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Abstract 

Interrupted time series design is a quasi-experimental study design commonly used to 
evaluate the impact of a particular intervention (e.g., a health policy implementation) on a 
specific outcome. Two of the most often recommended analytical approaches to 
interrupted time series analysis are autoregressive integrated moving average (ARIMA) 
and Generalized Additive Models (GAM). We conducted simulation tests to determine the 
performance differences between ARIMA and GAM methodology across different policy 
effect sizes, with or without seasonality, and with or without misspecification of policy 
variables. We found that ARIMA exhibited more consistent results under certain 
conditions, such as with different policy effect sizes, with or without seasonality, while 
GAM were more robust when the model was misspecified. Given these findings, the 
variation between the models underscores the need for careful model selection and 
validation in health policy studies.  
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1 Introduction 

Interrupted time series (ITS) analysis assesses whether an intervention is associated with a 
shift in the trend of the outcome of interest. ITS involves the assessment of an event or 
policy intervention and its effect on the trend of a target variable. An ITS design often 
entails collecting data both before and after a significant event, which could include a 
health policy intervention, or some other meaningful event (e.g., adoption of a new 
screening technique, large sociocultural movement etc.) and determining if it was 
associated with a change in the incidence or rate of an outcome. ITS is considered one of 
the best quasi-experimental designs when randomized controlled trials (RCTs) are not 
feasible (Cook, Campbell, & Shadish, 2002; Lopez Bernal, Cummins, & Gasparrini, 2018). 
There are a range of effects that can describe the impact of the intervention in an ITS 
model. For example, there could be an immediate level change or change in the time trend 
of the outcomes following the policy intervention. At times, a policy intervention can have 
either an immediate or a lagged effect, or both. For example, when a policy change consists 
of a ban or other restriction on alcohol marketing (Manthey, Jacobsen, Klinger et al., 2024), 
most of the effects are expected to involve a lag-time and the effect may take years to be 
fully realized. In addition, those effects need to considered based on the sample size and 
related statistical power to meaningfully interpret the findings. These factors need to be 
taking into account when designing an ITS study. 

Analyzing time series data involves a few unique challenges due to three primary features: 
autocorrelation, non-stationarity, and seasonality. Autocorrelation refers to the correlation 
between each observation and observations at previous time points, which are often 
dependent on one other. As well, time series data are often not stationary because the 
variances of the observations change with time and may exhibit an increasing or 
decreasing trend (Hyndman & Athanasopoulos, 2018). Seasonality refers to variation of a 
frequency with regular time intervals, such as month of the year or day of the week. 
Common seasonality effects in health time series data are weather conditions, weekend or 
holiday effects, and administrative process patterns. For instance, all-cause mortality rates 
are higher in the winter months (Hajat & Gasparrini, 2016; Wilkinson, Pattenden, 
Armstrong et al., 2004). 

A few systematic reviews have looked at ITS design and statistical models. (Jandoc, Burden, 
Mamdani et al., 2015) gathered over 200 studies in drug utilization and found ITS designs 
were used increasingly but reporting standards varied. (Ramsay, Matowe, Grilli et al., 
2003) reviewed 58 studies and demonstrated that ITS were often underpowered, analyzed 
inappropriately, and reported poorly based on their quality criteria. In their review of 115 
ITS studies, (Hudson, Fielding, & Ramsay, 2019) found the most commonly (78%) used  
analysis method was segmented regression. A similar conclusion was drawn by (Turner, 
Karahalios, Forbes et al., 2020), who identified 200 ITS studies that evaluated public health 
interventions or exposures from PubMed. They concluded that pre-specification of the 
statistical models was important. Though segmented regression is the most common 
approach, it assumes the residuals are independent and is therefore not reliable in the 
presence of autocorrelation and seasonality. Two alternatives are Autoregressive 
Integrated Moving Average (ARIMA) models and Generalized Additive Models (GAM). 
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ARIMA modelling is considered to be a more flexible tool to evaluate health interventions 
and model different types of impacts (Schaffer, Dobbins, & Pearson, 2021). Generalized 
Additive Models (GAMs), on the other hand, can incorporate complex random effects that 
are common in real ITS, without requiring pre-specification of the form of the non-linear 
relationship. However, few studies have compared the accuracy of these two methods. As 
such, more guidance on the conduct and reporting of ITS studies is required to improve the 
study design and analysis. 

In a methodological paper by (Beard, Marsden, Brown et al., 2019), the authors identified a 
series of ITS designs appropriate for addiction research. Furthermore, they described how 
ITS was being used, what design characteristics should be considered, and how the data 
should be analyzed. As an extension of their work, in this paper, we will describe the 
importance of pre-specifying the shape of intervention effects, the rationale for the number 
and spacing of data points selected, and the theory behind ITS models and how they can be 
used to evaluate population-level interventions, such as the introduction of health policies. 
Most importantly, we compare the performance of ARIMA and GAM—two analytical 
approaches to ITS analysis—under different assumptions.   

2 Time series Design 

2.1 Sample size consideration 

Given the complexity of ITS data, there is no formula available to determine the minimum 
sample size for a time series analysis. Most time series experts provide a few rules of 
thumb. For example, (Warner, 1998) suggest a minimum of 50 observations are required to 
conduct a time series analysis. However, those rules of thumb are oversimplified and 
overlook the underlying variability of the data. Sample size, or number of data points 
required, depends on the number of parameters to be estimated and the degree of 
randomness. Consider a time series with seasonality, a seasonal model takes up an extra of 
m-1 degrees of freedom where m is the seasonal period (e.g., m=12 for monthly data). 
Therefore, a short series might not contain enough data for testing purposes and can only 
be analyzed with very simple models with one or two parameters. Such models might fail 
to identify an effect due to a Type II error. Since the power of the estimated parameters 
positively relate to the numbers of data points (Krone, Albers, & Timmerman, 2017), it 
must be emphasized that more data are required to obtain enough statistical power to 
detect the impact of a policy intervention, for example. 

It is particularly challenging to conduct a proper power analysis for a GAM, since different 
smooth terms can have different effective degrees of freedom and different types of basic 
functions, depending on the nature of the relationship. To conduct a test of power for these 
complex models, a simulation approach that uses multiple sets artificial data to fit against 
an outcome may help to inform the necessary sample size required for a GAM. 
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2.2 Pre-specification of the shape of the intervention effect 

It is also important to consider that effects might occur within a range around the 
implementation of the intervention. For example, when it was announced that an increase 
in taxation would be placed on alcohol in Lithuania, consumption of alcohol started 
declining in anticipation of this change (Rehm, Štelemėkas, Ferreira-Borges et al., 2021a). 
In other cases, the impact may be delayed by one or more-time units due to the course of a 
disease (e.g., liver cirrhosis, see (Skog, 1984; Tran, Jiang, Lange et al., 2022)). Policy 
interventions might have an immediate effect, a lagged effect or both. For example, alcohol 
prices or taxes might have an immediate effect on traffic fatalities, while having both 
immediate and lagged effects on liver cirrhosis mortality (Holmes, Meier, Booth et al., 
2012). 

We recommend pre-specifying a reasonable period of time in which it would be expected 
for the impact to be observed based on content knowledge or previous research to avoid 
spurious associations. The most appropriate lead or lag time within the range of options 
should be determined at the modelling stage.  

3 Statistical method 

Since repeated observations are often dependent sequentially, classic techniques like ITS 
must partition noise from real effect, which require more advanced statistical modelling. A 
variety of statistical models have been applied to examine the policy intervention effects 
with an ITS design. The two statistical models that have been less used, but are considered 
to have potential to be more accurate with present of autocorrelation, are the ARIMA and 
GAM. Each has distinct features, strengths, and weaknesses when applied. 

3.1 ARIMA model 

An ARIMA model (Rehm, Štelemėkas, Ferreira-Borges et al., 2021b) assumes that time 
series are stationary and invertible. Stationarity suggests a constant mean, variance, and 
autocorrelation over time after differencing. Invertibility implies that the model errors can 
be explained by the current and past forecast errors. The three main components for an 
ARIMA model are Autoregressive (AR), Integrated (I), and Moving Average (MA). The AR 
component represents the relationship between an observation and its previous (lagged) 
observations. Integrated component represents the number of differences needed to 
transform the time series into a stationary series. The Moving Average component captures 
the relationship between an observation and the residual errors obtained from previous 
forecasts. 

ARIMA(𝑝, 𝑑, 𝑞)  1 − 𝜙 𝐿 − 𝜙 𝐿 −⋯− 𝜙 𝐿 (1 − 𝐿) 𝑌

= 𝜇 + 1 + 𝜃 𝐿 + 𝜃 𝐿 +⋯+ 𝜃 𝐿 𝜖
 

𝑌  is the time series value at time t. 𝜖  is white noise.  𝜙  represents the parameters of the 
AR component. 𝜃  represents the parameters of MA component. 𝐿 is the lag operator. So, 
𝐿𝑌  would represent 𝑌 , which is the value of the series lagged by one period. This is 
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similar for 𝐿  to 𝐿 . The left-hand side represents the autoregressive component of order 𝑝 
and the differencing of order d. The right-hand side includes the constant 𝜇 and represents 
the moving average component of order 𝑞. 

The ARIMA model requires that the data are stationary, which is characterized by a stable 
mean and variance over time. It’s also crucial to ensure the residuals satisfy stationarity—
that is, a mean of zero, constant variance, and no autocorrelation. Despite the ability of the 
ARIMA model to accommodate multiple predictors, its application is restricted to linear 
relationships with the dependent variable. The model particularly excels in short-term 
forecasting, as its predictions are heavily dependent on the recent past values and errors. 

3.2 GAM model 

GAM (Wood, Pya, & Säfken, 2016) is a type of regression model used to capture a nonlinear 
relationship between predictors and response variables without having to specify the form 
of the relationships. It also has few assumptions such as independence of observations, 
correct link function and variance function, and smoothness and additivity of the effect of 
predictors. Conversely, it offers a flexible approach to forecasting time series data. Its 
ability to capture more complex patterns makes it a preferable choice for certain datasets, 
especially since it can handle a non-constant variance of residuals. A significant advantage 
of GAM is its capability to analyze non-linear relationships while adjusting for potential 
covariates. Nevertheless, GAMs require that errors between observations are independent, 
a condition which is challenging when using time series data, where autocorrelation is a 
common feature. 

𝑌 ∼ ExpoFam(𝜇 , . . )

𝐸(𝑌 ) = 𝜇

𝑔(𝜇 ) = 𝜂 = 𝑋∗𝛽∗ + 𝑓 (𝑥 ) + 𝑓 (𝑥 )…+ 𝑓 𝑥

 

where the response variable 𝑌  follows an exponential family distribution. 𝑔 is a monotonic 
link function. 𝑋∗ is the ith row of the model matrix of the parametric part of the model. 𝑓  
are the smooth functions of the covariates 𝑥 . 

4 Simulation Study 

Since ARIMA requires a stationary series and GAMs do not, they should be carefully 
selected for different types of data and different intervention effects. When comparing the 
results from the GAM and ARIMA models using actual policy intervention data, one will 
notice differences in the coefficient estimates of policy effects on the outcomes. To reveal 
the robustness and the differences of the two methods, a simulation study was employed to 
compare the ARIMA and GAM models using different assumptions. 

We aimed to compare outcomes across different policy effect sizes, with or without 
seasonality, and with or without misspecification of policy variable. Simulated data was 
designed to mimic real-world scenarios spanning over a different length of time periods, 
incorporating a given ARIMA process, seasonality, and a 2-year delayed effect of a policy 
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intervention. Subsequently, 100 datasets were simulated and analyzed using the respective 
ARIMA and GAM models with estimates such as coverage probability, average length of 
confidence interval (CI), and type II error rate. Before drawing any comparisons, the 
models were examined to ensure they met the stationary assumption. Ultimately, these 
models were assessed based on their precision in estimating the effect size of specific 
policy interventions. 

The simulated outcomes were the sum of intercept, linear trend of time, policy impact, 
seasonal effects, ARIMA process, and random errors. The intercept was arbitrarily set as 
100. There are five different policy effect sizes being investigated: 2, 5, 10, 15 and 20, e.g. 
the 2 intercept indicates that the policy reduces the mean outcome by 2. The policy variable 
was coded as an exponential distribution with a rate of 1 or 5, as recommended by experts. 
To replicate previous policy-intervention studies, we assumed the outcome would decrease 
by 0.3 each month, the outcomes contained an ARIMA (1,1) with the two coefficients being 
0.6 and -0.8, and the random errors distributed with the mean being 12 and the standard 
error being 5. 

4.1 Sample size consideration 

Even when the sample size appears to be large enough, the power to detect an effect 
depends on when in the time series the intervention occurs. We simulated a study that 
contains 216 time points (months), where a policy intervention was introduced at the 60th, 
108th, and 156th time points. When the modeled policy was assumed to have a lagged 
effect, and the time series was analyzed using the matched models, the coverage 
probability, the percentage of the 100 CIs that encompass the true value, ranged between 
85.6%–90.7% (see results in Appendix), with the intervention introduced at the 108th time 
point, which has the highest coverage probability most of the scenarios. Even when the 
models were misspecified, the effect of intervention introduced at the 60th time point had 
a higher chance of being captured. That is, enough time points are present after the 
intervention implementation to correctly measure the intervention effect. We found that 
GAMs need more data points than ARIMA models with the monthly data due to the fact that 
estimates of spline functions are more complex than linear functions. Most time series 
experts suggest that at least 50 observations were required for the use of time series 
analysis (Warner, 1998), but in order to use GAMs, at least 100 observations were required 
in our simulation study.  

4.2 Estimate intervention effect under various assumptions 

We simulated a 10-year time series of monthly data that contained 120 observations with 
an intervention occurring at the 60th month. The simulated dataset was then analyzed 
using both ARIMA and GAM models. Tables 1 and 2 compare the ARIMA and GAM models 
across different policy effect sizes (the mean outcome being reduced by 2,  5, 10, 15, or 20) 
with or without seasonal effects, while the simulated data were analysed using matching 
statistical methods. Both models have a high likelihood of type II errors, indicating the 
frequency with which a model overlooks the genuine effect sizes, when the true effect size 
was less than 5. This implies that for smaller true effects within this range, both models 
struggle to discern the true effect from zero. There were notable differences when the true 
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effect size was greater than 5: both models exhibited near zero type II error rate. That is, 
when models were correctly specified, with respect to seasonality, and the policy effects 
were significant enough, both ARIMA and GAM were able to identify the true effect. 
However, when the data did not exhibit seasonality, GAMs appeared to produce wider 95% 
CIs and higher Type II errors than ARIMAs. 

 

Table 1.  Coverage probability, average length of CI and Type II error rates for ARIMA and 
GAM, with seasonality, by policy effect size 

Policy effect 

ARIMA GAM 

Coverage 
probability 

Average 
Length of CI  

Type II 
Error 

Coverage 
probability 

Average 
Length of CI  

Type II 
Error 

2 0.9475 6.689667 0.8395 0.9870 7.629658 0.8875 

5 0.9620 6.699880 0.2490 0.9880 7.696581 0.2295 

10 0.9605 6.762079 0.0010 0.9870 7.679286 0.0015 

15 0.9585 6.705024 0.0000 0.9875 7.657846 0.0000 

20 0.9585 6.757680 0.0000 0.9840 7.712918 0.0000 

 

Table 2. Coverage probability, average length of CI and Type II error rates for ARIMA and 
GAM, without seasonality, by policy effect size 

Policy effect 

ARIMA GAM 

Coverage 
probability 

Average 
Length of CI  

Type II 
Error 

Coverage 
probability 

Average 
Length of CI  

Type II 
Error 

2 0.9350 10.80147 0.8690 0.9700 13.90594 0.9330 

5 0.9295 10.82204 0.5495 0.9710 13.96299 0.7415 

10 0.9340 10.78308 0.0735 0.9740 13.95743 0.1670 

15 0.9355 10.73325 0.0040 0.9715 13.87774 0.0155 

20 0.9255 10.69711 0.0000 0.9585 13.87514 0.0000 

 

4.3 Estimate intervention effect when models are misspecified 

In Tables 3 and 4, we assessed misspecified models to determine their performance under 
suboptimal conditions. Here, we operate under the assumption that the policy effect in the 
model is inaccurately represented—coded as a dummy variable—whereas the actual data 
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suggests the policy effect follows an exponential decay. In the first scenario, the policy 
variable was assigned the value of 1 for 24 months after policy implementation and 0 for 
the rest of the study time. In the second scenario, a common practice was used of assigning 
a value of 0 before the policy was introduced and a value of 1 thereafter. In both of those 
misspecified models, Type II error rates were higher with smaller effect sizes. However, in 
the second scenario, the ARIMA resulted in a high Type II error rate of 0.97 when the policy 
effect was 15, and one of over 0.50 when the policy effect was 20, while GAM had Type II 
errors of 0.21 and 0, respectively. Both scenarios produced a wider CI when compared to 
models without misspecification. 

 

Table 3. Coverage probability, average length of CI and Type II error rates for ARIMA and 
GAM, with policy misspecification, by policy effect size, where policy variable was assigned the 
value of 1 for 24 months after policy implement and 0 for the rest of the study time 

Policy Effect ARIMA 
CP 

ARIMA CI 
AL 

Gam 
CP 

Gam CI 
AL 

ARIMA 
Type II Error 

Gam 
Type II Error 

2 0.9655 13.08090 0.9995 15.64162 0.9195 0.9925 

5 0.9700 14.17441 0.9990 15.98781 0.7115 0.8305 

10 0.9930 17.32117 0.9960 17.43877 0.2215 0.2055 

15 0.9855 20.46541 0.9820 21.16744 0.0335 0.0585 

20 0.9830 24.82339 0.9830 29.52140 0.0050 0.0945 

* CP and AL stands for coverage probability and average length, respectively 

 

Table 4. Coverage probability, average length of CI and type 2 error rates for ARIMA and 
GAM, with policy misspecification, by policy effect size, where the policy variable was assigned 
a value of 0 before policy being introduced and 1 after 

Policy Effect ARIMA 
CP 

ARIMA CI 
AL 

Gam 
CP 

Gam CI 
AL 

ARIMA 
Type II Error 

Gam 
Type II Error 

2 0.9175 19.41156 0.9870 24.83404 0.9450 0.9935 

5 0.8195 22.97778 0.8360 25.96139 0.9720 0.9800 

10 0.4375 29.44457 0.1865 35.31663 0.9745 0.6625 

  15 0.2030 37.97404 0.0125 43.33531 0.9660 0.2085 

20 0.0000 41.53793 0.0000 42.25711 0.5000 0.0000 

* CP and AL stands for coverage probability and average length respectively 
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4.4 Estimates of intervention effects when data contain outliers 

To assess how robust the two models are in the presence of outliers comprising 10% of the 
outcome, simulated outliers were generated to exceed either three times the standard 
deviations or fall below this threshold. When outliers were present, ARIMA and GAM 
performed similarly with type II errors decreasing when the policy effect increased. In 
addition, the CIs were wider than those without outliers. 

Table 5.  Coverage probability, average length of CI and Type II error rates for ARIMA and 
GAM, with outliers in the outcome, by policy effect size 

Policy Effect ARIMA 
CP 

ARIMA CI 
AL 

Gam 
CP 

Gam CI 
AL 

ARIMA 
Type II Error 

Gam 
Type II Error 

2 0.9370 22.22706 0.9715 24.97442 0.9245 0.9625 

5 0.9330 22.58963 0.9755 25.39765 0.8365 0.8935 

10 0.9585 25.00787 0.9705 28.10154 0.6055 0.6560 

15 0.9670 28.25577 0.9695 32.66184 0.3450 0.4040 

20 0.9585 31.95723 0.9585 37.47694 0.1880 0.2470 

* CP and AL stands for coverage probability and average length respectively 

 

5 Discussion 

Accurate modeling and forecasting of the impact of policy interventions can inform 
policymakers about the efficacy of their interventions and guide future actions. Based on 
the findings here, we advocate for predetermining an appropriate timeframe for observing 
intervention effects as well as drawing from subject expertise or prior studies in advance in 
order to prevent drawing misleading conclusions. We compared GAM and ARIMA, two 
popular time series models, using simulated data with certain patterns or trends one would 
expect to see in the real world following a policy intervention, e.g., a policy with a lagged 
effect.  

When ARIMA and GAM were applied to data that did not exhibit seasonality and was 
stationary, the CIs of estimates were much wider when using GAM. That is, the estimates 
were less precise when applied to outcomes that did not contain a seasonal pattern. 
Therefore, it is important to scrutinize the outcomes for seasonality before the use of any 
models. In cases where there are no repeating cycles over time and there is confidence in 
the accurate definition of an intervention policy, the ARIMA model offers more precise 
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estimates with lower Type II error rates. Additionally, it outperforms GAM by providing 
estimates that are more precise and exhibit lower Type II error rates in situations where 
10% of the outcome are outliers.  

Another important finding is the robustness of GAM models when the policy effects were 
expected and coded inconsistently with the simulated condition. When the effect size was 
misspecified but the effect period of the policy intervention was correctly specified, both 
GAM and ARIMA demonstrated comparable performance. Conversely, when both the effect 
size and intervention period were misspecified, ARIMA models failed to detect any policy 
effect, even when the policy significantly reduced the outcome by 15%. In contrast, GAM 
models excelled in correctly identifying the effects of policy intervention. This implies that 
the GAM model should be preferred over the ARIMA model when the impact of a policy 
intervention is unknown or uncertain.  

While our simulation study provides some valuable insights into model performance under 
controlled conditions, caution must be exercised when extrapolating these results to real-
world scenarios since they are more complex than simulated data. Further, future research 
should expand the simulated data to incorporate multiple policies and their interactions. 
Such an approach would offer a deeper understanding, especially since real-world settings 
often entail the simultaneous implementation of multiple policies.  

 

6 Conclusion 

 

In conclusion, when using ITS modelling, we suggest specifying a reasonable timeframe at 
the design stage, within which the expected policy impact should be observed. Both ARIMA 
and GAM models provide insights into the investigation of policy effects. Nevertheless, their 
different performances in various simulated scenarios underscore the significance of 
thorough examination of outcomes, precise specification of policy variables, and careful 
selection and validation of the appropriate model.  
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Appendix 

 Table A1:  Comparison of ARIMA and GAM models under different policy effects with 
simulated data containing 216 time points, where a policy intervention was introduced at 
the 60th time point 

Policy Effect ARIMA 
CP 

ARIMA CI 
AL 

Gam 
CP 

Gam CI 
AL 

ARIMA 
Type II Error 

Gam 
Type II Error 

0.1 0.93 9.476391 0.97 13.29382 0.92 0.97 

2 0.88 9.484434 0.95 13.34967 0.80 0.92 

5 0.89 9.544705 0.97 13.35895 0.44 0.76 

10 0.95 9.477075 0.97 13.15322 0.03 0.15 

20 0.93 9.934477 0.98 13.56173 0.00 0.00 

 

Table A2:  Comparison of ARIMA and GAM models under different policy effects with 
simulated data containing 216 time points, where a policy intervention was introduced at 
the 108th time point 

Policy Effect Policy ARIMA 
CP 

ARIMA CI 
AL 

Gam 
CP 

Gam CI 
AL 

ARIMA 
Type II Error 

Gam 
Type II Error 

0.1 policy effect=-0.1 0.93 9.055877 0.98 13.08428 0.92 0.99 

2 policy effect=-2 0.91 9.898425 0.96 13.79254 0.87 0.95 

5 policy effect=-5 0.95 9.645262 0.99 13.48557 0.48 0.73 

10 policy effect=-10 0.92 9.847813 0.97 13.93388 0.03 0.15 

20 policy effect=-20 0.94 9.389968 0.96 13.44907 0.00 0.00 

  

 

Table A3:  Comparison of ARIMA and GAM models under different policy effects with 
simulated data containing 216 time points, where a policy intervention was introduced at 
the 156th time point 
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Policy Effect ARIMA 

CP 
ARIMA CI 

AL 
Gam 

CP 
Gam CI 

AL 
ARIMA 

Type II Error 
Gam 

Type II Error 

 0.1 0.904 13.05055 0.999 23.73328 0.905 0.999 

 2 0.907 13.56236 0.999 23.76087 0.869 0.997 

 5 0.949 17.98891 0.988 24.23383 0.849 0.996 

  10 0.988 26.10929 0.901 26.64836 0.916 0.929 

 20 0.917 38.49901 0.086 41.77918 0.879 0.558 

 

Optimization procedure of ARIMA model 

In order to perform the optimization procedure such as the maximum likelihood 
estimation to determine the best ARIMA model parameters, the ARIMA model would need 
to transform into its state space and Markovian state space form, which involves 
representing the ARIMA model as a system of states that evolve over time, where each state 
only depends on the previous state. For the ARIMA model in its state-space representation, 
the state refers to the unobservable variables, and the observations are the values in the 
time series. It would start with initializing state estimate 𝑍(𝑡 + 1 ∣ 𝑡) and state covariance 
𝑃(𝑡 + 1 ∣ 𝑡) = 𝑃(0 ∣ 0). Then we would predict the next state and its covariance using the 
state transition model. Next would be to calculate the Kalman Gain to determine the weight 
given to the prediction error when updating the state estimate. Assuming the errors are 
Gaussian (a common assumption for ARIMA models), the log likelihood for the entire 
observations is just the sum of the log-likelihoods from each step. The function is then 
optimized to estimate the best-fit parameters of the ARIMA model. 

Optimization procedure of GAM model 

Penalized Iteratively Reweighted Least Squares is the iterative algorithm used to estimate 
the parameters of the model, when a penalty is applied to some parameters for 
smoothness. With the initial working response and the weights (diagonal weight matrix 
from the link function’s derivative), and the penalty matrix, one can solve for the penalized 
weighted least squares and obtain the new estimated 𝛼 and the smooth function 𝑓 𝑥 . 
Thus the updated 𝜂 can be calculated 𝜂 = 𝑋𝛽 + ∑ ∑ 𝑏 (𝑥 )𝛼  and 𝜇, and the expected 
value of the response can then be obtained from 𝜇 = 𝑔 (𝜂). After assessing whether the 
parameters have converged, by evaluating the change in some criterions like deviances, the 
algorithm either returns to the initiation step with the new values of 𝛼 and 𝜇 to refine the 
next round of estimates or stops entirely. 
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