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Abstract

The exposome comprises all environmental exposures that a person experiences from conception 

throughout the life course. Here we review the state of the science for assessing external exposures 

within the exposome. This article reviews (a) categories of exposures that can be assessed 

externally, (b) the current state of the science in external exposure assessment, (c) current tools 

available for external exposure assessment, and (d) priority research needs. We describe major 
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scientific and technological advances that inform external assessment of the exposome, including 

geographic information systems; remote sensing; global positioning system and geolocation 

technologies; portable and personal sensing, including smartphone-based sensors and assessments; 

and self-reported questionnaire assessments, which increasingly rely on Internet-based platforms. 

We also discuss priority research needs related to methodological and technological improvement, 

data analysis and interpretation, data sharing, and other practical considerations, including 

improved assessment of exposure variability as well as exposure in multiple, critical life stages.

Keywords

exposome; external exposures; geographic information systems; remote sensing; global 
positioning systems; smartphones

INTRODUCTION

The Exposome

The exposome, a concept first proposed in 2005, comprises all environmental exposures that 

a person experiences from conception throughout their entire life course (107, 108). It was 

intended to stimulate more comprehensive exposure assessment in epidemiology studies and 

investment in the development of novel exposure assessment tools and approaches, including 

the use of biomarker and ‘omics approaches, to support agnostic analyses of environmental 

influences on health. In parallel to large investments into genomic research and the 

broadening shift in perspective from the gene to the genome, the exposome sought to better 

capture highly variable exposures, both spatially and temporally, to improve our 

understanding of disease etiology (107, 108). The exposome can be classified into internal 

(e.g., metabolic processes, circulating hormones, and aging), specific external (e.g., 

chemical pollutants or lifestyle factors), and general external (e.g., broader socioeconomic 

and psychological contexts) domains, though they remain complementary and interrelated 

(108).

Investigators have proposed several approaches to assess the exposome. Rappaport (80) 

describes environmental exposures as internal biologically active chemical exposures and 

proposes a biomonitoring-based, agnostic approach to measuring the exposome to better 

understand unknown causes of human disease. In contrast, van Tongeren & Cherrie (102) 

describe an integrated approach to measuring the exposome by considering all available data 

on internal exposure, external exposure, and personal behavior, including making use of 

routinely collected data and data from newly developed sensors. They also note that current 

limitations in the measurement of internal and external environmental exposures necessitate 

this combined approach.

The External Exposome

This article focuses on external exposure assessment for several reasons. Although much 

research using internal assessment approaches, including large-scale targeted biomonitoring 

(73) or untargeted metabolomics (80), has demonstrated a potential for identifying 

environmental health associations, these approaches also have several limitations, including 
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the inability to identify the source, to account for the route of exposure, or to address spatial 

or temporal variability of exposure, each of which is critical for understanding the exposome 

and its link with public health protection. Also, no known or selective biomarker of current 

or historical exposure exists for many external exposures. There may also be complex 

mixtures of exposures that elicit similar health effects (e.g., noise versus air pollution). 

Assessment of the external environment, including broader contextual factors, is also 

relevant for understanding both main effects on health and also potential mechanisms of 

buffering or susceptibility. For example, the biological response to noise may be mediated 

by various individual- and contextual-level factors that affect sound perception, including 

innate sensitivity, coping capacity, perceptions of the source, source authorities, and general 

societal expectations (41). Consequently, understanding the exposome more completely 

must rely on distinct yet complementary information from both internal and external 

assessments of exposures (56, 62, 76, 90).

Here we define external exposures as those that are assessed prior to the point of entering the 

body (e.g., before they get under the skin). We acknowledge, however, that in some cases the 

distinction between internal and external domains may be unclear, such as in the case of 

physical activity, which may represent both a specific exposure of interest and an 

endogenous mediating factor (108). A related article describes assessment of the exposome 

in biological samples (22).

Objectives and Conceptual Model

The objectives of this commentary are to provide an overview of (a) relevant categories of 

exposures that can be assessed externally; (b) the current state of the science in external 

exposure assessment; (c) current tools available for external exposure assessment; and (d) 

priority research needs in external exposure assessment in the context of the exposome.

This manuscript is framed in the conceptual model for the assessment of environmental 

exposures (67) (Figure 1). The model shows that while exposure to outdoor air pollution, 

temperature, noise, water and soil contaminants, ultraviolet radiation, and green space has 

generally been measured and/or modeled on a population level, exposure to food 

contaminants, consumer products, indoor pollutants (e.g., environmental tobacco smoke, 

cleaning products), and physical activity has generally been assessed by obtaining 

information from individuals. Individual assessment methods may be used to build or 

validate environmental models. Furthermore, information obtained from individuals (e.g., 

water intake, physical activity) can be combined with environmental estimates to obtain 

exposure estimates. Physiologically based pharmacokinetic models can be used to transform 

exposure into dose estimates. Environmental exposure and dose estimates can be linked with 

‘omics data to obtain markers of exposure, dose, or health effect and/or to determine 

underlying mechanistic pathways between environment and health. Environmental exposure 

and dose estimates as well as ‘omics markers can also be linked to health effects to 

determine exposure-response relationships or their absence.
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EXTERNAL EXPOSURE ASSESSMENT

Types of External Exposures

Table 1, developed by a National Institute of Environmental Health Sciences (NIEHS)–

appointed Working Group on the state of the art of external exposure assessment, provides a 

listing of selected exposures that can be addressed by external exposure assessment to 

illustrate the broad range of exposures that may be considered. The current state of the 

science is described for each exposure according to various criteria, including (a) level of 

biological plausibility of potential health effects in human populations (these data may be 

available from existing studies or from the analogy of effects of related stressors); (b) known 

or reasonably surmised pathways of exposure (e.g., inhalation, ingestion, dermal uptake, or 

other pathways such as endogenous stress response); (c) the potential to affect large human 

populations or have potential large effect sizes (e.g., an attributable fraction approach); (d) 

feasibility of assessment with current or near-term new technologies on large populations; 

and (e) the capacity to measure/infer individual-level exposure or dose either through direct 

measurement or through models that can infer exposure on meaningful temporal and spatial 

scales. Here we focus on broad categories of known exposures, though we acknowledge that 

there may be other unknown or emerging exposures for which there is little information, 

including complex mixtures of pollutants. We also note that most applied studies will need 

to adopt either a targeted or a semitargeted approach to external assessment of the exposome 

to target specific exposures or groups of exposures.

For most of the exposures listed here, including outdoor air pollution and radon, for 

example, there is a high level of biological plausibility of health effects owing to results 

from previous studies and mechanistic evidence. In some cases, such as for electromagnetic 

fields or green spaces, the level of biological plausibility is less certain. There are also 

multiple known pathways of exposure for many external exposures. With the exception of 

individual extreme events and certain occupational exposures or infectious agents, many 

external exposures have the capacity to affect large populations. In contrast, for most 

exposures, current technology allows only a low-to-moderate feasibility of measurement on 

large populations, across cohorts, or population health surveys and a low-to-moderate 

capacity to measure/infer individual-level exposure or dose.

State of the Science

Although traditional exposure assessment approaches have typically relied on questionnaires 

and static monitors (and models based on them), recent rapid technological advancement has 

allowed for novel assessment methods, which have generated large data sets capable of 

capturing exposure variability at finer scales of assessment (5). In 2005, the ad hoc 

Committee on Environmental Exposure Technology Development described the use of 

environmental sensors and geographic information systems (GIS) for deriving personalized 

external exposure estimates (106). We briefly review below more recent advances in external 

exposure assessment based on GIS; remote sensing; global positioning system and 

geolocation technologies; portable and personal sensing, including smartphone-based 

sensors and assessments; and self-reported questionnaire assessments, which increasingly 

rely on Internet-based platforms.
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GIS

GIS has transformed environmental health research by integrating databases that connect 

different attribute data by geographic location. Data on external environmental exposures 

obtained from remote sensing, geolocation technologies, or sophisticated modeling outputs 

can be combined with health attribute data obtained via personal sensing or other 

approaches. GIS integrates topologic geometry, which can manipulate geographic 

information, with automated cartography, enabling users to compile digital or hard-copy 

maps. GIS can quantify buffer distance between an exposure source and a human receptor 

and may be used to characterize proximity to roadways, factories, green spaces, water 

bodies, and other land uses that have either potentially adverse (e.g., ambient pesticide 

exposure from agricultural use) (75) or salutogenic exposures (e.g., density of healthy food 

stores or recreational establishments) (15). For example, NISMap, a three-dimensional GIS-

based propagation model of exposure to ambient radiofrequency (RF) electromagnetic fields 

from cellular telephone base stations for use in epidemiological studies, has been developed 

to integrate building geometry and damping, topographical, and antenna/transmitter data (8) 

(Figure 2). GIS can also display and analyze mobility of people as they travel through the 

external environment.

Remote sensing

Remote sensing involves the collection and interpretation of data obtained about the surface 

of the earth from a distance. These technologies and related methods are useful for external 

exposure assessment in areas with little ground-based monitoring (42, 85). For instance, 

aerosol optical depth (AOD) using satellite-based technologies measures light extinction by 

aerosols suspended in the atmosphere in a given column and has been used in the estimation 

of fine particulate matter air pollution (PM2.5) concentrations. van Donkelaar et al. (100) 

estimated global PM2.5 concentrations using MODIS (moderate resolution imaging 

spectroradiometer)- and MISR (multiangle imaging spectroradiometer)-based measurements 

of AOD in combination with the Geos-Chem chemical transport model at a 10-km 

resolution. These estimates were recently improved and updated (Figure 3) with a high-level 

of agreement observed between satelliteand ground-based measurements in North America 

(r = 0.76), Europe (r = 0.73), and globally (outside North America and Europe) (r = 0.81) 

(99). Remote-sensing estimates have been used to assess associations between PM2.5 and 

cardiovascular disease in epidemiological studies (12, 14, 17). Some studies have recently 

used 1-km estimates of PM2.5 for the United States, which increase their utility for 

exposomics studies (55, 101). Remote-sensing techniques have also been used to estimate an 

expanding list of environmental exposures, including nitrogen dioxide (NO2) concentrations 

(35), green spaces (2, 70), temperature (19), the built environment (13, 95), outdoor light at 

night (45), agricultural chemical exposure (60), land cover classifications (11), river plumes 

(3), water quality (26), and marine microorganisms (39), for example.

A major advantage of remote sensing is virtual global coverage, which is promising for large 

population studies of the exposome. Limitations include typically broad spatial and temporal 

scales, which are unlikely to capture fine-level variation or short-term peak exposures. 

Investigators also encounter measurement limitations for PM2.5 in cloudy conditions, at 

night, or on bright surfaces (43, 99, 100). For assessment of green spaces, there is the 
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inability to assess quality as opposed to quantity of space or to distinguish vegetation type or 

species (70). Jerrett et al. (49) observed stronger PM2.5–cardiovascular mortality 

associations from models that used ground-based as opposed to remote-sensing information, 

particularly for models that could estimate fine-scale variation from traffic sources in the 

United States. Hybrid approaches combining data on land use with remote-sensing estimates 

have been developed to downscale remote-sensing estimates horizontally (7).

Global positioning system and geolocation technologies

The GPS allows one to track a person’s geographic position to better understand potential 

exposures and their contexts. The GPS has three components: a space segment with some 24 

satellites that transmit signals to the earth; a control segment that tracks satellites, resets their 

clocks, and maintains their positions; and a user segment of individual devices that receives 

signals and calculates three-dimensional positions and times (38). GPS signals are also 

sometimes augmented by land-based navigation systems using cellular telephone 

triangulation (87).

Geolocation technologies have been used to improve external exposure assessment in 

numerous ways, including, for example, tracking potential exposure to malaria control 

pesticides (32), supporting infectious disease surveillance and outbreak response (34), and 

refining air pollution exposure estimates. GPS data can be combined with personal air 

pollution monitoring data, from devices carried by study subjects as they walk, ride bicycles, 

drive, and live their daily lives, as well as with data on physical activity and inhalation rates 

to allow investigators to calculate more detailed exposure estimates (47, 61, 69). Steinle et 

al. (93) reviewed several studies combining GPS devices, personal monitoring, and time-

activity diaries to estimate personal levels of exposure to air pollutants. Data on personal 

levels of exposure can be used to calculate population-level exposure estimates using health 

and demographic information.

GPS data have also been combined with accelerometers worn on children to study how 

different land use configurations affect physical activity behavior (2, 48). Bolte & 

Eikelboom (10) assessed mean daily personal levels of RF field exposure in the Netherlands 

using personal monitors in conjunction with GPS-based location and time-activity data 

(Figure 4). Rajkovich & Larsen (78) describe a bicycle-based measurement system for 

thermal exposures that incorporates GPS data with measurements of air and ground surface 

temperature, relative humidity, solar and long-wave radiation, wind speed, barometric 

pressure, and sky view factor.

Geolocation technologies will likely play an increasingly integral role in widespread 

population-based or individualized sensing, especially with smartphone-based applications 

(discussed below), increasing the precision of external exposure assessment; however, 

limitations, including position errors indoors as well as signal interference by features of the 

built environment in urban settings, should be carefully considered (63). Further research 

into the incorporation of indoor real-time locating systems, wearable cameras, or other 

evolving technology to provide detailed indoor location data is needed, as is standardization 

of protocols for GPS data analysis (58).
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Portable and personal sensing

A wide range of novel techniques are emerging in terms of portable and personal sensing to 

improve external exposure estimates and to understand patterns of population exposure. 

Snyder et al. (92) described the changing paradigm and recent advancements in air pollution 

monitoring, in particular the use of portable and often personal, low-cost, real-time sensors 

that offer increased spatial and temporal resolution and data availability to both researchers 

and individuals and communities themselves (Figure 5). Portable microsensors are 

increasingly being deployed by researchers and have recently been used in the development 

of land-use regression surfaces for NO2 and ozone (O3) in Montreal, Canada (23). Joseph et 

al. (50) recently described a mobile three-dimensional drone-based measurement system that 

can more comprehensively assess general-population RF field exposure from cellular 

telephone base stations.

Nieuwenhuijsen et al. (68) reviewed advances in personal-sensing technology for external 

assessment of a broad range of environmental exposures, including air pollution, noise, 

temperature, and green space, as well as health response, including blood pressure, heart 

rate, lung function, emotional status, and physical activity levels (Figure 6). O’Connell et al. 

(71) developed a method for using silicone wristbands as inexpensive personal passive 

samplers for the collection of time-weighted mixed chemical exposure (Figure 7). 

Investigators identified a total of 49 chemical compounds out of a possible 1,182 screened 

following 30 days of use by public volunteers; identified chemical compounds included 

polycyclic aromatic hydrocarbons, consumer products, pesticides, phthalates, and various 

industrial compounds. This type of method offers the promise of quasi-targeted, agnostic 

investigations that would parallel and complement internal exposure data mining. Personal 

light intensity data loggers have also been used in occupational studies of night shift workers 

(40, 72).

Smartphone-based sensors and assessments

Cellular telephones, carried routinely by billions of people around the world, can allow 

personalized monitoring of the environment as people move through time and space. 

Smartphones already come equipped with many embedded sensors, such as compasses, 

GPS, gyroscopes, accelerometers, dual cameras, dual microphones, proximity detectors, 

ambient light detectors, Wi-Fi, and Bluetooth connectivity that can be harnessed for 

personalized sensing of the external environment as well as for transmitting of data from 

other wearable sensors (48) (Figure 8). Ramanathan et al. (79) used a smartphone camera to 

photograph black carbon on a filter for processing elsewhere. Snik et al. (91) described an 

optical add-on, iSPEX, to measure atmospheric aerosols through spectropolarimetric 

measurements by citizen scientists. There was good agreement between iSEPX and spatial 

and temporal aerosol optical thickness as estimated from satellite- or ground-based precision 

photometry, respectively. Dewulf et al. (24) used routine passive mobile positioning data 

collected by the mobile phone network as an approach to capture individual time-location 

information more efficiently when estimating air pollution exposure in Belgium.

A number of software applications have been developed that exploit onboard sensors such as 

motion, audio (for noise), visual, and location sensors. CalFit software uses the built-in 
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accelerometer and GPS sensors to record activity counts and energy expenditure as well as 

time and location information in which an activity occurs (27). Smartphone accelerometers 

with CalFit software performed as well as Actigraph accelerometers, the current gold 

standard, although wear time was considerably less for the smartphones owing to a lack of 

compliance by some study participants (27). Another study combined CalFit data with land-

use regression estimates of NO2 exposure in Barcelona, Spain, and determined that transit 

accounted for 24% of participants’ inhaled dose of air pollution, even though it accounted 

for only 6% of their time (20).

Other software applications have aimed to improve our understanding of patterns of 

smartphone use and RF field exposure in epidemiological studies collecting data on the 

number of calls, call duration, laterality, hands-free device use, and communication system 

(36, 37). Validation studies in both young people and adults indicated that participants 

tended to underestimate number and overestimate the duration of calls in self-reported 

questionnaire assessments compared with those measured with the software application (36, 

37). Investigators have explored smartphone-based noise measurement applications to 

address the limitations of traditional noise-mapping approaches based on prediction models 

(65, 86). They have also been used to administer questionnaires in a flexible time- or 

context-specific manner (see below).

Smartphones are used in the area of mHealth (mobile health) to transmit physiological 

measurements and other relevant data (Figure 9). There is also increasing interest in 

smartwatch applications and multiple sensors for health and behavior tracking, such in the 

case of diabetes or Parkinson’s disease management, for example (4, 88). A growing number 

of telemedicine studies may expand the repertoire of possible physiological measurements 

that are critical to understanding biological responses to external exposures (89).

Future challenges in portable and personal sensing include measuring longer-term exposures 

and health outcomes, reducing cost, improving operability for application in larger 

population-based studies—in particular to avoid problems in compliance, potential sampling 

bias, and behavioral change due to wearing of the monitors—improving reliability and 

quality of data, measuring a greater number of exposures, and integrating and interpreting 

data from diverse sources. Further research to validate the expanding number of available 

software applications is also required (9). Future endeavors could put other devices, 

including miniaturized pollution monitors, into such phones.

Self-reported questionnaire assessments

Although assessment of the exposome is based largely on objective assessments that are 

passively collected through sensor technology, population-based studies will still rely on 

questionnaires and surveys to help capture self-reported, personal characteristics and historic 

exposures. Questionnaires are inexpensive, effective ways to collect data from a large 

population. Information from questionnaires on residential and occupational history can be 

linked to the growing number of geospatial data sources to create integrated metrics of 

exposure to environmental contaminants, such as agricultural chemicals (16) or air pollution 

(105). Technological improvements regarding how questionnaires are administered (e.g., 

smartphones, social media, and social networks) have updated the utility of this commonly 
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used tool. For example, as part of the European Physical Activity through Sustainable 

Transport Approaches (PASTA) project, a large-scale multicity longitudinal online survey is 

being conducted to better understand the determinants of physical activity and active 

transportation over time, including a detailed assessment of mobility patterns in daily life 

(28). Computer-aided questionnaires can improve the quality of participants’ reported data 

and allow investigators to rapidly integrate questionnaire responses into analytical data sets. 

Questionnaires can also capture individual perceptions of the built and physical environment 

such as safety, traffic, and vegetation, which may differ in substantial and meaningful ways 

from objective indicators. There are also opportunities for crowdsourcing of self-reported 

data via Web-based interfaces. For example, data on cycling safety and collisions can be 

collected online by a global mapping system (66).

Data on perceptual information can also be gathered through context-sensitive ecological 

momentary assessment (CS-EMA) through real-time self-reported smartphone assessments. 

The system can, for example, request a person to respond to a survey either at random or 

when particular events are sensed through a smartphone-enabled system, such as the use of 

steroid inhalants (31), a period of physical activity (29), contact with nature (25), or air 

pollution exposures. EMA surveys provide rich data on mood, stress, social context, 

environmental perceptions, or behaviors at the point of contact between the exposure and 

receptor (30, 46). However, due to their greater frequency, EMA measures have the potential 

to be burdensome for participants.

Questionnaires will remain a key tool for external exposure assessment, given their low cost, 

ease of administration, and ability to capture perception data. Although most questionnaire 

measures do not capture exposure to specific compounds, many questionnaire-based metrics 

have been standardized and applied internationally and have proven predictive value in 

health assessments. Future developments will focus on mode of delivery and interaction 

between participants and smartphones or other devices to tailor data collection for key time 

windows of exposure.

CONCLUSIONS

Despite numerous advances in external assessment of the exposome, there are a number of 

priority research needs related to methodological and technological improvements, data 

analysis and interpretation, data sharing, and other practical considerations. Research 

recommendations related to internal exposure assessment of the exposome, biological 

impact, epidemiology, and informatics and data analytics are provided in related manuscripts 

(18, 21, 22, 59, 94).

Methodological and Technological Improvements

Major initiatives for methodological and technological improvements include the conduct of 

repeated population censuses of exposure, increased involvement of citizen scientists, and 

the development and validation of technologies for measurement of multiple priority 

analytes.
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Repeated population censuses of external exposures could be based in either new or existing 

large-scale cohort studies or conducted cross-sectionally. Although longitudinal collection, 

such as in the Human Early-Life Exposome (HELIX) study, which seeks to assess pre- and 

postnatal external environmental exposures in existing European birth cohort studies (104), 

allows researchers to examine associations with health outcomes over time, a cross-sectional 

approach, embedded in ongoing population health surveys, such as the National Health and 

Nutrition Examination Survey (NHANES), would also provide useful data on population-

level exposures and could be combined with data from smaller cohorts. Additional sensors 

and technologies could be added as part of the data collection protocol and would help 

provide data on spatial and temporal trends in exposure and could be used to inform future 

studies. The NHANES, for example, has already deployed accelerometers for measuring 

physical activity, and these initiatives could yield rich information from a survey that has 

already been used for internal exposomics inquiries (33).

There is also increasing interest in citizen science approaches to external exposure 

assessment, which seek to engage and empower the public in data collection efforts and 

prevention applications (53, 57). For example, the public health exposome concept seeks to 

further community engagement in health disparities research through the use of public 

participatory GIS to provide communities access to infrastructure to support research and 

decision making (51). Examples of other citizen science initiatives include community 

monitoring of PM2.5 in the Imperial Valley of California as part of a collaborative effort of 

the advocacy group Comite Civico del Valle, the California Department of Public Health, 

and several universities (http://www.ivan-imperial.org), as well as the European Citi-Sense 

project that is working in several countries to empower citizen volunteers to use various 

technologies to assist in understanding the risks they face from environmental exposures and 

to improve their local environmental conditions (http://www.citi-sense.eu).

Improved technologies for the measurement of multiple priority analytes are also needed, 

particularly those that are low-cost and applicable in large-scale studies, including new 

portable and personal sensors with improved measurement duration or remote-sensing 

technologies at finer levels of spatial resolution. There is also a need for improved 

assessment of exposure variability, including minute, daily, and yearly variability, as well as 

peak and intermittent exposures, in multiple, critical life stages, including the targeted 

development of standardized external exposure metrics for use in utero, in early childhood, 

in adolescence, and in senescence (82, 108). Analytical platforms based on high-resolution 

mass spectrometry have also been applied in quantitative and qualitative analysis of 

contaminants in various exposure matrices such as surface water and house dust (77, 84). 

Coupling with different extraction and separation techniques, these highly sensitive 

analytical platforms not only enable quantitation of targeted contaminants but also allow for 

suspect screening and nontargeted analysis of environmental exposures based on how the 

data are processed (1). Data processing is currently still a major hurdle for scaling up the 

application of untargeted analysis in exposure assessment, including identification of 

unknown compounds.

Key here is close partnership between researchers, the government, and the industry to 

develop useful technology that is also economical for research purposes. For example, there 
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is increasing interest in the use of data from social media networks, particularly 

georeferenced data and omnidirectional imagery (e.g., Google Street View), in assessing the 

social and built environment (83). There may also be opportunities to build on recent 

developments in the fields of eHealth and mHealth, including biological sensing, and real-

time patient monitoring, including additional opportunities for measurement validation. 

Although in some cases the development of such technologies will require smaller-scale 

studies with detailed validation protocols, investigators will eventually need to consider 

deploying these tools in larger studies. Further development of methods for predictive 

modeling of external exposures to both the individual and populations is also needed.

Data Analysis and Interpretation

External exposure assessment in exposome studies involves large amounts of data collected 

at multiple scales and life stages. Through untargeted exposure assessment and studies of 

mixtures and different exposure routes, we know that humans are exposed to numerous 

potentially toxic chemicals. Major challenges include how to integrate and interpret data in a 

meaningful way, how to account for shared exposures, how to integrate data across multiple 

spatial and temporal scales and methodological approaches, and how to account for 

measurement errors.

The aggregate exposure pathway (AEP) framework, a conceptual framework that 

complements the adverse outcome pathways (AOP) concept, organizes exposure and 

toxicological data from source to dose and to outcome (97). Together, the two frameworks 

complete the view of the exposure–outcome continuum to enable knowledge integration and 

better understanding of the health impacts of chemical exposure. In addition, the AEP 

framework supports exposure modeling and exposure forecasting by organizing exposure 

data within individual units of prediction that are common to the field.

Few studies have attempted to comprehensively quantify correlations between multiple 

exposures in exposome studies. In an analysis of 81 environmental exposures assessed 

during pregnancy via a range of biomonitoring, geospatial modeling, remote sensing, and 

questionnaire approaches, Robinson et al. (81) reported a weak correlation (median 

correlation = 0.06) between exposures overall but a stronger correlation (median correlation 

= 0.45) between exposures within the same family (e.g., noise, water, or air pollutants), 

which suggests that adjustment for potential confounding between families of exposure may 

be permitted in future epidemiological studies of the exposome. The authors also note that 

correlations may be inflated for exposures assessed using a similar methodological 

approach, e.g., the same analytic platform or modeling input variables, possibly obscuring 

true exposure variability. Patel & Manrai (74) constructed an “exposome globe” to identify 

and display correlated clusters of exposures by extending unsupervised learning approaches 

originally developed for use with genomic data to 81,937 environmental exposures collected 

as part of four consecutive NHANES surveys in the United States. Results of these and 

related future studies will help us better understand routes of exposure, interpret effect 

estimates, appropriately identify and adjust for potential confounding, and support 

collaborative research efforts of related exposures (74).
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Owing to rapidly evolving technology and limitations inherent in individual approaches to 

external exposures assessment, methods will also need to be developed to integrate external 

exposure data assessed across multiple spatial and temporal scales and approaches (e.g., the 

fusion of remote sensing with ground-based air pollution data). Statistical methods will need 

to account for measurement errors that may occur across scales of measurement with 

different measurement precision and analyte. For example, Hoffmann et al. (44) recently 

used a Bayesian hierarchical approach to modeling uncertainties in retrospective and 

prospective radon exposure assessment in a study of lung cancer in uranium miners. 

Furthermore, Zidek et al. (110) established that with two predictor variables in a regression 

model, the one that is measured with more precision will likely dominate, even if the 

variable measured with less precision has a stronger underlying relationship with the 

outcome. The potential for this kind of error to lead to false discovery increases in the 

presence of multiple exposures that will likely be measured with different levels of precision 

in exposome studies. Other unique biases such as technology-related participation biases 

might also occur through the use of multiple measurement tools with different sampling 

strategies (108). Additional research to further develop approaches to capture time-varying 

effects, bidirectionalty, intraindividual variability, idiographic effects, reciprocal 

relationships, and feedback loops is also required.

Data Sharing

In light of the large quantity of data on the external exposome that may be generated through 

both individual studies and population censuses of exposure, as well as the large-scale 

transdisciplinary consortiums involved, an information exchange resource/clearinghouse to 

facilitate the sharing of exposure data, exposure assessment tools, and modeling methods 

from multiple studies is needed.

Such a data-sharing resource may follow the approach of currently available platforms such 

as Tox21 (http://ntp.niehs.nih.gov/results/hts/index.html) or the National Center for Health 

Statistics (NCHS, http://www.cdc.gov/nchs/), particularly for high-priority exposures. The 

ISA-TAB-Nano specification allows for the sharing of nanomaterial data in a spreadsheet-

based format across data resources (98). Key here is the development of standardized data 

collection or modeling protocols as well as protocols for data annotation, structure, sharing, 

and use to allow for both current uses and comprehensive analyses of exposure across 

populations in the future (6). As another example, detailed genotypic and phenotypic data 

from the large UK Biobank prospective study is available as an open access online resource 

for researchers (96).

Careful consideration regarding privacy concerns and access to data is required because 

detailed geolocation data and other personal data may be collected, including social contacts 

and individual behaviors in some studies. In addition, particularly in exposome studies, real-

time personal-level data on external exposures may be captured, and protocols for sharing 

the data with participants may be required because the possibility for individual-level 

intervention, such as exposure warnings, exists (83). Further research on risk communication 

with study participants may be useful (64). We emphasize, however, that the goal of 

exposome studies is to better understand disease etiology and environmental risk factors at 
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the population level rather than at the individual level and that participant privacy should be 

protected while also enabling the potential benefits of the data to be realized (108).

Practical Considerations

We must also evaluate the practical considerations related to operational parameters, 

training, and funding, including balancing costs versus necessary accuracy for technological 

deployment in large-scale studies. We also need relevant educational and outreach 

opportunities to provide adequate training to current and future researchers and research 

users to facilitate transdisciplinary collaborations on both targeted and broad-spectrum 

external exposure applications (62). There are also funding implications, such as the need 

for larger exposome-related research grants and transdisciplinary research centers, though 

this challenge does not preclude the use or leveraging of existing resources, including 

incentives for multisector (public and private sectors) initiatives to integrate the exposome 

into ongoing work. Notably, the NIEHS recently launched a competitive funding 

infrastructure to support exposome-related research for children’s health [Children’s Health 

Exposure Analysis Resource (CHEAR)], including a laboratory network, a coordinating 

center, and a data center to facilitate opportunities for data integration and pooled analysis of 

a broad range of environmental exposures, including lifestyle and social environment 

exposures (https://www.niehs.nih.gov/research/supported/exposure/chear/).

In conclusion, although many priority research needs and challenges related to external 

exposure assessment of the exposome remain, it is important to begin to conduct such work 

because much can be learned from practical research experience that uses a coordinated and 

thoughtful approach. For example, existing databases may be able to examine priority 

stressors that are of interest in the short term, which should be identified [i.e., Expocast 

(http://www.epa.gov/ncct/expocast/) or the Toxin-Toxin-Target Database (T3DB) (http://

www.t3db.ca)] (109). Much insight can also be gained from three large initiatives funded by 

the European Union, which are investigating the feasibility and utility of assessing the 

exposome [e.g., EXPOsOMICS (103), HELIX (104), and Health and Environment-Wide 

Associations based on Large population Surveys (HEALS) (http://www.heals-eu.eu/

index.php/project/)]. These European studies of the exposome, as well as the ongoing Japan 

Environment and Children’s Study (JECS) (52), are focusing on improved measurements of 

known exposures (and related molecular profiles) as a first proof-of-concept approach.

While still formative, these studies promise to assess the feasibility of many new methods of 

exposure assessment, discovery analysis, and data integration. There are currently no 

ongoing studies in other continents, and continental-scale initiatives will be needed to assess 

the feasibility of exposomics approaches in North America and beyond. Existing and future 

large-scale initiatives promise to test the validity of external exposure assessment in ways 

that smaller studies will undoubtedly miss, particularly with respect to sensing multiple 

analytes in large populations.
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Figure 1: 
Conceptual model for the assessment of environmental exposures. Abbreviations: ETS, 

environmental tobacco smoke; GIS, geographic information systems; PBPK, physiologically 

based pharmacokinetic models; UV, ultraviolet. (Adapted from Reference 67, figure 1.5, p. 

12, by permission of Oxford University Press, https://global.oup.com/academic/?

lang=en&cc=us.)
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Figure 2: 
Three-dimensional profile of the Global System for Mobile Communication (GSM) (top 
panel) and Universal Mobile Telecommunications System (UMTS) (bottom panel) electric 

field strengths [volts per meter (V m−2)]. The yellow triangles show the locations of GSM 

and UMTS antennas for the top and bottom panels, respectively. Reprinted from Sci. Total 
Environ., 445–46, Beekhuizen J, Vermeulen R, Kromhout H, Burgi A, Huss A, Geospatial 

modeling of electromagnetic fields from mobile phone base stations, 202–9, 2013, with 

permission from Elsevier.
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Figure 3: 
Global decadal (2001–2010) satellite-derived mean PM2.5 concentrations (adapted from 

Reference 99).
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Figure 4: 
Spatial pattern of exposure (yellow) to electromagnetic fields from GSM base stations 

during travel by train, tram, and bus. The height of the yellow profile is proportional to the 

electric field strength (1 km represents 1 V m−2). Courtesy © 2011 Google, © 2011 

Aerodata International Surveys, © 2011 Europa Technologies, © 2011 TeleAtlas. Reprinted 

from Environ. Int., 48, Bolte JFB, Eikelboom T, Personal radiofrequency electromagnetic 

field measurements in the Netherlands: exposure level and variability for everyday activities, 

times of day and types of area, 113–42, 2012, with permission from Elsevier.
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Figure 5: 
The changing paradigm of air pollution monitoring (adapted with permission from 

Reference 92. Copyright 2013 American Chemical Society).
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Figure 6: 
Personal levels of noise (dBA), ultraviolet B (UVB) (mJ/cm2), humidity (%), temperature 

(°C), black carbon (BC) (μg/m3), blood pressure (mmHg), heart rate variability (HRV) (ms), 

heart beat (beats per minute), lung function (L), emotional status, and physical activity (PA) 

[metabolic equivalents (METs) during two 24-h periods] (adapted from Reference 67).
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Figure 7: 
Examples of silicone personal sampling samplers. (a) Configurations of wristbands used in 

the study including a single wristband, one cut and worn as a lapel, and one worn as a 

stacked wristband in which only the outer band was analyzed; (b–c) bags used for transport 

that were attached to track participant identification and exposure time in the occupational 

deployments; (d) single wristband deployment (debossed writing as pictured: “OSU 

EINOME” for Oregon State University Environmental Integrated Organic Monitor of 

Exposure) (adapted from 71).
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Figure 8: 
An off-the-shelf iPhone 4, representative of the growing class of sensor-enabled phones. 

This phone includes eight different sensors: accelerometer, global positioning system (GPS), 

ambient light, dual microphones, proximity sensor, dual cameras, compass, and gyroscope. 

© 2010 IEEE. Reprinted, with permission, from Reference 54.
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Figure 9: 
On-body sensor technology allows data collection for individual, (near) real-time, care-

driven monitoring of health-related end points. Reprinted from Int. J. Hyg. Environ. Health, 

217(8), Smolders R, de Boever P, Perspectives for environment and health research in 

Horizon 2020: Dark ages or golden era?, 891–96, 2014, with permission from Elsevier.
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