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Simple Summary: The use of essential oils in animal feeding has been practiced for their role as
antibacterial, antiviral, antifungal, antioxidant, digestive stimulants, immunomodulators, hypolipi-
demic agents, and heat stress alleviators. The objective of the present research was to assess dietary
supplementation of three formulations of essential oils on performance, bone mineralization, carcass
component weights, intestinal permeability, anti-inflammatory, and antioxidant biomarkers in broiler
chickens under cyclic heat stress. Heat stress reduced the body weight, feed intake, and bone strength
through bone mineralization, while increasing feed conversion, gut permeability, IFN-γ and IgA
levels in serum when compared with thermoneutral control broilers. Interestingly, in the present
study, all three essential oils treatments partially mitigated these harmful effects at statistically signif-
icant levels compared with heat stress control chickens. These results suggest that the strategic use of
some essential oils formulations during periods of stress, such as cyclic heat stress, could ameliorate
adverse effects.

Abstract: The objective of the present research was to assess the dietary supplementation of three
formulations of essential oils (EO) in chickens under heat stress (HS). Day-of-hatch Cobb 500 chicks
(n = 500) were randomly distributed into four groups: 1. HS control + control diets; 2. HS + control
diets supplemented with 37 ppm EO of Lippia origanoides (LO); 3. HS + control diets supplemented
with 45 ppm LO + 45 ppm EO of Rosmarinus officinalis (RO) + 300 ppm red beetroot; 4. HS + 45
ppm LO + 45 ppm RO + 300 ppm natural betaine. Chickens that received the EO showed significant
(p < 0.05) improvement on BW, BWG, FI, and FCR compared to control HS chickens. Average body
core temperature in group 3 and group 4 was significantly (p < 0.05) reduced compared with the HS
control group and group 2. Experimental groups showed a significant reduction in FITC-d at 42 days,
a significant increase in SOD at both days but a significant reduction of IFN-γ and IgA compared with
HS control (p < 0.05). Bone mineralization was significantly improved by EO treatments (p < 0.05).
Together these data suggest that supplemental dietary EO may reduce the harmful effects of HS.

Keywords: broiler chickens; essential oils; heat stress; Lippia origanoides; Rosmarinus officinalis

1. Introduction

The gastrointestinal tract (GIT) is the largest lymphoid organ containing an estimated
70–80% of the immune cells [1]. At the same time, it harbors a microbial population that
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is ten times larger than the number of somatic cells and their genes [2]. In the intestine,
consisting of a single line of epithelial cells, enterocytes are linked to each other by several
complexes of tight junction proteins [3]. The GIT is one of the most sensitive organs to
stress and inflammation. Disruption of this fragile organ increases leakage of bacteria and
antigens to the bloodstream, which can result in severe chronic systemic inflammation [4–6].

Intensification in heat temperatures has been recorded in the last two decades, and
these increments are anticipated to continue [7]. These environmental changes have severe
repercussions in all forms of life on earth [8,9]. In recent years, HS has become one of the
significant economic concerns for the poultry industry [10]. In HS, animals take up more
heat than is diffused. To compensate for the absence of sweat glands, chickens use other
methods to regulate body temperature, such as convection, evaporation, and radiation [11].
However, under commercial conditions, HS has a devastating effect on broiler chicken
homeostasis [12]. The detrimental impact of HS can vary from heat fatigue and performance
reduction to cellular, tissue, and organ injuries resulting in death [10,12,13]. Under such
challenging conditions, chickens undergo profound physiological and behavioral changes
as they struggle to return to homeostasis.

Furthermore, chickens suffering from chronic heat stress develop an increased het-
erophil: lymphocyte ratio, which is a reliable stress indicator [14]. In the United States,
annual losses due to HS have been estimated at 2.36 billion dollars due to HS [10].

As with any other chronic stress condition (regardless of its origin, e.g., chemical,
biological, physical, nutritional, or emotional), reproduction and growth functions are
shutdown while the survival conditions are activated [12]. Moreover, the excess free
radicals produced under chronic stress, such as reactive oxygen, nitrogen or chlorine
species, often exceed the antioxidant capacity of vital enzymes such as catalase, superoxide
dismutase and glutathione peroxidase [15,16]. Perhaps the cellular molecules that suffer
immediate repercussions are the cellular membrane lipid and protein components and the
mitochondrial membrane by lipid peroxidation. Damage in those structures compromises
the whole cellular physiology of tissues and organs. One of the cellular mechanisms to
revert oxidative stress is the production of several heat shock proteins (HSP) that repair
damage proteins and regulate apoptosis [6,17].

On the other hand, the increased awareness and concern over the antibiotic residues as
well as the emergence of antibiotic-resistant bacteria has created the necessity of replacing
antibiotic growth promoters (AGPs) with other products like phytogenics, prebiotics,
probiotics, organic acid, enzymes, and vaccines. Phytogenics are a group of natural growth
promoters used as feed additives, derived from herbs, spices or other plants.

Essential oils (EO) represent a concentrated form of phytogenics, containing mainly the
active ingredients of the plants as secondary metabolites. Several studies have shown the
antibacterial, antiviral, antifungal, antioxidant, digestive stimulants, immunomodulators,
hypolipidemic agents, and heat stress alleviators of EO such as carvacrol and thymol,
which are present in high concentrations in oregano and rosemary [18–20].

Other beneficial effects of EO include appetite stimulation, improvement of enzyme
secretion related to food digestion, and immune response modulation [21]. Some EO
are generally used as a blend with a carrier oil or in combination with other plants rich
in betaine, a central amino acid that plays important metabolic and osmolar activities
in the feed to enhance chickens’ productive performance [22–24]. Hence, EO had been
successfully used as a dietary antibiotic replacer without residues [25]. The antioxidant
effect of EO has beneficial effects in situ, and it has been reported that this antioxidant
property also increases the shelf life of the feed as well as the meat from the chickens
fed with EO by reducing lipid peroxidation [26]. Moreover, the lean meat produced by
chickens fed with EO reduces the risk of hyperlipidemia in the consumers [27].

However, the spectrum of phytogenic feed additives is vast and does not only con-
sist of essential oils, but also includes other active ingredient groups, such as pungent
substances, bitter substances, saponins, flavonoids, mucilages and tannins [28,29].
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Betaine, the trimethyl derivative of glycine, the simplest and crucial proteinogenic
amino acid [30], is produced by many plants and metazoans. Betaine works in the
methylation processes, hence substituting other methyl group donors like choline and
methionine [31]. There is increasing evidence that betaine is a highly valuable feed additive
in many farm animals [23]. Betaine has also been shown to protect cells from osmotic stress
and allows cells to continue regular metabolic activities in conditions that would generally
inactivate the cell [24]. Furthermore, betaine donates its labile methyl group, which can be
used in transmethylation reactions to synthesize substances like carnitine; and thus, affect
animal fat metabolism [32]. Because of these reasons, betaine is also known as the "carcass
modifier" as it improves carcass quality and yield, particularly under HS conditions, due
to its osmoprotective and osmoregulatory role in cells [33,34].

All the mention properties are encouraging researchers to evaluate EO as an alterna-
tive to AGPs [22,35]. Hence, it is not surprising that EO are playing an interesting use as
feed additives for monogastric and ruminants [21]. In the present study, three formulation
of EO are assessed. One formulation is a commercial source of Lippia origanoides (Natbio
Esencial Premix®, Bucaramanga, Colombia). The other two formulations are experimental,
and both contain EO from Lippia origanoides and Rosmarinus officinalis. Both experimental
formulations contain betaine. However, the source of betaine differs in its origin. In one
formulation, the source of betaine comes from beetroot extract (Beta vulgaris) while in
the other comes from a mix of several plant extracts (AMORVET, Bhagwanpur, India).
Therefore, the objectives of the present research were to confirm and evaluate the antioxi-
dant and anti-inflammatory properties of dietary supplementation of three formulations
of essential oils (EO) on performance, bone mineralization, carcass component weights,
intestinal permeability, anti-inflammatory, and antioxidant biomarkers in broiler chickens
under cyclic heat stress.

2. Materials and Methods
2.1. Ethics

All animal handling procedures complied with the Institutional Animal Care and Use
Committee (IACUC) at the University of Arkansas, Fayetteville. Explicitly, the IACUC
approved this study under protocol # 18030.

2.2. Essential Oil Products

Three formulations of EO were provided by Promitec Santander S.A. and feed inclu-
sion based on the manufacturer’s recommendations. One formulation was commercial,
and the other two experimental formulations. The formulations were: Formula 1:37 ppm
EO of Lippia origanoides, with feed inclusion of 300 g/ton of feed (Natbio Esencial Premix®,
Bucaramanga, Colombia); Formula 2: 45 ppm EO of Lippia origanoides + 45 ppm EO of
Rosmarinus officinalis + 300 ppm of beetroot extract (Beta vulgaris), with feed inclusion of
700 g/ton of feed; Formula 3: 45 ppm EO of Lippia origanoides + 45 ppm EO of Rosmari-
nus officinalis + 300 ppm of Natural Betaine (AMORVET, Bhagwanpur, India), with feed
inclusion of 700 g/ton of feed.

Due to EO’s rapid absorption and metabolism by enterocytes, encapsulation of these
feed additives to augment their efficiency has been proposed [36]. In the present study,
all EO products evaluated were microencapsulated with maltodextrin by spray drying to
improve the encapsulation efficiency and bioavailability and extend the EO’s shelf life.

2.3. Facilities and Experimental Design

Experimental design is summarized in Figure 1. This study was conducted at the
Poultry Experimental Research Laboratory (PERL) facility at the University of Arkansas
during late summer (July–August), which includes individual environmentally controlled
rooms equipped with their own air conditioning unit and digital thermostat to control
temperature. Day-of-hatch Cobb 500 male broiler chicks (n = 500) were obtained from a
commercial hatchery. Upon arrival, all chickens were vaccinated with a coccidia vaccine
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(Coccivac®-B52, Merck Animal Health, Maxton, NC, USA), neck tagged, and randomly
distributed into four groups. Group 1: HS control + control diets; Group 2: HS + control
diets supplemented with 37 ppm EO of Lippia origanoides (LO); Group 3: HS + control diets
supplemented with 45 ppm LO + 45 ppm EO of Rosmarinus officinalis (RO) + 300 ppm
beetroot; Group 4: HS + 45 ppm LO + 45 ppm RO + 300 ppm Natural Betaine.

The starter, grower, and finisher diets used in this research were adjusted to breeder’s
recommendations [37] and formulated to provide an adequate supply of nutrients (Table 1).
No growth promoters or coccidiostats were included in the diets. Groups were allocated
to ten environmental rooms. Each room was divided into two pens (150 × 300 cm),
each containing separate feeders and watering systems, five replicates per treatment with
25 birds/replicate (n = 125). At placement, chickens were exposed to 34 ◦C and relative
humidity at 55 ± 5% for the first 7 d. During cyclic HS, chickens received 35 ◦C for 12 h
daily from day 7 to day 42. Relative humidity remained constant at 55 ± 5%. On d 18,
eight chickens were randomly selected to orally insert a Thermochron temperature logger
(iButton, DS1922L, Embedded Data Systems, Lawrenceburg, KY, USA). The devices stayed
in the gizzard for measurement of body temperature as described by Flees et al. [38]. Every
minute during the first two hours after initiation of heat stress, and every subsequent hour,
the chickens’ body temperature was logged (n = 1.254).

Performance parameters, body weight (BW), body weight gain (BWG), feed intake
(FI), and feed conversion ratio (FCR) were evaluated at d 21 and 42. On the same days,
four random chickens per pen were selected (n = 20) and orally gavaged with 8.32 mg/kg
of body weight of fluorescein isothiocyanate-dextran (FITC-d, MW 3–5 KDa; St. Louis, MO,
USA). One hour after FITC-d administration, chickens were humanely euthanized by CO2
inhalation. Blood samples were collected from the femoral vein and centrifuged (1000× g
for 15 min) to separate the serum.

Table 1. Ingredient composition and nutrient content of the corn–soybean diet used on an as-is basis.

Feed Ingredients Stater Phase
(d 1 to 7)

Grower Phase
(d 8 to 14)

Finisher Phase
(d 15 to 25)

Ingredients (%)
Corn 51.80 57.81 59.64

Soybean meal 37.66 31.62 27.23
DDGS 8.1% EE 4.00 4.00 6.00

Poultry fat 3.24 3.44 4.38
Limestone 1.01 1.06 1.03

Dicalcium phosphate 1.00 0.88 0.64
Salt 0.35 0.35 0.31

DL-methionine 0.29 0.31 0.28
L-lysine HCl 0.12 0.13 0.12

Mineral premix b 0.10 0.10 0.10
Vitamin premix a 0.10 0.10 0.10

L-threonine 0.08 0.09 0.09
Choline chloride 0.06 0.06 0.05

Sodium bicarbonate 0.04 0.05 0.03
Antioxidant c 0.15 0.15 0.15

Total 100 100 100
Calculated analysis

ME (kcal/kg) 3015.00 3090.00 3175.00
Ether extract (%) 5.88 6.20 7.28

Crude protein (%) 22.30 20.00 18.70
Lysine (%) 1.18 1.05 0.95

Methionine (%) 0.59 0.53 0.48
Threonine (%) 0.77 0.69 0.65

Tryptophan (%) 0.25 0.22 0.20
Total calcium (%) 0.90 0.84 0.76
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Table 1. Cont.

Feed Ingredients Stater Phase
(d 1 to 7)

Grower Phase
(d 8 to 14)

Finisher Phase
(d 15 to 25)

Total phosphorus (%) 0.63 0.58 0.53
Available phosphorus (%) 0.45 0.42 0.38

Sodium (%) 0.20 0.20 0.18
Potassium (%) 1.06 0.94 0.87
Chloride (%) 0.27 0.28 0.25

Magnesium (%) 0.19 0.18 0.17
Copper (%) 19.20 18.46 18.85

Selenium (%) 0.28 0.27 0.26
Linoleic acid (%) 1.01 1.13 1.16

a Vitamin premix supplied the following per kg: vitamin A, 20,000,000 IU; vitamin D3, 6,000,000 IU; vitamin E,
75,000 IU; vitamin K3, 9 g; thiamine, 3 g; riboflavin, 8 g; pantothenic acid, 18 g; niacin, 60 g; pyridoxine, 5 g; folic
acid, 2 g; biotin, 0.2 g; cyanocobalamin, 16 mg; and ascorbic acid, 200 g (Nutra Blend LLC, Neosho, MO 64850).;
b Mineral premix supplied the following per kg: manganese, 120 g; zinc, 100 g; iron, 120 g; copper, 10–15 g; iodine,
0.7 g; selenium, 0.4 g; and cobalt, 0.2 g (Nutra Blend LLC, Neosho, MO 64850); c Ethoxyquin.

2.4. Serum Levels of Fluorescein Isothiocyanate-Dextran

Serum levels of FITC-d were used as a biomarker to evaluate intestinal permeability
as described by Baxter et al. [39].

2.5. Superoxide Dismutase Activity

Superoxide dismutase (SOD) activity was measured in serum samples using a com-
mercial assay kit (Cayman chemical company, Item No. 706002, Ann Arbor, MI, United
States) following the manufacturer’s instructions. Three types of SOD (Cu/Zn, Mn, and
FeSOD) were determined and the optimal dilution to quantify the SOD activity was 1:5.
Samples were measured at 450 nm using an ELISA plate reader (Synergy HT, multimode
microplate reader, BioTek Instruments, Inc., Winooski, VT, United States).

2.6. Serum Levels of Gamma Interferon

Gamma interferon (IFN-γ) serum levels were using a commercial assay kit from
Invitrogen Corporation (Frederick, MD, USA).

2.7. Serum Total Immunoglobulin A

Levels of total IgA serum levels were determined as previously described [40]. A
commercial indirect enzyme-linked immunosorbent assay (ELISA) set was used to quantify
IgA according to the manufacturer’s instructions (Catalog No. E30-103, Bethyl Laboratories,
Inc., Montgomery, TX, USA).

2.8. Bone Strength

The left and right tibias from each sampled chicken on days 21 and 42 were removed
to assess break strength (kg) and total ash based on fat-free tibia (%) as described by
Gautier et al. [41]. Tibial diaphysis from individual birds was cleaned of adherent tissues,
the periosteum was removed, and the biomechanical strength of each bone was measured
using an Instron 4502 material testing machine (Norwood, MA, USA) with a 509 kg load
cell. The bones were held in identical positions and the mid-diaphyseal diameter of the
tibial midshaft, which was also the site of impact, was measured using a dial caliper. The
maximum load at failure was determined in the tibial midsection between epiphyses, using
a three-point flexural bend fixture with a total distance of 30 mm between the two lower
supporting ends. The load, defined as the force in kilograms per square millimeter of
cross-sectional area (kg/mm2), represents bone strength. The rate of loading was kept
constant at 20 mm/min collecting 10 data points per second. The data were automatically
calculated using Instron’s Series IX Software (Norwood, MA, USA).
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2.9. Processing Parameters

On day 42, nine chickens per replicate pen (n = 45 HS) per group were selected to
evaluate processing parameters. Chickens were commercially processed at the University
of Arkansas Pilot Processing Plant. Because the plant was on-site, broilers did not undergo
extended transportation. Grouped birds were transported on the back of a flatbed trailer
to the abattoir where processing could commence. Feed was withheld for ten h before
slaughter, and broilers were weighed individually at the plant. Automated equipment
was used for electrical stunning, scalding, picking, vent opening, and evisceration. Birds
were scalded at 53 ◦C for 120 s. Carcasses were prechilled at 12 ◦C for 15 min and chilled
(immersion) at 1 ◦C for 2.75 h. After being chilled, carcasses were drained of water and
chilled weight was recorded before deboning into the subsequent parts of breast, tender,
wing, whole leg, and rack and their respective weights were recorded.

2.10. Statistical Analysis

All data were subjected to analysis of variance (ANOVA) as a completely randomized
design using the General Linear Models procedure of SAS [42]. Significant differences
among the means were determined by Duncan’s multiple range test at p < 0.05.

3. Results

The results of the evaluation of EO on broiler chickens exposed to cyclic HS on perfor-
mance parameters and carcass component weights are summarized in Table 2. Chickens
that received the EO showed significant (p < 0.05) improvement on BW, BWG, FI, and FCR
compared to control HS chickens (Table 2). Cyclic HS reduced all parameters evaluated
for carcass component weights (hot carcass, chilled carcass, wing, breast, tender, and
leg and quarter). Interestingly, in the present study, the formulations of EO in group 3
(supplemented with 45 ppm Lippia origanoides + 45 ppm Rosmarinus officinalis + 300 ppm
beetroot) and group 4 (supplemented 45 ppm Lippia origanoides + 45 ppm Rosmarinus
officinalis + 300 ppm natural betaine) significantly mitigated the harmful effects of HS in
carcass component weights when compared with the HS control chickens (Table 2).

The evaluation of essential oils on broiler chickens exposed to cyclic heat stress on body
core temperature, serum biomarkers for intestinal inflammation, and bone parameters
at days 21 and 42 is summarized in Table 3. Only two hours after introducing HS in
the experimental groups, a significant (p < 0.05) increase in the body core temperature
of the chickens was observed and heightened body temperature during heat stress was
observed through the trial (data not shown). Average body core temperature in group 3
(supplemented with 45 ppm Lippia origanoides + 45 ppm Rosmarinus officinalis + 300 ppm
beetroot) and group 4 (supplemented 45 ppm Lippia origanoides + 45 ppm Rosmarinus
officinalis + 300 ppm natural betaine) was significant reduced compared with HS control



Animals 2021, 11, 1084 7 of 13

group and group 2, supplemented with 37 ppm EO of Lippia origanoides (Table 3). At
21 days, only groups 3 and 4 showed a significant reduction in serum FITC-d, intestinal
permeability biomarker. However, all experimental groups treated showed a significant
reduction in FITC-d at 42 days compared with control HS chickens. In the present study,
experimental treated chickens had a significant increase in serum concentrations of SOD
at both days of evaluation compared to control HS chickens, but significant reduction in
serum levels of gamma interferon and IgA (Table 3). All three experimental groups showed
a significant increase in tibia break strength at both days of evaluation, however, total
ash from tibia was significantly higher in groups 3 and 4 at 21 and 42 days of evaluation
(Table 3).

Table 2. Evaluation of essential oils on broiler chickens exposed to cyclic heat stress on performance parameters and carcass
component weights at days 21 and 42.

Performance
Parameter

Heat Stress
Control

Lippia
origanoides

(37 ppm)

L. origanoides *,
R. officinalis,

Beetroot

L. origanoides *,
R. officinalis,

Natural Betaine
Pooled SEM p-Value

BW, g/broiler
d 0 43.62 43.20 43.71 43.82 0.98 0.1457
d 21 612.30 b 689.41 a 680.24 a 695.20 a 28.90 0.0002
d 42 2119.20 c 2329.90 ab 2242.11 ab 2380.75 a 125.42 0.0001

Accumulated BWG, g/broiler
d 0 to 21 569.30 b 646.41 a 637.24 a 652.20 a 26.78 0.0001
d 0 to 42 2016.20 c 2286.90 ab 2199.11 ab 2337.75 a 119.87 0.0002

FI, g/broiler
d 0 to 21 790.30 b 910.41 a 891.24 a 930.20 a 32.40 0.0001
d 0 to 42 4110.20 c 4355.90 ab 4125.11 bc 4284.75 a 230.56 0.0002

Accumulated FCR
d 0 to 21 1.30 1.32 1.31 1.33 0.87 0.1689
d 0 to 42 1.94 a 1.87 b 1.84 b 1.80 b 0.92 0.0001

Carcass component weights (g) at day 42
Live weight 2156.25 c 2240.91 bc 2361.15 ab 2423.30 a 201.36 0.0001
Hot carcass 1640.88 c 1688.86 bc 1788.49 ab 1836.98 a 187.32 0.0002

Chilled carcass 1687.38 b 1731.16 b 1847.51 a 1885.35 a 198.86 0.0001
Wing 180.85 c 183.57 bc 189.55 ab 196.83 a 20.13 0.0001
Breast 330.02 b 336.30 b 371.98 a 380.65 a 31.10 0.0001

Leg and quarter 534.40 c 548.98 bc 579.13 ab 588.65 a 42.02 0.0002

* L. origanoides (45 ppm); R. officinalis (45 ppm); Beetroot (300 ppm); Natural betaine (300 ppm). Data are expressed as the mean ± SE.
abc Indicates significant differences between the treatments within the rows (p < 0.05).

Table 3. Evaluation of essential oils on broiler chickens exposed to cyclic heat stress on body core temperature, serum
biomarkers for intestinal inflammation, and bone parameters at days 21 and 42.

Variable Heat Stress
Control

Lippia
origanoides

(37 ppm)

* L. origanoides,
R. officinalis,

Beetroot

* L. origanoides,
R. officinalis,

Natural Betaine
Pooled SEM p-Value

Body core
temperature (◦C) 42.36 a 42.35 a 41.98 b 41.98 b 0.83 0.0001

Serum FITC-d (ng/mL)
d 21 264 a 288 a 152 b 251 b 95 0.0001
d 42 245 a 165 b 137 bc 129 c 82 0.0002

SOD (U/mL)
d 21 7.35 b 8.66 a 8.55 a 9.01 a 0.45 0.0001
d 42 8.45 b 9.73 a 10.05 a 10.85 a 0.61 0.0002

IFN-γ (pg/ml)
d 21 134 a 118 b 112 b 116 b 17 0.0001
d 42 251 a 131 b 122 b 133 b 22 0.0002
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Table 3. Cont.

Variable Heat Stress
Control

Lippia
origanoides

(37 ppm)

* L. origanoides,
R. officinalis,

Beetroot

* L. origanoides,
R. officinalis,

Natural Betaine
Pooled SEM p-Value

IgA (ng/mL)
d 21 14 a 8 b 9 b 8 b 0.38 0.0001
d 42 16 a 9 b 10 b 9 b 0.53 0.0001

Tibia break strength (kg)
d 21 13.79 b 15.69 a 16.09 a 15.99 a 1.12 0.0001
d 42 22.37 b 29.17 a 30.37 a 31.37 a 2.05 0.0002

Total ash from tibia (%)
d 21 50.57 b 51.67 b 52.67 a 53.77 a 0.49 0.0001
d 42 52.33 b 53.34 ab 54.34 a 55.04 a 0.31 0.0001

* L. origanoides (45 ppm); R. officinalis (45 ppm); Beetroot (300 ppm); Natural betaine (300 ppm). Data are expressed as the mean ± SE.
abc Indicates significant differences between the treatments within the rows (p < 0.05).

4. Discussion

Thymol and carvacrol are volatile aromatic EO found in high concentrations in thyme,
oregano, and rosemary. Chemically, they are secondary metabolites commonly composed
of terpenoids and phenylpropanoids [29]. As feed additives, these EO have been shown
to enhance nutrient bioavailability, productive and reproductive performances [19]. In
the present study, groups that received EO and were exposed to cyclic HS exhibited im-
proved BW and BWG compared with HS control chickens at 21 d and 42 d, as well as FCR
(d 42 only). These results agree with other studies that have shown chickens under HS
that received EO from oregano [43], rosemary [44], or betaine [26] all had performance
improvements. Other studies suggest that the increased performance observed in chick-
ens supplemented within EO is due to stabilization of the microbial eubiosis in the gut,
increased digestive enzyme secretion and stimulated appetite [19,22].

Heat stress has profound metabolic and physiological effects in modern broiler chick-
ens, such as downregulated gene expression of lipoprotein lipase and hepatic triacylglyc-
erol lipase and upregulation of adipose triglyceride lipase [38]. As a result, these gene
expression changes are associated with an increase in abdominal, intermuscular, and subcu-
taneous tissue fat deposition in chickens affected by HS. Additionally, HS induces cellular
osmotic and dehydration associated with increased plasma triglyceride and glucose, serum
calcium (due to bone demineralization), and total serum protein. These alternations have
significant implications in the water holding capacity of the chicken meat products [45–47].

Furthermore, chronic HS increases body temperature and respiration rate, instigat-
ing respiratory alkalosis. All the above changes directly affect chicken meat quality by
reducing breast muscle water content and color, while also increasing carbonyl concen-
trations and thiobarbituric acid reactive substances (TBARS) formed as a byproduct of
lipid peroxidation [12,48,49]. Other investigators have reported the detrimental effects of
chronic HS on carcass yield and meat quality [26,33,50–52]. Interestingly, in the present
study, chickens in groups 3 and 4 showed significant improvements in carcass component
weights compared with HS control chickens. Both groups included the combination of EO
and a source of the crucial proteinogenic amino acid betaine, also known as the "carcass
modifier", due to its osmoprotective and osmoregulatory properties in cells, especially
under HS conditions [33,34].

Maintenance of optimal bird health is critical for improved withstanding against the
physiological challenges associated with HS. Various managerial and nutritional strategies
have been proposed to mitigate the adverse effects of HS in chickens, with plant-based
additives showing promise [18,19]. In this regard, EO have received particular attention as
natural alternatives for replacing AGPs in poultry diets due to their role as antibacterial,
antiviral, antifungal, antioxidant, immunomodulatory, hypolipidemic agents, and heat
stress alleviators [20,21].
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Our results confirmed previous reports indicating that HS compromised the intesti-
nal barrier, increasing gut permeability [53]. On day 21 of evaluation, EO formulations
included in groups 3 and 4 showed a significant reduction in serum FITC-d compared to
the rest of the groups exposed to HS. However, at 42 d of evaluation, all three formulations
of EO in chickens exposed to cyclic HS significantly reduced leakage of FITC-d when
compared with control HS chickens. FITC-d is a large molecule (3–5 kDa) that does not
usually leak through the intact gastrointestinal tract barrier. However, when conditions
disrupt the tight junctions between epithelial cells, the FITC-d molecule can enter cir-
culation, as demonstrated by an increase in trans-mucosal permeability associated with
chemically induced disruption of tight junctions by elevated serum levels of FITC-d after
oral administration [40]. Interestingly, a recent review indicates that EO decreases intestinal
permeability by increasing the gene expression of tight junction (TJ) proteins, downregu-
lating gene expression of proinflammatory cytokines, and increasing the proliferation of
goblet cells [19].

Alternatively, perhaps the most studied EO properties are their antioxidant activity,
radical scavenging, and antimicrobial capabilities [54]. Under normal temperature con-
ditions, the antioxidant systems of chickens are in a state of dynamic equilibrium and
can adapt to manage normal challenges. During HS; however, reactive oxygen species
are produced at elevated levels beyond which the system can handle, resulting in oxida-
tive stress [15]. The superoxide dismutases (SOD) are key enzymes in the conversion
of superoxide free radicals into hydrogen peroxide and molecular oxygen [6,7]. In the
present study, all three dietary formulations of EO tested increased serum concentrations
of SOD on days 21 and 42 compared with the HS control chickens. Free radical scavenging
capacity protects the integrity of cellular and mitochondrial membranes from lipid per-
oxidation [55–57]. Essential oils from rosemary, oregano, thyme, and turmeric increased
the antioxidant response element in enterocytes suffering oxidative stress, suggesting a
unique mechanism by these compounds [58]. Other studies have confirmed the antioxidant
activity of Lippia [56,59–62], rosemary [61] and beetroot [63].

Beetroot (Beta vulgaris) is particularly fascinating due to the antioxidant, anti-inflammatory,
and apoptosis properties of its betalain pigments [64]. More recently, the high concentration
of nitrate (NO3−) present in beetroot has been linked to the endogenous production of nitric
oxide (NO). This has been associated with involvement in vascular, inflammatory, apopto-
sis, and neurotransmission responses, which have received worldwide attention [65–67].
Interestingly, chickens exposed to cyclic HS that receive the EO formulations presented a
significant reduction in serum concentrations of the proinflammatory cytokine IFN-γ. Like-
wise, recent studies published by our laboratory have confirmed IgA as a reliable serum
biomarker to evaluate intestinal inflammation [40,68–70]. In the present study, serum levels
of IgA at 21 and 42 days of evaluation were significantly reduced in all experimental groups
compared with control HS chickens, suggesting that EO downregulates the inflammatory
response of HS. In the present study, just two hours after introducing HS in the experi-
mental groups, a significant increase in body temperature was observed, which remained
throughout the trial. Nevertheless, it was noteworthy to follow that chickens in groups
3 and 4, both containing betaine, significantly reduced body core temperature compared
with the other two HS groups. These findings agree with Attia et al. [71], who reported
that dietary betaine improved performance parameters, rectal temperature, respiration
rate, blood pH, meat quality, and humoral immune response in chickens under HS.

HS is associated with a reduction in feed intake and inflammation; these conditions
have a high correlation with a reduction in bone mineralization and bone restoration [30,72–76].
In the present study, control chickens exposed to cyclic HS showed a significant reduction
in bone mineralization as evaluated by tibia break strength and total ash from the tibia,
confirming the results of a previous study [53]. However, groups 3 and 4 that received a
mix of EO and betaine showed a significant improvement in bone parameters evaluated on
days 21 and 42.
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In summary, the results of the present study suggest that the supplementation and
combination of EO from Lippia origanoides, Rosmarinus officinalis, and either beetroot or
natural betaine improves performance, carcass component weights, intestinal permeability,
antioxidant, and anti-inflammatory properties in broiler chickens under cyclic HS. Studies
to evaluate these properties and the bactericidal activities against Clostridium perfringens in
a necrotic enteritis laboratory model are currently being evaluated.

5. Conclusions

Heat stress reduced the performance parameters of BW, feed intake, and bone strength
through bone mineralization, while increasing feed conversion, gut permeability, IFN-γ,
and IgA levels when compared with thermoneutral control broilers. However, strategic
use of EO and betaine during a period of stress, such as heat stress, could help to reduce
the negative effects in broiler chickens.
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