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IBD LIVE

Mendelian Disease Associations Reveal Novel Insights into 
Inflammatory Bowel Disease

Lichy Han, BS,* Mateusz Maciejewski, PhD,† Christoph Brockel, PhD,‡ Lovisa Afzelius, PhD, MBA,† and  
Russ B. Altman, MD, PhD§,¶,*

Background: Monogenic diseases have been shown to contribute to complex disease risk and may hold new insights into the underlying biolog-
ical mechanism of Inflammatory Bowel Disease (IBD).

Methods: We analyzed Mendelian disease associations with IBD using over 55 million patients from the Optum’s deidentified electronic health 
records dataset database. Using the significant Mendelian diseases, we performed pathway enrichment analysis and constructed a model using 
gene expression datasets to differentiate Crohn’s disease (CD), ulcerative colitis (UC), and healthy patient samples.

Results: We found 50 Mendelian diseases were significantly associated with IBD, with 40 being significantly associated with both CD and UC. 
Our results for CD replicated those from previous studies. Pathways that were enriched consisted of mainly immune and metabolic processes with 
a focus on tolerance and oxidative stress. Our 3-way classifier for UC, CD, and healthy samples yielded an accuracy of 72%.

Conclusions: Mendelian diseases that are significantly associated with IBD may reveal novel insights into the genetic architecture of IBD.
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INTRODUCTION
Inflammatory bowel disease (IBD) is a complex, hetero-

geneous disease that affects over 1 in 300 people in the United 
States.1 IBD consists of 2 main diseases, ulcerative colitis 
(UC) and Crohn’s disease (CD), which are very similar and 
both result in gastrointestinal inflammation. Though there 
have been numerous attempts to discover implicated genes and 
identify causal variants,2–4 much of the genetic architecture of 
IBD remains unknown.5

The advancement of genomics has led to the discovery 
of the underlying genetic cause for many diseases, and particu-
larly for Mendelian diseases, which are typically monogenic, 
highly penetrant diseases that are caused by a variant at a single 
locus. However, attempts to find highly penetrant variants that 
contribute to the development complex, polygenic diseases, 
have been limited and can suffer from low reproducibility.6 At 

the same time, it has been shown that many Mendelian dis-
eases predispose patients to nonMendelian, complex diseases, 
such as Friedreich’s ataxia with type 2 diabetes.7 These comor-
bidities have driven the idea that a combination of mutations 
in Mendelian genes may contribute to complex disease risk 
and may be a useful avenue for discovering implicated genes 
in complex diseases.

In a recent review, Uhlig arbitrarily selected 40 mono-
genic diseases that are associated with IBD-like gastroin-
testinal inflammation.8 Uhlig noted that in children with 
early-onset IBD, a proportion also suffer from a Mendelian 
disease, some of  which have been studied to gain further insight 
into IBD pathogenesis. To test the hypothesis that Mendelian 
genes contribute to complex disease risk at a large scale, Blair, 
et al analyzed millions of  patient records from claims data to 
discover significant associations between Mendelian and com-
plex diseases.9 First, they showed that hits from genome- wide 
association studies (GWAS) for complex diseases are signifi-
cantly enriched for Mendelian loci, a further indication that 
genes and pathways implicated in Mendelian disorders may 
contribute to complex disease risk. Then, they analyzed 95 
Mendelian and 65 complex diseases by constructing pairwise 
contingency tables and mixed-effects models to assess the rel-
ative risk. They showed that there is significant comorbidity 
between the 2 sets of  diseases, and they modeled the contribu-
tory risk of  the Mendelian diseases using additive and com-
binatorial models.

Recently, Melamed et al replicated this work in cancer, 
as there also are notable relationships between Mendelian 
diseases and cancer risk, such as Li-Fraumeni syndrome lead-
ing to multiple cancers due to mutations in TP53.10 Melamed 
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et  al then used the Mendelian disease comorbidities to iden-
tify enriched genes and pathways shared by Mendelian dis-
eases and certain cancers. For example, they found a significant 
association between Diamond-Blackfan anemia and multiple 
brain cancers, including glioblastoma. Genes implicated in 
Diamond-Blackfan anemia include RPL5, RPL11, and RPS7, 
all of which have a role in repressing MDM2. Amplification 
of MDM2 is present in 15% of the glioblastoma cases in The 
Cancer Genome Atlas and, thus, loss of repressor genes due to 
Diamond-Blackfan anemia could explain the significant asso-
ciation found between these 2 diseases.

In this work, we apply the abovementioned approaches 
to CD and UC to investigate the potential contribution of 
Mendelian comorbidities and identify candidate genes that 
may contribute to IBD risk. CD was included by Blair et al, and 
our work validates these previously published results. In add-
ition, we investigate the ability of the genes and pathways asso-
ciated with the Mendelian comorbidities to discover underlying 
differences between 2 similar diseases with unknown etiologies. 
We use Optum’s longitudinal clinical repository (Optum’s dei-
dentified Electronic Health Record dataset 2007–2016), which 
contains over 55 million patients, to apply the work from Blair 
et al to IBD. We then demonstrate further utility in Mendelian-
complex disease associations by using the Mendelian gene asso-
ciations unique to CD and UC to build a 3-way classifier to 
differentiate CD, UC, and healthy tissue samples using tran-
scriptomic data. We then analyze these genes to gain insight 
into the mechanisms driving CD and UC.

MATERIALS AND METHODS

Clinical Data
We extracted patient information from Optum’s data-

base, which includes patient data from January 1, 2007 to 
March 30, 2017 (Optum deidentified Electronic Health Record 
dataset 2007–2016, https://www.optum.com/). Optum’s lon-
gitudinal clinical repository is derived from dozens of  health-
care provider organizations in the United States that include 
more than 650 Hospitals and 6600 Clinics; treating more than 
69 million patients receiving care in the United States. The 
data is certified as deidentified by an independent statistical 
expert following HIPAA statistical deidentification rules and 
managed according to Optum’s customer data use agree-
ments.1,2 Clinical, claims, and other medical administrative 
data are obtained from both Inpatient and Ambulatory elec-
tronic health records (EHRs), practice management systems, 
and numerous other internal systems; and the data are pro-
cessed, normalized, and standardized across the continuum 

of  care from both acute inpatient stays and outpatient visits. 
Optum’s data elements include demographics, medications 
prescribed and administered, immunizations, allergies, lab 
results (including microbiology), vital signs and other observ-
able measurements, clinical and inpatient stay administra-
tive data, and coded diagnoses and procedures. In addition, 
Optum Analytics uses natural language processing (NLP) 
computing technology to extract critical facts from physician 
notes into usable datasets. The NLP data provides detailed 
information regarding signs and symptoms, family history, 
disease-related scores (ie, RAPID3 for RA, or CHADS2 for 
stroke risk), genetic testing, medication changes, and physi-
cian rationale behind prescribing decisions that might never 
be recorded in the EHR. Though this is a different, smaller 
claims database than was used by Blair et  al, patient over-
lap may exist between these different US databases. Database 
access was provided by Pfizer, Inc. All data extraction and 
analyses were performed using R 3.2.1 (R Core Development 
Team, Vienna, Austria).

Complex-Mendelian Contingency Tables
In concordance with Blair et  al,9 we constructed con-

tingency tables for each complex-Mendelian disease pair. 
Incidence counts for each complex-Mendelian disease pair were 
extracted from Optum’s deidentified EHR dataset. Specifically, 
for a given complex-Mendelian disease pair, we extracted the 
number of patients with both diseases, number of patients with 
just 1 of the 2 diseases, and number of patients with neither 
disease. We then calculated the relative risk and applied the 
Fisher’s exact test to each contingency table to assess signifi-
cance. We accounted for multiple hypothesis testing by using 
the Bonferroni correction. Mendelian diseases were considered 
significantly associated with CD or UC if  the Bonferroni cor-
rected P-value was less than 0.05.

Patients were considered to have a given disease if  they 
received an associated ICD-9 diagnosis code. For the Mendelian 
diseases, we used the ICD-9 codes curated by Blair et al,9 which 
are located in Table S3 of their work. These ICD-9 codes cor-
respond to 95 Mendelian diseases and disease groups, which 
represent 213 diseases overall. As detailed in the experimen-
tal procedures section of Blair et al, the grouping of the 213 
diseases into 95 groups was driven by ICD-9 code taxonomy. 
For CD, which was included in the original work, we used the 
same ICD-9 codes: 555, 555.0, 555.1, 555.2, and 555.9. For UC, 
we used the codes 556, 556.0, 556.2, 556.3, 556.4, 556.5, 556.6, 
556.8, and 556.9. We did not use code 556.1 (ulcerative ileocol-
itis), as UC should be restricted to only the colon.

Mixed-effects Poisson Models
To adjust for confounding variables, Blair et  al built 

mixed-effects Poisson models, using the lme4 package in R.11 
These models are fully detailed in the extended methods in 
Blair et al. Briefly, they modeled the patient counts as follows:

145 CFR 164.514(b)(1).
2Guidance Regarding Methods for De‐identification of Protected Health 

Information in Accordance with the Health Information Insurance Portability and 
Accountability Act (HIPAA) Privacy Rule (Dated as September 4, 2012, as first 
released on November 26, 2012).

https://www.optum.com/
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where y  is the total number of patients with the complex 
disease in the subpopulation denoted by the indices i, j, k, and l. 
In this model, i is the county; j  is the state; k  is the patient’s age, 
which is binned into decades; and l  is a binary variable denoting 
the presence or absence of the Mendelian disease. For mode-
ling λ , the fixed effects were Mendelian disease status, gender, 
average per capita income, percent ethnicity, percent insured, 
percent poor, and percent urban. The random effects were age 
(binned by decade) and county.

In replicating these models, we made several adjustments 
to account for differences in the database used in our analysis. 
Optum’s database contains age, gender, Mendelian disease sta-
tus, average household income, and average percent education, 
but does not have data pertaining to the county, state, percent 
ethnicity, percent insured, percent poor, or percent urban. 
Though county and state level location information were not 
provided, the average household income and average percent 
education is based on the 3-digit-zip code the patient resides 
in. Therefore, we used the 692 unique combinations of average 
household income and percent education as a proxy for loca-
tion to group patients in our models. Our modified models for 
patient counts were thus as follows:
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where i is the proxy 3-digit-zip code, and all other varia-
bles are the same as defined in Blair et al. Our fixed effects were 
Mendelian disease status, gender, average household income, 
and percent education, and our random effects were age and 
our proxy 3-digit-zip code.

Comparison and Validation of Blair et al
We compared our CD results to those presented in Blair 

et al. Specifically, Table S4 in Blair et al contains the relative 
risk values for the 44 diseases that were significantly associated 
with CD in the original work. Using the relative risk scores 
from their linear model, we performed matched t tests with our 
contingency table relative risk values and those from our own 
models.

Gene Ontology Analysis of Significantly 
Associated Mendelian Diseases

We extracted the genes associated with each of the 
Mendelian diseases from Table S3 of Blair et  al. We then 
updated the gene lists via manual curation from the Online 
Mendelian Inheritance in Man (OMIM) database. Using 
these genes, we performed a gene ontology12 (GO) enrichment 

analysis. All genes that were associated with a Mendelian dis-
ease were annotated with GO terms using the biomaRt pack-
age.13 As the enrichment analysis would be dominated by the 
Mendelian diseases with the most genes, we randomly selected 
1 gene to represent each Mendelian disease and assembled 100 
such gene sets for CD and for UC using the significantly asso-
ciated Mendelian diseases for each IBD subtype. By compiling 
these randomized sets, we mitigate the overrepresentation of 
clusters of similar genes associated with any 1 disease. We then 
used the topGO package14 to test for enrichment of biological 
processes for each of these 100 randomizations and assigned 
a rank to each biological process per randomization. We take 
the average rank across all 100 runs to assess the top biological 
processes associated with CD and UC.

Relating Mendelian genes to Known IBD Genes
We evaluated the candidate genes associated with 

Mendelian diseases that were significantly associated with CD or 
UC (“Mendelian IBD genes”) by comparing them to IBD genes 
from the GWAS published by Liu et al (“known IBD genes”).4 
We mapped the variants from Liu et al to genes using the Ensembl 
Variant Effect Predictor.15 We then used the Search Tool for the 
Retrieval of Interacting Genes/Proteins (STRING) protein-pro-
tein interaction database16 to quantify the relationship between 
our Mendelian IBD genes and known IBD genes. We mapped 
genes to STRING gene identifiers and then examined the overlap 
of the Mendelian IBD genes with the known IBD genes. We then 
found the length of the shortest path between each Mendelian 
IBD gene and each known IBD gene. For comparison, we did 
the same analysis for all genes in STRING.

IBD Models Based on Significant 
Mendelian Genes

We identified the genes associated with the Mendelian 
diseases that were uniquely significantly associated with either 
CD or UC. We then used these candidate genes to distinguish 
among CD, UC, and healthy patients with gene expression 
data. We curated 4 publicly available studies: GSE1687917 (24 
UC, 19 CD, and 6 healthy), GSE1061618 (10 UC, 14 CD, and 
11 healthy), GSE968619 (5 UC, 11 CD, and 8 healthy), and 
GSE3680720 (15 UC, 13 CD, and 7 healthy). For consistency, 
we used only the baseline CD, UC, and healthy colon biopsy 
samples from all 4 studies.

All data were processed using robust multiarray aver-
age21 and then ComBat22 to correct for batch effects, where each 
study is considered 1 batch. The data were split into a training 
set consisting of 70%, or 100 samples, and a 30% held- out test 
set with the remaining 43 samples. Using the nnet package,23 we 
trained a multinomial logistic regression model on the train-
ing set and assessed the accuracy of our classification model on 
held-out test set.

To assess the significance of the genes used in our model, 
we constructed additional multinomial logistic regression 



 Inflamm Bowel Dis • Volume 24, Number 3, March 2018

474

Han et al

models using 1000 randomly selected sets of genes. We then 
compared the accuracy of our model versus these additional 
1000 models.

RESULTS

IBD Patients in Optum
We extracted 55,080,118 patients with at least one 

ICD-9 code from Optum. Of these patients, 177,039 had a 
UC diagnosis code, and 183,855 had a CD diagnosis code. 
Of all IBD patients, 81% had at least 2 diagnosis codes, and 
9,336 CD patients and 9,264 UC patients have been diagnosed 
with a Mendelian disorder. The number of IBD patients born 
after 2000 is enriched for having a Mendelian disorder (2.3% 
vs 1.3%, P  <  0.0001), which likely reflects that patients with 
Mendelian diseases tend to present with IBD at a younger age. 
Demographic statistics for the UC and CD patients are pre-
sented in Table  1. None of the demographic variables were 
significantly different when comparing CD and UC using the 
chi-squared test.

IBD Mendelian Signature
Heatmaps showing the relative risk of each Mendelian-

IBD pair are shown in Figure  1. Figure  1A depicts the rela-
tive risks calculated from the contingency tables and Figure 1B 
shows the relative risks calculated using the Poisson models. 
Overall, the relative risk values from the Poisson models were 
similar to the contingency table relative risk values. However, 

there were 3 diseases in which the relative risk values increased 
substantially when using the Poisson models. We note that 
these diseases are more predominant in a specific portion of the 
population. For example, sickle cell anemia is more common 
in Africans and African Americans, and hemophilia and con-
genital Hirschprung’s disease in males, starting at infancy. We 
believe these larger differences arise when examining subpopu-
lations in our database with fewer IBD patients, as our database 
contains IBD patients that are mostly Caucasian, more likely to 
be female, and currently in their 20s or 30s.

Comparison to Previously Published Results
We compared the relative risks from our data and models 

to those of the 44 Mendelian diseases presented in the work by 
Blair et al (Fig. 2, S1) for CD. Overall, our relative risk values 
are not significantly different from the linear model relative risk 
values in Blair et al, with a P-value of 0.08 when comparing 
against our Poisson model relative risks and 0.31 when compar-
ing against the contingency table relative risk values. The dis-
eases that showed the largest difference between our work and 
Blair’s work were hemophilia and congenital Hirschprung’s 
disease. These differences mirror the main differences between 
using the contingency table analysis and the linear model in 
our work. Because of the lack of regional race and additional 
demographic variables, we proceeded with downstream ana-
lysis using the results from the contingency table due to their 
high congruence with previously published results.9

Mendelian Diseases are Associated with IBD 
Subtypes

The Mendelian diseases that were significantly associated 
with CD or UC are shown in Table 2. There were 43 diseases 
significantly associated with CD, and 47 with UC, with 40 in 
common. These significant Mendelian diseases correspond to 
527 candidate genes in total (Table S1), with 490 associated 
with CD and 503 with UC. The 2 diseases had 466 genes in 
common, and there were 24 genes uniquely associated with CD 
and 37 with UC. These 61 genes uniquely associated with CD 
or UC were selected for downstream classification with gene 
expression data.

From Figure  1A, the cluster on the left that has the 
highest relative risk associations with CD and UC con-
sists of  8 metabolic, digestive, and immune-related diseases: 
Diamond-Blackfan anemia, Bartter’s syndrome, congenital 
Hirschprung’s disease, disorders of  copper metabolism, disor-
ders of  phosphorus metabolism, autoimmune lymphoprolif-
erative syndrome, genetic anomalies of  leukocytes, and severe 
combined immunodeficiency. These diseases correspond to 62 
genes, many of  which are known to be involved in IBD-related 
pathways.

The Mendelian diseases that are significantly associated 
with UC and not CD are Bartter’s syndrome, disorders of 

TABLE  1: Demographic Statistics for IBD Patients in 
Optum

CD UC P-Value

Number of Patients 183,855 177,039 —
Gender, Male, N(%) 77,992(42.4) 79,151(44.7) 0.20
Birth Year, N(%) 0.23
 2011–2016 237(0.13) 222(0.13)
 2001–2010 2835(1.54) 1433(0.81)
 1991–2000 15,137(8.23) 9319(5.26)
 1981–1990 28,778(15.65) 21,808(12.32)
 1971–1980 30,164(16.41) 25,599(14.46)
 1961–1970 32,378(17.61) 30,994(17.51)
 1951–1960 32,206(17.52) 34,888(19.71)
 1941–1950 23,615(12.84) 27,347(15.45)
 1931–1940 12,218(6.65) 16,369(9.25)
 1930 or earlier 6225(3.39) 9007(5.09)
Race, N(%) 0.21
 African American 12,266(6.67) 9510(5.37)
 Asian 1840(1.00) 2482(1.40)
 Caucasian 149,394(81.26) 144,533(81.64)
 Other/Unknown 20,355(11.07) 20,514(11.59)
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straight chain amino acid metabolism, erythromelalgia, glu-
cose-6-phosphate dehydrogenase deficiency, hereditary hem-
orrhagic telangiectasia, neurofibromatosis, and osteogenesis 
imperfecta. The Mendelian diseases uniquely associated with 
CD are congenital hypogammaglobulinemia, Huntington dis-
ease, and hypopituitarism.

Enrichment of Biological Processes Associated 
with CD and UC

The top 15 biological processes are shown in Table  3, 
ordered by mean rank. There are 10 processes shared by CD 
and UC, and 5 processes unique to CD or UC. Overall, pro-
cesses related to the immune system or metabolism were 

enriched, with those unique to CD more focused on tolerance, 
and with those unique to UC more focused on response to and 
regulation of stress and toxic substances.

Proximity of Mendelian IBD Genes to Known 
IBD Genes

We mapped 501 out of the 527 genes to STRING identifi-
ers. From Liu et al,4 we mapped 166 genes to STRING. Of our 
501 Mendelian candidate IBD genes, 3 (0.6%) were overlap-
ping, 454 (90.6%) were directly connected to one of the known 
IBD genes from Liu et al, and 44 (8.8%) were 2 links away. In 
total, there are 19,247 genes in STRING. There are 76.1% dir-
ectly connected to one of the known IBD genes, 23.0% are 2 

FIGURE 1. Heatmaps depicting relative risk for CD and UC using the contingency table analysis (A) and Poisson mixed-effects models (B) for all 95 
Mendelian diseases. Relative risk values are presented using a green gradient color scale, and the larger relative risk values from the Poisson models 
are in orange. The dendrogram was constructed using Euclidean distance.
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links away, and 0.06% are 3 links away. Thus, though there is 
not a large direct overlap between Mendelian genes and previ-
ously established IBD genes, the implicated Mendelian genes 
are typically close to known IBD genes than if  chosen by 
random (P < 0.001).

Expression of Mendelian Genes Can Distinguish 
IBD Subtypes

Of the 61 candidate genes uniquely associated with 
CD or UC, 60 were measured in the IBD expression data. 
Our 60-gene multinomial logistic regression model attained 
an accuracy of  72.1% when distinguishing the 3 classes. In 
the test set of  43 samples, 17 were CD, 18 were UC, and 8 
were healthy. Using principal components analysis (PCA), we 
projected the test set samples into 2 dimensions (Fig. 3). The 
first and third components were chosen for better visualiza-
tion. The projection shows the samples grouping by diagnosis, 
with UC samples on the left, healthy samples on the right, and 
CD in between. Notably, the samples do not tend to group 
by study, and that misclassified samples contain samples in 
all 4 datasets, with 5 from GSE16879, 4 from GSE36807, 2 
from GSE9686, and 1 from GSE10616 (Fig. S2). The 12 mis-
classified samples consist of  6 CD samples predicted as UC, 
2 CD samples predicted as healthy, and 4 UC samples as 
CD.Our 1000 random 60-gene classifiers had a mean accuracy 
of  57.5% with a standard deviation of  7.8% (Fig.  4). The 
lowest accuracy obtained was 32.5%, and the maximum was 
82.5%. Overall, 44 out of  the 1000 random 60-gene classifi-
ers surpassed our 60-gene model. Thus, the chance of  picking 
a random selection of  60 genes that outperforms our model 
is 0.044.

DISCUSSION
In this work, we investigate the Mendelian comorbidities 

of IBD to gain new insights into candidate genes contributing 
to IBD risk. In doing so, we replicated the original work from 
Blair et al, for CD and extend the original work by performing 
gene-based classification.

Our Mendelian disease association analysis revealed 
a group of 8 diseases with high relative risk for IBD (Fig. 1). 
These diseases consist mainly of metabolic, immunological, 
and hematological disorders and are associated with genes 
that modulate the immune system in IBD. For example, JAK3, 
IL2RG, and IL7R, which are associated with severe combined 
immunodeficiency and are involved in cytokine signaling,24 
which have all been implicated in IBD.25, 26

We found 3 Mendelian diseases significantly associ-
ated with CD only (congenital hypogammaglobulinemia, 
Huntington’s disease, and hypopituitarism), and 8 significantly 
associated with UC only (Bartter’s syndrome, disorders of 
straight chain amino acid metabolism, erythromelalgia, glu-
cose-6-phosphate dehydrogenase deficiency, hereditary hem-
orrhagic telangiectasia, neurofibromatosis, and osteogenesis 
imperfecta). These associated diseases reveal insights into the 
pathophysiology of CD and UC. For example, there has been 
multiple case reports of patients with UC and neurofibromato-
sis, and it has been postulated that that the 2 diseases may have 
similar perturbed pathways in common involving mast cells.27–29 
Specifically, the presence of these mast cells in neuromas and in 
the colon have been correlated with disease progression in both 
diseases.30, 31

As these diseases may share similar implicated path-
ways with IBD, existing treatments for these diseases have 

FIGURE 2. Scatterplots showing relative risk results from Optum data as compared to the original results from Blair et al using the Poisson modeling 
(A) and contingency table (B) approaches. Results using Optum data were not significantly different from the results from Blair et al.
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TABLE 2: Relative Risk and Bonferroni Corrected P-values for Significant (P < 0.05) Mendelian Diseases Associated 
with CD and UCa

Mendelian Disease Cases No. CD RR CD P-Value UC RR UC P-Value

Disorders of Phosphorous Metabolism 176,087 6.36 0.00E+00 6.42 0.00E+00
Long QT Syndrome 37,916 3.62 4.08E-112 3.68 1.97E-112
Haemophilia 53,855 3.47 6.48E-145 3.03 7.27E-100
Disorders of Urea Cycle Metabolism 18,042 4.04 3.36E-68 4.26 9.18E-74
Genetic Anomalies of Leukocytes 3,917 6.66 1.47E-39 6.83 6.20E-40
Tongue Tie 59,368 0.14 1.98E-49 0.2 4.04E-39
Lipoprotein Deficiencies 83,695 1.9 1.44E-38 2.03 2.93E-47
Disorders of Copper Metabolism 5911 7.25 6.53E-70 5.21 3.17E-36
Thalassemia 46,956 2.19 1.25E-35 2.29 1.24E-39
Chronic Granulomatous Disease 8058 4.13 9.31E-32 3.94 1.47E-27
Hereditary Sensory Neuropathy 8066 3.75 1.08E-25 3.86 2.49E-26
Severe Combined Immunodeficiency 2510 6.57 1.55E-24 7.07 5.11E-27
Inherited Anomalies of the Skin 204,379 1.42 8.84E-23 1.63 1.70E-47
Facial and Skull Anomalies 52,501 0.36 4.24E-20 0.27 1.22E-26
Congenital Hirschsprung’s Disease 3537 6.10 2.55E-30 5.02 7.49E-20
Degenerative Diseases of the Basal Ganglia 15,766 2.34 2.53E-14 3.04 2.14E-29
Li-Fraumeni and Related Syndromes 21,635 2.09 8.07E-14 2.36 8.50E-20
Specified Hamartoses 12,036 2.42 4.49E-12 3.03 4.75E-22
Polycystic Kidney, Autosomal Dominant 8605 2.79 5.34E-13 2.75 5.01E-12
Circulating Enzyme Deficiencies 5008 3.65 9.42E-15 3.36 1.49E-11
Inherited Adrenogenital Disorders 9030 2.29 2.41E-07 2.31 2.29E-07
Dopa-Responsive Dystonia 5899 2.49 4.01E-06 2.58 1.11E-06
Turner’s Syndrome 6223 3.47 2.40E-16 2.45 5.98E-06
Combined Heart and Skeletal Defects 22,220 1.75 8.62E-07 1.72 5.30E-06
Familial Mediterranean Fever 3283 5.39 4.53E-22 3.03 1.44E-05
Diamond-Blackfan Anemia 1374 4.14 7.07E-05 5.43 1.19E-08
Autoimmune Lymphoproliferative Syndrome 616 6.32 4.90E-05 6.57 3.21E-05
Congenital Pigmentary Anomalies 42,160 0.60 1.09E-04 0.63 7.48E-04
Cerebral Degeneration Due to Generalized Lipidoses 15,353 1.68 1.70E-03 2.53 2.60E-17
Spinocerebellar ataxia 6734 2.05 2.05E-03 2.73 4.66E-09
Congenital Ichthyosis 8224 1.93 2.47E-03 1.93 4.11E-03
Retinitis Pigmentosa 9149 1.83 7.07E-03 2.14 1.02E-05
Autoimmune Polyglandular Syndrome 1196 3.51 1.37E-02 4.94 4.86E-06
Disorders of Aromatic Amino Acid Metabolism 4171 2.23 1.25E-02 2.39 2.34E-03
Congenital Disorders of Purine/Pyrimidine Metabolism 5755 1.98 2.43E-02 3.51 5.62E-15
Hereditary Muscular Dystrophy 3935 2.21 2.47E-02 2.69 8.92E-05
Specific Nail Anomalies 7296 1.85 2.79E-02 2.13 2.58E-04
Pervasive, Specified Congenital Anomalies 30,683 1.46 1.87E-03 1.4 3.45E-02
Glycogenosis 3193 2.82 1.63E-04 2.34 3.88E-02
Sickle Cell Anemia 23,210 1.76 3.23E-07 1.45 4.71E-02
Erythromelalgia 1763 — — 4.77 1.46E-08
Disorders of Straight Chain Amino Acid Metabolism 5265 — — 2.78 2.53E-07
Bartters Syndrome 706 — — 6.61 3.42E-06
Glucose-6-Phosphate Dehydrogenase Deficiency 9501 — — 1.97 3.52E-04
Neurofibromatosis 18,455 — — 1.58 5.44E-03
Hereditary Hemorrhagic Telangiectasia 4,319 — — 2.16 2.43E-02
Osteogenesis Imperfecta 3946 — — 2.21 3.34E-02
Huntington Disease 4196 2.86 1.91E-06 — —
Congenital Hypogammaglobulinemia 655 6.40 1.48E-05 — —
Hypopituitarism 12,418 1.62 4.44E-02 — —

aRows are Ordered by Average P-value for Mendelian Diseases Significantly Associated with Both CD and UC, UC only, and CD Only. Abbreviation: RR, Relative Risk.
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repurposing potential in IBD. For example, laquinimod, an 
immunomodulator that is being investigated as a potential 
treatment for Hungtinton’s disease, is also being tested for use 
in CD.32 Although the exact mechanism of action is unknown, 
experiments have shown that laquinimod inhibits antigen 
presenting cells and modulates the release of inflammatory 
cytokines.33–35

Amiloride is a drug that inhibits Na+/H+ exchangers 
(NHEs) on the surface of epithelial cells and is used to treat 
Bartter’s disease, which is significantly associated with UC. 
There is an increase in NHE expression in induced colitis mod-
els,36 and it has been shown that lithium, which stimulates NHEs, 
can induce colitis.37 Experiments have shown that blockage of 
these exchangers with amiloride suppresses the inflammatory 

TABLE  3: Top 15 Biological Process GO Terms Associated with CD and UC Using the Genes from Significantly 
Associated Mendelian Diseases

Crohn’s Disease Ulcerative Colitis

Immune response Reactive oxygen species metabolic process
Blood coagulation, intrinsic pathway Response to stress
Blood coagulation, fibrin clot formation Regulation of cellular protein metabolic process
Immune system process Regulation of protein metabolic process
Reactive oxygen species metabolic process Blood coagulation, intrinsic pathway
Vesicle-mediated transport Blood coagulation, fibrin clot formation
Peripheral T cell tolerance induction Response to toxic substance
Tolerance induction dependent upon immune response Immune system process
Peripheral tolerance induction Regulation of reactive oxygen species metabolism
Tolerance induction Peripheral T cell tolerance induction
Central tolerance induction Tolerance induction dependent upon immune response
Central tolerance induction to self antigens Peripheral tolerance induction
Tolerance induction to self antigen Inflammatory response
T cell tolerance induction Tolerance induction
Response to stress Central tolerance induction

aTerms that are bold italicized are unique to the disease column, and the remaining terms are common to both CD and UC

FIGURE 3. Our classification results projected using PCA. The 12 misclassified samples are encircled with the color corresponding to the predicted label. 
UC samples in green tend to be on the left with a low PC1 value, whereas healthy samples in yellow tend to be on the right with a high PC1 value.
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response, leading to a decrease in IL-1β  production, IL-8 pro-
duction, and NF-κB activation.38, 39 Amiloride and other NHE 
blockers may therefore have potential to be repurposed for use 
in IBD. Thus, these Mendelian disease associations may pro-
vide another avenue for discovering CD- or UC-specific treat-
ments, and further study is warranted.

The candidate genes associated with these Mendelian dis-
eases may serve as biomarkers for IBD onset and progression or 
as drug targets for IBD treatment. For example, SMAD4, one 
of the genes associated with hereditary hemorrhagic telangiec-
tasia (HHT), has been implicated in UC. There have been case 
reports of HHT, caused by SMAD4 haploinsufficiency, with 
colonic inflammation resembling IBD,40 and mouse models 
have shown that mice with only 1 functional copy of SMAD4 
are more susceptible to induced colitis.40 Furthermore, muta-
tions in SMAD4 and other SMAD proteins has been implicated 
in several gastric cancers41, 42 and is associated with increased 
risk for colon cancer in UC.43

PROK2 is a gene implicated in hypopituitarism, which 
is significantly associated with CD. PROK2 and its receptor 
are involved in nerve cell migration, and loss of PROK2 hin-
ders migration of neurons in the pituitary and olfactory bulb, 
resulting in Kallman syndrome.44 PROK2 also has been found 
to have a role in the immune system as a chemoattractant for 
monocytes and macrophages, and experiments have shown that 
incubation of monocytes with PROK1 or PROK2 stimulates 
TNF-α transcription, an inflammatory cytokine45–47 with a key 
role in IBD.48 Furthermore, biopsy samples from IBD patients 
and inflammatory mouse models have shown an increase in 
PROK2 gene expression.49 It has been postulated that block-
ing the PROK2 receptor may have a beneficial role in IBD 
management.49

As Mendelian diseases are thought to confer risk for 
complex diseases by implicating similar pathways, we examined 
the proximity of genes implicated by associated Mendelian to 
known IBD genes from Liu et al. Nearly all the Mendelian IBD 
genes are directly connected to a known IBD gene, suggesting 
that they may interact with known IBD genes to contribute to 
the IBD phenotype. We then examined biological processes that 
are enriched in CD and UC using the candidate genes asso-
ciated with the significant Mendelian disease comorbidities. 
Interestingly, though the significant Mendelian diseases asso-
ciated with IBD are not primarily associated with the immune 
system or metabolism, such as long QT syndrome or heredi-
tary muscular dystrophy, the top GO terms enriched by these 
diseases are focused on immune and metabolic processes. For 
example, reactive oxygen species (ROS) metabolic process was 
highly ranked in both CD and UC, and thought to play a role 
in both diseases.50 Specifically, this was the top ranked process 
in UC, and regulation of ROS metabolism was unique to UC, 
suggesting that ROS metabolism may be more dysregulated in 
UC than in CD. Aminosalicylates, such as sulfasalazine and 
mesalazine, are one of the primary treatments for UC that has 
not shown to be as effective in CD.51 The antioxidant properties 
of these compounds and their ability to decrease ROS concen-
tration have been postulated as a potential mechanism for their 
efficacy in UC.52, 53

Vesicle-mediated transport is the top ranked process 
in CD that is not ranked for UC. Whereas most of the other 
implicated processes involve immune or metabolic regulation, 
this finding is likely tied to the importance of the autophagy 
pathway in CD. Multiple autophagy genes, such as ATG16L1, 
IRGM, and LRRK2, have been consistently shown by multiple 
GWAS and further experimental studies to be implicated spe-
cifically in CD.54, 55 Modulating the autophagy pathway is being 
investigated as a potential therapeutic avenue for CD,56 and 
further investigation into Mendelian genes and their pathways 
associated with IBD may reveal additional insights into disease 
pathogenesis and treatment.

In addition to linking the Mendelian diseases to IBD, 
we investigated the ability of these candidate Mendelian genes 
to differentiate CD, UC, and healthy patients using expression 
data from colon biopsies. Our classifier achieves 72.1% accur-
acy, which is a significantly better performance than expected 
from a set of randomly selected 60 genes. In constructing our 
classifier, we used 4 independent datasets so that our results are 
less sensitive to experiment conditions at any particular insti-
tution. Importantly, the samples tend to group by phenotype 
and not by study, and that misclassified samples come from all 
4 studies. Out of the 4 studies, GSE16879 had the most mis-
classified samples. This may be because patients in GSE16879 
are refractory to steroids or immunosuppression, which is not a 
criterion in the other studies.

Our results depend on claims data, which are often used 
to study epidemiological trends and disease associations. For 

FIGURE 4. A histogram of all 1000 random 60-gene model accuracies. 
Our 60-gene model is shown using the vertical line at 0.721. 44 out of 
the 1000 random classifiers outperform our model.
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example, data from Optum has been used to study disease 
outcomes,57 drug adherence,58 and health care utilization.59 
However, claims data can be noisy and contain misdiagnoses 
and coding errors. These limitations from Blair et al apply to our 
work as well. As the database is limited to a decade of data, we 
cannot determine the exact onset of disease, and some patients 
that are currently healthy may develop IBD in the future. As 
a result, we cannot determine whether the Mendelian disease 
onset preceded IBD or vice versa. Furthermore, Mendelian dis-
eases that result in early mortality that share underlying genet-
ics with IBD may go undetected due to death before IBD onset.

Our work relies on ICD-9 codes to represent a curated 
group of diseases. We chose to use the same diseases and ICD-9 
codes as Blair et al so our results could be compared for fur-
ther insight. However, the structure of ICD-9 codes limits our 
ability to differentiate between disorders that may have both 
Mendelian and polygenic causes. For example, one third of 
congential Hirschsprung’s disease cases are due to a Mendelian 
genetic syndrome, such as multiple endocrine neoplasia type 
2.  In the remaining cases, Hirschsprung’s is thought to have 
a complex genetic architecture.60 Though we establish these 
diseases are comorbid with IBD, any shared genetic architec-
ture is challenging to discern and may include genes that are 
not related to those that result in Mendelian inheritance of the 
disorder.

 Claims data also are subject to miscoding errors. 
Typically, diseases that are similar are more likely to be mis-
coded, and Blair et al noted that it is challenging to differenti-
ate between miscoding errors and underlying genetic similarity. 
Blair et al constructed a second Poisson model to account for 
these errors, and they noted that the effects of this model were 
minimal and that the biological signal was unlikely to be attrib-
uted to miscoding. Though our methods are based on existing 
sources of data, we believe this work still makes a contribution 
toward the understanding of the genetic architecture of IBD.

Aside from revealing insights into the underlying biology 
of IBD, this work also replicates the previous work by Blair 
et  al, using a different, smaller dataset. Our ability to repro-
duce the existing work is important as reproducibility of the 
primary literature is often quoted at 10%–25%.61 Though the 
Optum database likely has patients in common with the Truven 
MarketScan database used by Blair et al, our data still has nota-
ble differences. First, we include data from 2013–2016, which is 
after the publication of the original work. We also have differ-
ent covariates, and thus we have modified the original approach 
in our implementation. The concordance of these results across 
multiple studies and databases also lends further evidence to 
the existence of underlying genetic similarities between com-
plex and Mendelian diseases.

SUPPLEMENTARY DATA
Supplementary data are available at Inflammatory Bowel 

Diseases online.
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