 2014). Instead we apply the

Laplacian mechanism to the inputs. The method works as follows:

Let x ¼ 2r0 þ r1 and y ¼ 2s0 þ s1. Then we see that if x0 and y0 are

the corresponding quantities for a neighboring database that

jx� x0j þ jy� y0j � 2. Therefore if we let

xdp ¼ xþ Lap
2

�

� �

and

ydp ¼ yþ Lap
2

�

� �

then ðxdp; ydpÞ is a �-differentially private estimate of (x, y). We can

then estimate Y in a differentially private way using the equation

2NðxdpS� ydpRÞ2

RSðxdp þ ydpÞð2N � xdp � ydpÞ

if the denominator is greater than 0, else outputting 0.

3.7 Measuring performance
In order to test our method we use the following standard measure

of performance (Yu et al., 2014). Let A be the top mret scoring

SNPs, and let B be the mret SNPs returned by some differentially pri-

vate algorithms. We than measure the utility of the algorithm by

considering jA\Bj
jAj . The closer to one this quantity is the better.

Algorithm 3. Calculates the neighbor distance for SNPs in

constant time

Require: q ¼ ðr0; r1; r2; s0; s1; s2Þ with qi � 0 for i ¼ 0; . . . ; 5;

N, R and S defined as usual; and threshold x � 2N
2N�1.

Let gðx; yÞ ¼ g1ðxÞ þ g2ðyÞ be defined as in the text.

Let C denote the curve defined by

2NðxS� yRÞ2 ¼ RSxðxþ yÞð2N � x� yÞ

Find the set P of all points p 2 ½0;2R� � ½0; 2S� on the curve

C whose tangent line has slope in

1; 2;
1

2

� �

Let Q be the set of all p ¼ ðp0; p1Þ 2 ½0; 2R� � ½0; 2S� \ C

and either

p0 2 f2ðr0 þ r2Þ þ r1; 2r0 þ r1; r1; 0; 2Rg
or

p1 2 f2ðs0 þ s2Þ þ s1; 2s0 þ s1; s1; 0;2Sg

ĝ ¼ minp2P[Q gðpÞd e
if YðqÞ < x then

return ĝ

end if

for d 2 fĝ; . . . ; ĝþ 5g do

if exists feasible x; y 2 Z with b1ðxÞ þ b2ðyÞ ¼ d then

return d
end if

end for
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Note that one might also look at other measures of utility—after

all, the difference between mretth highest scoring SNP and the next

highest scoring SNP may be small, and this measure does not con-

sider that. We use this measure due to its simplicity, and because it

has been used in previous works (Yu and Ji, 2014; Yu et al., 2014).

3.8 Dataset
We test our methods on a rheumatoid arthritis dataset, NARAC-1,

from Plenge et al. (2007). After quality control it contained 893

cases and 1244 controls. We removed all SNPs with minor allele fre-

quency <0.05. We considered only SNPs that were successfully

called for all individuals. This process resulted in a total of 62 441

SNPs to be considered.

4 Results

4.1 Comparison to the score and

Laplacian-based methods
Our modified neighbor distance method outperforms both the

Laplacian and score based methods (Yu et al., 2014) for picking

high scoring SNPs. In order to demonstrate this we run our

algorithm and both the other algorithms for various mret and � to

compare utility.

The results can be seen in Figure 1. We see that in all cases our

modified neighbor method (red) outperforms the Laplacian (green)

and score (blue) based methods by a large margin.

It is worth noting that the accuracy of the score and Laplacian

based methods are fairly consistent with previous work (Yu and Ji,

2014). The most interesting difference is that the score and

Laplacian based methods seem to perform more similarly in our ex-

periments than in previous work (Uhler et al., 2013; Yu and Ji,

2014; Yu et al., 2014). This suggests that the relative performance

of each method may be dataset dependent, depending on the number

of SNPs, size of case and control cohorts, and the distribution of P-

values (e.g. if there is a large gap between the score of the top mret

SNPs and the rest of the SNPs one might expect the above methods

to be more accurate).

4.2 Comparison to the traditional neighbor method
Our modified neighbor method also manages to overcome many of

this issues present in the traditional neighbor method, which uses a

predefined cutoff x. To demonstrate this we compare our method to

Fig. 1. We measure the performance of our modified neighbor method for picking top SNPs (red) as well as the score based (blue) and Laplacian based (green)

methods for mret (the number of SNPs being returned) equal to (a) 3, (b) 5, (c) 10 and (d) 15 for varying values of �. For mret ¼ 3; 5 we consider � between 0 and 5,

while in the other cases we consider � between 0 and 30. We see that in all four graphs our method leads to the best performance by far. These results are aver-

aged over 20 iterations
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the traditional method. For the traditional method we use a cutoffs

corresponding to a Bonferroni corrected P-values of.05 and.01 (Yu

et al., 2014). The results are pictured in Figure 2. When mret ¼ 15,

we see that as � increases the utility of our method (red) increases to-

wards one, while the utility of the traditional methods (green for

0.05, blue for 0.01) seem to plateau around 0.85. This result demon-

strates the advantages of using adaptively chosen boundaries, even if

in some cases ðmret 2 f3; 5; 10gÞ doing so leads to slightly decreased

utility for small �. Moreover, by changing the balance between �1
and �2, it seems plausible that even this slight decrease can be mostly

overcome.

4.3 Runtime
Beyond overcoming utility issues, our method is able to improve

runtime on real GWAS datasets by an order of magnitude. To dem-

onstrate this, we look at how long it takes to calculate the neighbor

distance for all SNPs (since this is the time consuming step). In the

past others have had to implement approximate versions of the

neighbor distance to make it run in a reasonable time (Yu et al.,

2014). We implemented a simple hill climbing algorithm similar to

those used in previous works (Yu et al., 2014). We then tested it for

various values of mret (see Table 1). We see that our method is much

faster than the approximate method, taking only about 3 s in all

cases to estimate the neighbor distances for all SNPs. Moreover, we

see that the approximate method gives results that can greatly differ

from our exact results, as demonstrated by the average error in the

neighbor distance per SNP.

4.4 Input versus output perturbation
Finally, we are able to show that our input perturbation method

compares favorably to previous output perturbation based

approaches. To see this, we looked at the average error of estimating

the allelic test statistic on the top ten highest scoring SNPs for both

input perturbation (green) and output perturbation (blue) (we con-

sidered the top 10 SNPs because we are usually only interested in

the most significant SNPs—the performance is even more lopsided

for arbitrary SNPs). We see that our input perturbation based ap-

proach greatly decreases the error compared with output perturb-

ation based methods for � between 0 and 2. It is worth noting that

this result differs from the result of similar comparisons for the

Pearson v2-statistic, since in that case output perturbation seems

preferable (Uhler et al., 2013). This is likely due to the fact that we

Fig. 2. We measure the performance of our modified neighbor method for picking top SNPs (in red) as well as the traditional neighbor method with cutoffs corres-

ponding to a Bonferroni corrected P-value of.05 (in green) and.01 (in blue) for mret (the number of SNPs being returned) equal to (a) 3, (b) 5, (c)10 and (d) 15 for

varying values of �. For mret ¼ 3; 5 we consider � between 0 and 5, while in the other cases we consider � between 0 and 30. We see that in the first three cases the

traditional method slightly outperforms ours. When mret ¼ 15; however, the traditional methods can only get maximum utility around.85, where as ours can get

utility arbitrarily close to 1. These results are averaged over 20 iterations
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are adding noise to a 2 by 2 table of inputs, as opposed to a 2 by 3

table (Fig. 3).

5 Conclusion

The above work shows how to make differentially private GWAS

much more realistic, both in terms of accuracy and run time.

Though the tools of differential privacy have been around for years

Mohan et al., 2012, the biomedical community has been slow to

adopt them (Dankar and El Emam, 2014). Though this delay is par-

tially due to the limited knowledge about such approaches in the

biomedical field, perhaps a bigger reason is that current techniques

greatly reduce the utility of data and their analysis. In a field whose

main concern is human health there is extra incentive to give the

most accurate analysis possible—lives could be on the line.

Despite this concern, there are a few important areas where ac-

curate differentially private methods might play a role. The most ob-

vious one is when institutional or legal concerns prevent data from

being published (Gilbert, 2008). When such limitations exist, it

might be possible to release differentially private versions of the data

under consideration instead. The other application where differen-

tial privacy might be useful is when untrusted users query a data-

base. It is this situation that has motivated many of the previous

works on differential privacy (Johnson and Shmatikov, 2013;

Vinterbo et al., 2012), and some of the only applications of data per-

turbation that have been implemented in real world systems (Lowe

et al., 2009; Murphy et al., 2012). In a nutshell, the idea is that users

who might want to use a large medical database to help design a

study (e.g. to come up with hypothesis to test, find participants with

certain traits for a study) or validate results can do so by asking

queries about the database and getting differentially private answers

to those queries. This approach allows researchers access to the

database while minimizing privacy concerns. As an added bonus,

since the queries are being used as a preliminary step, as opposed to

being part of a rigorous analysis, there may be less worry about the

ethical implications of returning inaccurate results. It is even pos-

sible that being able to make such queries will actually lead to more

accurate results downstream.
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