
OR I G I N A L R E S E A R CH

Analysis of miRNAs responsive to long-term calcium deficiency
in tef (Eragrostis tef (Zucc.) Trotter)

Muhammad Numan1 | Wanli Guo1,2 | Sang-Chul Choi1 | Xuegeng Wang3,4 |

Boxuan Du2 | Weibo Jin2 | Ramji Kumar Bhandari3 | Ayalew Ligaba-Osena1

1Laboratory of Plant Molecular Biology and

Biotechnology, Department of Biology,

University of North Carolina Greensboro,

Greensboro, North Carolina, USA

2Department of Biotechnology, College of Life

Sciences and Medicine, Zhejiang Sci-Tech

University, Hangzhou, China

3Laboratory of Environmental Epigenetics,

Department of Biology, University of North

Carolina Greensboro, Greensboro, North

Carolina, USA

4Institute of Modern Aquaculture Science and

Engineering, College of Life Sciences, South

China Normal University, Guangzhou, P. R.

China

Correspondence

Ayalew Ligaba-Osena, Laboratory of Plant

Molecular Biology and Biotechnology,

Department of Biology, University of North

Carolina Greensboro, Greensboro, NC, USA.

Email: alosena@uncg.edu

Present address

Muhammad Numan, Laboratory of Plant

Molecular Biology and Biotechnology,

Department of Biology, University of North

Carolina Greensboro, Greensboro, North

Carolina, USA.

Wanli Guo, Department of Biotechnology,

College of Life Sciences and Medicine,

Zhejiang Sci-Tech University, Hangzhou,

China.

Funding information

The University of North Carolina at

Greensboro, Grant/Award Number: 133504

Abstract

MicroRNAs (miRNAs) play an important role in growth, development, stress resil-

ience, and epigenetic modifications of plants. However, the effect of calcium (Ca2+)

deficiency on miRNA expression in the orphan crop tef (Eragrostis tef) remains

unknown. In this study, we analyzed expression of miRNAs in roots and shoots of tef

in response to Ca2+ treatment. miRNA-seq followed by bioinformatic analysis

allowed us to identify a large number of small RNAs (sRNAs) ranging from 17 to

35 nt in length. A total of 1380 miRNAs were identified in tef experiencing long-term

Ca2+ deficiency while 1495 miRNAs were detected in control plants. Among the

miRNAs identified in this study, 161 miRNAs were similar with those previously char-

acterized in other plant species and 348 miRNAs were novel, while the remaining

miRNAs were uncharacterized. Putative target genes and their functions were

predicted for all the known and novel miRNAs that we identified. Based on gene

ontology (GO) analysis, the predicted target genes are known to have various biologi-

cal and molecular functions including calcium uptake and transport. Pairwise compar-

ison of differentially expressed miRNAs revealed that some miRNAs were specifically

enriched in roots or shoots of low Ca2+-treated plants. Further characterization of

the miRNAs and their targets identified in this study may help in understanding Ca2+

deficiency responses in tef and related orphan crops.

K E YWORD S

calcium deficiency, Eragrostis tef, high-throughput RNA sequencing, miRNAtarget geneorphan
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1 | INTRODUCTION

The role of miRNAs in response to multiple nutrient stress conditions

such as calcium (Ca2+) starvation, sodium toxicity, and potassium

(K) and iron (Fe) deficiencies has been documented (Hu et al., 2015).

Two miRNAs, miR827 and miR2111, are known to be involved in

ubiquitin-mediated degradation of their target protein under phos-

phate (P) starvation (Hackenberg et al., 2012; Hsieh et al., 2009).
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Besides their roles under Pi-deficiency, miR2111, miR827, and

miR399 are involved in conditions of nitrogen (N) starvation (Liang

et al., 2012). Other miRNAs such as miR156, miR160, miR170,

miR169, miR172, and miR393 (Li et al., 2016; Tiwari et al., 2020)

respond to N deficiency through altering root architecture and nodule

development. Some miRNAs have been implicated in additional

mineral deficiencies such as K, copper (Cu), Fe, manganese (Mn), and

zinc (Zn) (Nath & Tuteja, 2016; Waters et al., 2012). For example,

overexpression of OsmiR399 results in increasing the expression level

of Ca channel gene in rice6, while Chen et al. (2019) reported that

some miRNAs and their target genes may be implicated in embryo

abortion induced by Ca2+ deficiency in peanut.

However, while calcium (Ca2+) signaling has been studied previ-

ously in plants (Rudd & Franklin-Tong, 1999), very little is known

about Ca2+-deficiency-responsive miRNAs, including their potential

role in tef growth and development. Calcium is one of the macronutri-

ents required by plants in larger quantities; it is an integral part of

plant cell structures and is the most ubiquitous second messenger in

environmental stress signaling. Plants absorb Ca2+ from the soil

through cation channels and the apoplast, and translocated to the

shoot through the xylem via the transpiration stream (White, 2001).

Ca2+ is stored in the plant cell in the endoplasmic reticulum (ER),

vacuole and plasmalemma; however, cytosolic Ca2+ undergoes rapid

changes in concentration in response to various stresses (Kaplan

et al., 2006; Taylor et al., 1988). Storage pathways and transport

systems are involved in handling cellular Ca2+ in response to environ-

mental stimuli. ER-localized ECA (P2A-type Ca2+-ATPases), CAX

(Ca2+/H+ antiporters), and tonoplast-localized ACA (autoinhibited

Ca2+-ATPases) are some of the calcium transporters involved in

dampening cytoplasmic Ca2+ concentration (Demidchik et al., 2018;

Robertson, 2013). Excess cytoplasmic Ca2+ can be removed to the

vacuole by the ACA11 and ACA4 transporters. Knocking out genes

ACA11 and ACA4 in Arabidopsis (Arabidopsis thaliana) resulted in

programmed cell death in the mesophyll causing microlesions on the

leaves, particularly at the margins, which was suppressed by adding

exogenous Ca2+ treatment (Boursiac et al., 2010). Additional

transporters (ECA1 and ECA3) are also important for Ca2+ and Mn2+

homeostasis between the ER and the cytoplasm of plant cells

(Su et al., 2016).

Different Ca2+ signatures regulate the response of plants to

signals. These signatures cover a range of Ca2+ sensor families such

as Calmodulins (CaM), Calmodulin-like proteins (CMLs), Ca2+ CDPKs,

and Calcineurin B-like proteins (CBLs) and CBL-interacting kinases

(CIPKs). These Ca2+ sensors are encoded by multiple gene families

and generate complex signaling networks that enable information

processing to be specific, resilient and adaptable. For example, there

is increasing evidence that CDPKs participate in environmental stress

signaling. In Arabidopsis, exposure to cold, salt, and drought resulted

in elevation of CDPK transcript levels (Taèhtiharju et al., 1997) and

overexpression of OsCDPK7 in rice (Oryza sativa) increased cold and

salt-tolerance (Saijo et al., 2000). NtCDPK1 transcription in tobacco

(Nicotiana tabacum) was shown to be responsive to non-specific

elicitors and mechanical injury (Yoon et al., 1999). In addition, CDPK

enzyme activity has been linked to osmotic stress and elicitation in a

more physiological setting (Takahashi et al., 1997).

Tef belongs to the Chloridoideae subfamily of Poaceae along with

finger millet (Eleusine caracana). It is widely cultivated in the Horn of

Africa, primarily Ethiopia, affords staple food for over 60 million people

(VanBuren et al., 2020), and is becoming popular in many countries as

a food and forage crop (Cheng et al., 2017; Lee, 2018). Tef is tradition-

ally grown under short-day (11–13 h) photoperiod (van Delden

et al., 2012) and is adapted to a variety of soil type ranging from sand

to water-logged clay at neutral pH. The grains contain higher, or simi-

lar, levels of protein, fiber, fat, starch, and vitamin C as wheat (Triticum

aestivum), barley (Hordeum vulgare), rice (O. sativa), maize (Zea mays),

oat (Avena sativa), and sorghum (Sorghum bicolor) (Abewa et al., 2019;

Cheng et al., 2017). Further, tef grains contain higher levels of macro-

nutrients (Ca, K, and Mg) (Abebe et al., 2007; Umeta et al., 2005) and

micronutrients (Fe, Zn, and Mn) than other cereal crops (Dame, 2020;

Ermias et al., 2019; Ligaba-Osena et al., 2021). Thus, tef has consider-

able potential for nutrient biofortification for humans, which could be

especially valuable for children (Daba, 2017; Pucher et al., 2014) and

women in East Africa. In addition, tef grains may be a better alternative

diet for people with type 2 diabetes, due to its low glycemic index, and

for people with gluten intolerance or celiac disease due to its gluten

free grains (Shumoy et al., 2018). Despite its significant potential as a

healthy food and forage crop, tef is considered an orphan crop with

limited research attention. Recently, stress tolerance studies in tef,

such as lodging (Assefa et al., 2011; Blösch et al., 2020) and drought

(Blösch et al., 2019; Ferede et al., 2020; Martinelli et al., 2018) have

begun to emerge. Martinelli et al. (2018) perfomed microRNA profiling

of tef under drought conditions in contrasting genotypes and reported

13 and 35 deferentially regulated miRNAs in drought-susceptible

(Alba) and drought-tolerant (Tsedey) tef genotypes, respectively.

However, miRNA profiling of tef under mineral deficiency stress

has never been investigated. The aim of the present study was to

identify tef miRNAs that may play a role in maintaining homeostasis

under low Ca2+ conditions. We performed miRNA profiling of roots

and shoots of tef plants exposed to long-term Ca2+ deficiency. Our

findings reveal a large number of differentially expressed miRNAs

(DEMs) including some that are novel. We also identified several puta-

tive targets which may play a role in Ca2+ signaling, uptake, transport,

or metabolism. To our knowledge, this is the first report detailing

miRNA responses to long-term Ca2+ deficiency in tef. Further

research will characterize the physiological role of novel miRNAs and

target genes in Ca2+ homeostasis in tef.

2 | RESULTS

2.1 | Phenotype changes of tef seedlings exposed
to low Ca2+

Although tef is known to accumulate high levels of Ca2+ in both the

straw and grains, the effect of low Ca2+ treatment on tef growth and

development are unknown. In this study, 6-day-old seedlings were
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transferred to control (1 mM Ca2+) or low Ca2+ (.01 mM) hydroponic

solution and plants were evaluated after 4 weeks of growth. As

shown in Figure 1, low Ca2+ treatment decreased plant growth as

compared to control plants. Ca-deficient plants exhibited symptoms

including leaf necrosis, leaf curling, and growth stunting, while control

plants produced more biomass without marked symptoms. Roots of

control plants were slightly longer than those grown in low Ca2+

solution, but there was no marked difference in root mass between

low and optimal Ca2+.

2.2 | Characterization of small RNAs via high-
throughput sequencing

We performed here miRNA sequencing of control and Ca2+-deficient

roots and shoots to understand the pattern of miRNA expression in

tef. miRNA-seq was performed using the Illumina HiSeq 2500. After

filtering raw sequencing reads, clean reads were mapped to small

RNA (sRNA), transfer-RNA (tRNA), ribosomal-RNA (rRNA), and small

nuclear RNA (snoRNA) (Table 1). The number of raw reads ranged

from �8.9–22 million in the four replicates of roots treated with low

calcium (LCR); after filtering, �7.5 to 18.1 million clean reads were

obtained. Similarly, in shoots under low calcium conditions (LCS), the

number of raw reads ranged from �14.7–44.7 million and after filter-

ing, the number of clean reads ranged from �13.1–39.9 million reads.

Overall, more reads were obtained from shoots as compared to roots

under low Ca condition (Table 1). Furthermore, higher sRNA reads

T AB L E 1 Characterization of small RNAs via next-generation sequencing

Name Repeats

Items

Raw reads Clean reads sRNA tRNA rRNA snoRNA

LCR LCR1 8,865,129 7,491,569 4,114,563 124,877 685,364 12,907

LCR2 21,998,245 18,060,789 9,692,370 271,917 1,836,884 31,089

LCR3 18,525,423 15,149,488 8,294,386 205,582 1,480,771 25,451

LCR4 13,336,135 11,320,721 6,377,360 121,814 1,054,652 20,152

LCS LCS1 14,705,848 13,066,806 7,539,361 165,637 874,071 16,550

LCS2 44,670,279 39,905,683 21,508,548 592,717 1,920,837 37,234

LCS3 26,480,710 23,956,008 13,923,636 327,691 1,575,414 27,617

LCS4 18,011,425 16,198,449 9,438,645 229,519 954,673 19,870

ConR ConR1 32,258,808 28,393,511 15,666,870 617,873 1,644,863 53,607

ConR2 24,262,362 21,212,843 11,068,091 556,060 1,236,688 37,782

ConR3 22,906,060 19,972,636 11,441,918 199,000 1,743,775 40,172

ConR4 43,108,797 37,442,841 20,055,757 328,243 2,435,990 56,365

ConS ConS1 28,672,935 25,883,553 14,619,111 503,416 1,283,629 23,208

ConS2 17,067,621 14,873,274 5,368,773 176,699 676,398 11,109

ConS3 36,900,806 34,093,754 19,209,198 605,904 1,194,634 24,912

ConS4 38,869,261 36,071,793 20,108,302 552,624 1,504,158 30,881

Total 410,639,844 363,093,718 198,426,889 5,579,573 22,102,801 468,906

Note: miRNA sequencing was performed in control and calcium deficient root and shoots. Clean reads were mapped to different classes of RNAs (sRNA,

tRNA, rRNA, and snoRNA). Treatments are LCR, low Ca2+ root; LCS, low Ca2+ shoot; ConR, control root; ConS, control shoot. Each treatment was

replicated four times.

F I GU R E 1 Tef plants grown in low Ca2+ (left) and control (right)
hydroponic solution. Seeds were germinated on moist filter paper and
transferred to modified Hoagland solution (1/4 strength) containing .01
or 1.0 mM Ca2+. After 1 month, root and shoot tissues were sampled
for transcriptome analysis
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(�4.1–9.7 million in roots and over �7.5–21.5 million in shoots) were

detected as compared to tRNA, rRNA, and snoRNA. In control roots

(root treated with 1 mM Ca2+, ConR), the number of raw reads ranged

from �22.9 million to 43.1 million; however, after filtering, the range

of clean reads was �20–37.4 million. Similarly, in control shoots, des-

ignated as ConS, the number of raw reads ranged from �17.1–38.9

million, while after filtering, the number of clean reads ranged from

�14.9–36.1 million. Overall, higher sRNA reads were observed for

samples from ConR plants as compared to low Ca2+ plants. Moreover,

variation in the number of sRNAs was observed between samples,

tissues and Ca2+ treatment (Table 1).

The sizes of detected sRNA in both low Ca2+ and control treat-

ments were in the range of 17 to 35 nt (Figure 2 and Table S1). In

most samples from low Ca2+ treatment, 24-nt reads were more abun-

dant than other sRNAs. Furthermore, the read number in the LCS was

higher than the LCR. The size distribution of the sRNAs observed in

control samples was similar with that of low Ca2+ samples. Reads with

21- and 35-nt reads were more abundant in ConS (Figure 2 and

Table S1) while 21- and 24-nt reads were more abundant for

most ConR.

2.3 | miRNA identification

Across all samples, 350 unique novel and 161 already known miRNAs

were identified as shown in Tables S2 and S3, and the total novel and

known miRNAs along with their read counts for all the treatments

LCR, LCS, ConR, and ConS are listed in Table 4. All miRNAs were

found to have predicted hairpin structure, which is conserved among

regulatory miRNAs. Homologous sequences were not found in

miRbase (http://www.mirbase.org/) for all novel miRNAs, which were

derived from the 30 and 50 sequences (referring to the position within

the hairpin). Furthermore, a total of 161 known miRNAs that we iden-

tified in this study are homologous to those previously reported in tef

and other plant species. For example, 14 miRNAs matched those pre-

viously identified in tef including tef-miR1219b_5p, tef-miR461a_3p,

and tef-miR5387a_5p tef (Martinelli et al., 2018); 45 miRNAs matched

to Brachypodium distachyon miRNAs including bdi-miR160a-5p, bdi-

miR168-3p, bdi-miR393a, and bdi-miR2118a (Unver & Budak, 2009);

47 miRNAs matched to miRNAs identified previously in rice including

osa-miR408-5p, osa-miR399a, and osa-miR396e-5p (Li et al., 2005);

29 miRNAs matched to A. thaliana miRNAs including ath-miR164a,

F I GU R E 2 miRNA size distribution of root and shoot samples grown under control (ConS, ConR) and Ca2+-deficient conditions (LCR, LCS).
The figures show that the size of identified miRNAs under both Ca2+ conditions ranging from 17 to 35 nt. Note that readings of 21 and 24 nt
were more abundant than the other sRNAs in most low Ca2+ grown samples, while 24 and 35 nt were more abundant than the other sRNAs in all
shoot samples of control plants
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ath-miR167a-5p, and ath-miR156a-5p (Rajagopalan et al., 2006);

six miRNAs matched to Camelina sativa (cas-miR166c-3p) (Poudel

et al., 2015); and six miRNAs matched to Z. mays including

zma-miR156a-3p, zma-miR162-5p, and zma-miR529-5p (Gupta

et al., 2017); 10 miRNAs matched to Glycine max including gma-

miR156k, gma-miR166h-3p, and gma-miR169e (Joshi et al., 2010);

three miRNAs matched to Citrus trifoliata (ctr-miR166 and

ctr-miR171) (Song et al., 2010); and one miRNA matched to the previ-

ously identified miRNA in Avicennia marina (ama-miR156) (Khraiwesh

et al., 2013) (Table S3).

The Venn diagram in Figure 3 shows miRNAs uniquely or com-

monly expressed in the four groups (LCR, LCS, ConR, and ConS). In

low Ca2+ treatment, the number of miRNAs detected in roots was

619, 563 (68%) miRNAs were commonly expressed across all the

samples, 11 were commonly expressed in LCR and ConR, two were

expressed in LCR and ConS, 10 were expressed in LCR, LCS, and

ConR, 19 were common to LCR, ConR and ConS, and 13 were com-

mon to LCR, LCS, and ConS. Only one miRNA was uniquely detected

in the LCR. The total number of miRNAs in the shoots of low Ca2+

treatment (LCS) was 761 including the 563 miRNAs that are com-

monly detected under all treatments. Four were commonly expressed

in LCS and LCR, 10 were common to LCS, LCR, and ConR, 13 were

common to LCS, LCR, and ConS, 65 were common between LCS and

ConS, and 97 were commonly expressed among the LCS, ConR, and

ConS while nine were uniquely detected in LCS. Similarly, a total of

707 miRNA were detected in the ConR. Pairwise comparison of

miRNAs and those commonly detected in the four groups (ConS,

ConR, LCS, and LCR) is shown in Figure 3. A total of 788 miRNAs

were detected in ConS, of which only 27 miRNAs were uniquely

expressed while the remaining were commonly expressed also in

roots and under low Ca2+ condition.

2.4 | Differentially expressed miRNAs

The expression levels of miRNAs were analyzed in shoots and roots

of control and low Ca2+ treatment. For both Ca2+ treatments, the

number of DEMs was higher in roots than shoots (LCR vs. LCS and

ConR vs. ConS) (Figure 4). Pairwise comparison of miRNAs detected

in different treatments is shown in Figure 4a. A total of 19 DEMs

were detected in LCS compared to ConS, whereas 38 DEMs were

detected in LCR compared to ConR. Moreover, 166 DEMs were

detected in LCR compared to LCS, while 184 were expressed in ConR

compared to ConS. Interestingly, there were no DEMs common to the

different comparisons (LCS vs. ConS, LCR vs. ConR, LCR vs. LCS and

ConR vs. ConS). Similarly, there was no DEMs common to LCS versus

F I GU R E 3 Venn diagram of miRNAs uniquely or commonly
detected in shoots and roots of plants grown under low (ConS and
ConR) and optimum (LCS and LCR) Ca2+ conditions

F I G U R E 4 Distribution of differentially expressed miRNAs
(DEMs) in tef shoots and roots at low (ConS and ConR) and optimum
(LCS and LCR) Ca2+ conditions. (a) Pairwise comparison of DEMs in
shoot and roots of low and optimum Ca2+ grown plants (LCS
vs. Cons, LCR vs. ConR, LCR vs. LCS, and ConR vs. ConS). (b) The
number of up- or downregulated genes between different comparison
groups (LCS vs. Cons, LCR vs. ConR, LCR vs. LCS, and ConR vs. ConS).
Note that the number of DEMs between tissues is higher as
compared to the number between Ca2+ treatments
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ConS, LCR versus ConR, and LCR versus LCS. In the LCS, 19 miRNAs

were upregulated compared to ConS, while there were no down-

regulated miRNAs detected in LCS compared to ConS (Figure 4b and

Table S5). Expression of 26 miRNAs was higher in LCR compared to

ConR including tef-novel-201_5p, known112_5p and known046_3p,

while 12 miRNAs were downregulated in LCR compared to ConR

including tef-novel-314_3p and known157_5p (Figure 4b and

Table S5). The number of DEMs between root and shoot tissues is

greater than those differentially expressed between the Ca2+ treat-

ments. A total of 96 miRNAs were upregulated including

known155_3p, tef-novel-043_5p, tef-novel-043_3p, known117_5p,

and known118_5p in LCR as compared to LCS, while 70 miRNAs

were downregulated in LCR including tef-novel-067_5p, tef-novel-

067_3p, known084_5p, known085_5p, known084_3p, and

known085_3p compared to LCS (Figure 4b and Table S5). Similarly,

117 miRNAs were upregulated, while 67 miRNAs were down-

regulated in ConR compared to ConS (Figure 4b and Table S5). Com-

paring both roots and shoots of plants grown under low calcium

condition, 96 miRNAs were upregulated while 70 miRNAs were

downregulated in LCR compared to LCS. Taken together, miRNA

expression is tef appears to be more influenced by the tissue type

than the Ca2+ levels.

2.5 | Identifying miRNA targets

As described in methods section, an online database “psRNA Target

Server” (http://biocomp5.noble.org/psRNATarget/) (Dai &

Zhao, 2011) was used to understand the possible function of the

miRNAs., miRNA targets with the expectation scores of 0 to 3.5 were

selected as target genes (Table 6). Target genes which are involved in

certain functions were identified for each DEMs and listed in

Table S7. A total of 11,458 putative target genes were identified for

the miRNAs. Among these, 5606 genes were annotated. Furthermore,

among the annotated set, 817 genes belong to an uncharacterized

gene family (Table S7) while the remaining target genes belong to

gene families that are known to participate in various biological

processes including ion transport, signaling, and transcriptional

regulation.

The predicted miRNA target transporter genes include cation

transporters (calcium-transporting-ATPase-10,-plasma-membrane-type,

calcium-transporting-ATPase-4,-endoplasmic-reticulum-type, copper-

transporting ATPase HMA5, and zinc_transporter_6), phosphate

transporters (inorganic-phosphate-transporter-2-1,-chloroplastic), vari-

ous sugar transporters (sugar-transport-protein-7, sugar-transport-

protein-MST3, MST4, and MST6), a sucrose transporter

F I GU R E 5 Pie charts showing gene ontology (GO) analysis of miRNA target genes in both the low Ca2+ (LCR and LCS) and control (ConR and
ConS) samples according to biological process, cellular component, and molecular function
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(sucrose_transport_protein_SUT1), several polyamine transporters, chlo-

ride channels (Table S9), as well as plasma membrane-type and endo-

plasmic reticulum-type ATPase 4 (Table S7). Similarly, several genes

involved in signaling, including calcium-dependent protein kinases

(CDPK 1, CDPK 8, CDPK 9, CDPK 12, CDPK 13, CDPK 20, and CDPK

4 isoform X2) were identified as target of the miRNAs (Table S7).

Other identified miRNA target genes were auxin response factors

(ARF8, ARF10, ARF12, ARF14, ARF17, ARF18, ARF22, and ARF25).

Moreover, transcription factors such as WRKY (WRKY24, WRKY27,

and WRKY48), leucin zipper protein targets (HOX9, HOX10, HOX11,

HOX14, HOX20, HOX32, and HOX33), heat stress factor gene (heat-

stress-transcription-factor-A-3) (Table S7), and NAC-domain containing

proteins (NAC7, NAC21/22, NAC43, NAC79, and NAC92) were

detected (Table S8). However, none of these proteins have been char-

acterized in tef, and their role in plant growth and development

remains unknown.

F I GU R E 6 GO analysis of target genes of
differentially expressed miRNAs. Comparison
of treatments group based on the number of
genes in each GO terms; (a) LCR versus ConR,
(b) LCS versus ConS, (c) LCR versus LCS, and
(d) ConR versus ConS

NUMAN ET AL. 7 of 14



2.6 | Gene ontology (GO) analysis

To predict the involvement of miRNAs targets in various processes,

we performed GO analysis using the AgriGo website (http://bioinfo.

cau.edu.cn/agriGO/). A total of 15,498 identified target genes were

classified into three major categories; 3742 genes were grouped into

the biological process, 886 genes were grouped into the cellular com-

ponent, and 10,870 genes were grouped into the molecular functions

categories (Figure 5). Of the genes grouped into the biological process

category, the majority of them may be involved in metabolic process

including macromolecule modification, phosphorous metabolism, metab-

olism of phosphate containing compounds, and protein modification

processes including protein phosphorylation. From the cellular compo-

nents category, the majority of target genes were associated with

organelles, membrane, and the nucleus. In the molecular functions

category, most of the miRNA target genes were associated with cata-

lytic activity and substrate binding functions including heterocyclic

compound binding, organic cyclic compound binding, small molecule

binding, nucleotide binding, and nucleotide phosphate binding

(Figure 5).

Furthermore, GO analysis of target genes of DEMs was per-

formed for the pairwise comparisons (LCR vs. ConR, LCS vs. ConS,

LCR vs. LCS, and ConR vs. ConS; Figure 6). For all comparisons, most

of the miRNA target genes are involved in nucleic acid binding and/or

DNA bining from the molecular functions category. Whereas in com-

parisons LCS versus ConS, LCR versus LCS, and ConR versus ConS,

most target genes are also involved in trasport activitites. From the

cellular compontent category, most target genes were associated with

membranes for these comparisons (Figure 6). In the biological process

category, there appears to be no similarity in the fuctons of the

miRNA target genes between the four comparisons (LCR vs. ConR,

LCS vs. ConS, LCR vs. LCS, and ConR vs. ConS).

3 | DISCUSSION

It is well documented that miRNAs regulate plant growth and devel-

opmental processes. Certain miRNAs are known to modulate activities

in most plant tissues and organs (Saliminejad et al., 2019;

Voinnet, 2009). During developmental processes, and in response to

environmental changes, rapid and subtle changes in mRNA or protein

profiles may be necessary, which can be accomplished, in part, by

miRNA-mediated mRNA decay or translation regulation (Duarte

et al., 2013). Non-coding RNAs, including siRNAs and miRNAs, were

discovered recently to play a role in plant responses to nutrient sens-

ing, deficiency, uptake, transport, and homeostasis (Kumar

et al., 2017; Paul et al., 2015). However, to date, there is no report in

tef on the pattern of expression of miRNA and their potential roles in

response to prolonged Ca2+ deficiency.

It has been reported in several plant species that expression of

some miRNAs respond to nutrient deficiency such as K (Zeng

et al., 2019), Mg (Liang et al., 2017), P (Du et al., 2018; Kuo &

Chiou, 2011), and N (Liang et al., 2012; Sinha et al., 2015). However,

the pattern of miRNA expression in response to Ca2+ deficiency

remains unknown. In this study, we analyzed miRNA expression in

roots and shoots of tef plants gown under optimal Ca2+ and pro-

longed Ca2+ deficient condition. We identified 2875 miRNAs in both

control and low Ca2+ treatments, of which 1495 miRNAs were

detected in the control while 1380 miRNAs were detected in the low

Ca2+ treated plants. Furthermore, in control samples, 707 miRNAs

were detected in roots and 788 miRNAs were detected in shoots.

Similarly, in the low Ca2+ calcium treatment, 619 miRNAs were

detected in the roots, and 761 miRNAs were detected in the shoots

(Figure 3A). Previously, drought responsive miRNAs were identified in

roots and shoots of two tef genotypes (Martinelli et al., 2018).

Novel miRNAs have been reported in the past few years and their

roles in plant stress physiology are being revealed (Kozomara &

Griffiths-Jones, 2014). For example, miR169 which is the highly

conserved plant miRNA, and miRNA159 have been implicated in plant

abiotic stress responses (Abdelrahman et al., 2018; Li, Oono,

et al., 2008; Zhao et al., 2011). Shinde et al. (2020) identified 14 novel

miRNAs in pearl millet in response to salinity. In our study, we identi-

fied a total of 348 novel, and 161 knowns, miRNAs in response to

Ca2+ deficiency that are predicted to be associated with various

processes.

The predicted miRNA sequences (read counts of known and

novel miRNAs) and their targets are presented in Tables S4 and S7.

The miRNAs were distributed in both roots and shoots of control and

low calcium treatment plants. One of the miRNAs, tef-novel-259_3p

(Tables 2, S5, and S6), we identified in this study was homologous to a

sequence previously reported in rice to be responsive to drought, iron,

and senescence (Ricachenevsky et al., 2010). We could not identify a

homologous sequence in the miRBase database for this particular

miRNA (http://www.mirbase.org/). We identified “known miRNAs”
(Table S3) by comparing our sequences to the already annotated

miRNAs in miRbase. We observed that the tef miRNA sequences

match well with closely related model and other plant species includ-

ing O. sativa (under abiotic stresses) (Jian et al., 2010), B. distachyon

(Unver & Budak, 2009), A. thaliana (Wang et al., 2004), C. sativa

(Poudel et al., 2015), Z. mays (under phosphate stress) (Gupta

et al., 2017), G. max (Joshi et al., 2010), C. trifoliata (Song et al., 2010),

and A. marina (Khraiwesh et al., 2013). Furthermore, we performed

pairwise comparison on miRNAs detected in both control and low

Ca2+ treated roots and shoots. We detected a total of 563 miRNAs in

all four groups (ConR, ConS, LCR, and LCS) (Figure 3A). Ten miRNAs

were responsive to Ca2+ deficiency in both roots and shoots, which

were not detected in control samples, as shown in the Venn diagram

(Figure 3a). Mineral deficiency alters the expression of certain miRNAs

in plants (Liang et al., 2017; Ye et al., 2021). Differential expression of

miRNAs under various abiotic and biotic stress conditions, including

nutrient deficiency, has been well documented in the model plant

Arabidopsis (Kawashima et al., 2009; Yamasaki et al., 2007).

All the novel and known miRNAs that we detected in this study

appeared to have potential target genes with corresponding function.

Target prediction of the miRNAs helps in understanding the specific

functions, as well as the regulation of these miRNAs (Sun, 2012).
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Most plant miRNAs have perfect, or nearly perfect complementarity

to their targets, which provides a reliable basis for the identification of

miRNA targets (Rhoades et al., 2002; Zhang et al., 2007). In this study,

the target genes for the miRNAs we identified are associated with

various biological and molecular functions (Tables 2 and S7–S9).

These results are consistent with previous reports which suggested

that miRNAs have several target genes (Reinhart et al., 2002; Zhou

et al., 2010).

For example, some of the novel miRNAs we identified in this

study, tef-novel-277 3p and tef-novel-126_5p, are predicted to target

CDPK genes (Tables 2 and S7). A known miRNA we detected in this

study (known122_5p: ID: Et_10A_001249) is predicted to target mito-

chondrial calcium uniporter protein 6 (MCU6) (Tables 2 and S7). We

also identified additional novel miRNA such as tef-novel-273_3p,

which is predicted to target ER calcium-transporting ATPase4 (ECAs4)

(Tables 2 and S7), and novel miRNA (tef-novel-238_3p), that is

predicted to target CDPK-related kinase 3 (CRK3) (Tables 2 and S7).

The physiological functions in tef of the predicted targets, for exam-

ple, CDPK1, CUP4, ECAs4, and CRK3, remain unknown. However,

the CDPKs and CRKs in other plant species are implicated in various

developmental processes and biotic and abiotic stress responses (Yip

Delormel & Boudsocq, 2019; Zhao et al., 2021). The CDPK1 is

involved in gibberellic acid biosynthesis and drought stress tolerance

in rice (Asano et al., 2005; Ho et al., 2013), and in wheat, it has been

reported that CDPK1 regulates biotic and abiotic stress response (Li,

Wang, et al., 2008; Wei et al., 2016). The ECA proteins are primary

active transporters of Ca2+ and Mn2+ (He et al., 2021), and MCU pro-

teins are implicated in Ca2+ uptake into the mitochondrial matrix; the

AtMCU1 has been shown to function as a Ca2+ permeable channel

(Teardo et al., 2017).

Another miRNA (known050_5p) regulates the inorganic-phos-

phate-transporter-2-1,-chloroplastic. In Arabidopsis, PHT2;1 has been

reported to affect P allocation within the plant, and to modulates

P-starvation responses (Versaw & Harrison, 2002). Phosphate

transporter genes were previously reported to enhance phosphate

acquisition in rice (Ruili et al., 2020). The wheat TaPHT2 was reported

to translocate P, and regulate plant growth under limited supply of P

(Guo et al., 2013). Besides transporters and signaling genes, we

predicted that some miRNAs, including miRNA tef-novel-259_3p,

would target transcription factors like probable_WRKY_trans-

cription_factor_14. Other miRNAs, such as tef-novel-114_3p, may tar-

get auxin response factors (Table S7). We identified several additional

miRNAs, listed in Tables S7 and S9, which target many transporters,

signaling genes and transcription factors. Taken together, we have

identified some novel and known miRNAs in tef that target genes

with important biological functions including phosphate acquisition.

This study will open up new avenues for further investigation of

miRNAs and their targets in tef and related orphan crops such as

millets.

In conclusions, we identified 2875 miRNAs in tef plants grown

under controlled (optimal calcium conditions) and those grown

under low Ca2+ treatment. Among this set, we identified 1380

miRNAs in plants grown under low Ca2+ treatment and 1495T
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miRNAs in control samples. We identified a total of 161 known and

348 novel miRNAs and assessed their potential target genes and

their functions. We found that the predicted target genes appear to

have various physiological roles including uptake and transport of

macronutrients calcium and phosphate, suggesting roles for miRNAs

in tef plant ion homeostasis under prolonged Ca2+ deficiency. We

also identified potential target genes of miRNAs that are implicated

in essential biological and molecular functions. Our findings provide

some clues on the involvement of miRNAs in cellular adjustments to

long-term Ca2+ deficiency. However, further study is needed to

understand the role of miRNAs in tef mineral nutrition acquisition

and homeostasis.

4 | MATERIALS AND METHODS

4.1 | Plant materials and growth conditions

E. tefaccession (PI-494307), previously selected for high seed Ca2+

content (Ligaba-Osena et al., 2021), was used in this study. A sample

of 25 seeds was surface sterilized using 70% ethanol followed by 1%

NaOCl solution containing .1% Tween-20 for 20 min. The seeds were

then washed with sterile ultrapure or Milli-Q® (18.2 milliohms) water.

Sterilized seeds were transferred onto moist filter papers and grown

for 6 days. The seedlings were transferred to modified Hoagland

solution containing [in mM]; KNO3[1.5], NH4CO3 [.5], NH4H2PO4

[.5], MgSO4.7H2O [.25], and [in mM], KCl [12.5], Fe (III)-EDTA-2Na

[.125], H3BO3 [6.25], MnSO4.H2O [.5], ZnSO4.7H2O [.5],

CuSO4.5H2O [.125], Na6Mo7O24 [.025]. NH4CO3 is a substitute of Ca

(NO3)2�4H2O for the low Ca2+ treatment (10 μM) while for control

plants, Ca (NO3)2�4H2O [1 mM] was applied. Four biological replicates

were used for each root and shoots of control (control 1 to 4) and

low calcium treated (low calcium 1 to 4) plants. The pH of the

hydroponic solution was adjusted to 5.8 using 1 N KOH solution. The

seedlings in hydroponics were transferred to growth chamber

(28�C day and 25�C night temperatures, and 12-h day and night

cycles). The nutrient solution was renewed every 4 days and plants

were grown for 4 weeks until root and shoot tissues were collected

for RNA isolation.

4.2 | RNA isolation, RNA library generation, and
sequencing

Root and shoot samples were ground into powder under liquid

nitrogen using a mortar and pestle. Total RNA was isolated using the

GeneJET RNA purification kit following manufacturer’s procedure

(Fisher Scientific). Small RNA libraries for miRNA-seq were prepared

using the NEBNext® Multiplex small RNA library preparation set

according to user instructions for the Illumina (E7300 and E7580,

NEB). Sequencing was performed using Illumina Hiseq2500 platform

using 50-nt read length with single end sequencing protocol (Saus

et al., 2018).

4.3 | Sequence analysis and identification of novel
and conserved miRNAs

The raw reads were filtered for adapters, ambiguous residues, and

low-quality reads prior to sRNA analysis using a Perl script Cutadapt

v2.10 (Martin, 2011); the parameters were cutadapt -a AGATCGG -q

30 --discard-untrimmed –o. small RNAs of 17–35-nt reads were coun-

ted. For novel miRNA prediction, we selected sRNA reads with a mini-

mum raw read count of 10 per library and then combined these into

one sRNA library for miRNA prediction (Jin & Wu, 2015). These reads

were mapped to the Tef genomic sequence (Pacbio Eragrostis_tef_tef-

ft-CDS-gid-50954, https://genomevolution.org/coge/GenomeInfo.pl?

gid=50954) using Bowtie 2 software (Langmead & Salzberg, 2012)

with two mismatches at maximum. With one end attached 20 nt away

from the mapped sRNA site, sequences in the range of 120 to 360 nt

each with the extension of 20 nt were collected that covered the

region of sRNA. Under similar conditions used by Meyers et al. (2008)

and Thakur et al. (2011), at the sRNA location the stem loop structure

having three or less gaps with ≤8 bases, and the miRNA-miRNA

duplexes mapped to the precursor locus with more than 75% of reads

were considered the candidate miRNA precursors. The miRNAs identi-

fied with no mismatch to any known miRNA in the miRBase dataset

(miRBase, 21.0) were classified as known miRNAs while the remaining

miRNAs were classified as novel miRNAs.

4.4 | miRNA target identification

For miRNA target prediction, the psRNA Target software (http://

plantgrn.noble.org/psRNATarget/) was used with its default parame-

ters and published tef transcriptome (VanBuren et al., 2020). During

the result filtration, only those with expectation scores from 0 to 3.5

were included. Genes targeted by differently regulated miRNAs were

determined using psRNATarget (a plant-based miRNA target analysis

server) (Dai & Zhao, 2011). The psRNATarget site was determined

using default parameters to scan the tef transcriptome assembled by

VanBuren et al. (2020) for differentially regulated miRNAs in tef.

These targets were then utilized in PageMan (Usadel et al., 2006) to

uncover functional ontologies that were over- and under-represented.

Visualization was done using MapMan (Thimm et al., 2004). The

SeqTar method (Zheng et al., 2012) was used to predict miRNA

targets. Targets with less than or equal to four mismatches were

considered for further investigation in the case of conserved miRNAs.

Only targets with at least one valid read and fewer than four

mismatches were used for novel miRNAs.

4.5 | miRNA target annotation and GO analysis

miRNA target genes were predicted using the online database psRNA

Target Server (http://biocomp5.noble.org/psRNATarget/) (Dai &

Zhao, 2011) by using the default parameters. Function annotations

and analysis were further performed by the AgriGO (agriGO: GO

Analysis Toolkit and Database for Agricultural Community (cau.edu.

cn)). After target predictions, all the targets of novel and conserved
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miRNAs were processed via the SEA tool of agriGO (an online toolkit

version 1.2 for the GO analysis) (Tian et al., 2017). The AgriGO toolkit

was used to assess the enriched GO terms in our dataset in relation to

total annotated genes using Fisher’s exact test at a significant P value

of .05. The result of the software defines three GO categorization

categories: biological processes, cellular components and molecular

functions.

4.6 | Analysis of miRNA expression patterns

Differential accumulation of miRNA was determined using the

DeSeq2 package using the shrinkage estimation of fold change and

dispersion for improving estimation interpretability as well as stability

(Love et al., 2014). R statistical software packages ggplot2

(Wickham, 2011) and gplots (Warnes et al., 2009) were used for all

the plot presentations.
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