
sensors

Article

FPGA Implementation of an Efficient FFT Processor for FMCW
Radar Signal Processing

Jinmoo Heo 1 , Yongchul Jung 2 , Seongjoo Lee 3 and Yunho Jung 1,4,*

����������
�������

Citation: Heo, J.; Jung, Y.; Lee, S.;

Jung, Y. FPGA Implementation of an

Efficient FFT Processor for FMCW

Radar Signal Processing. Sensors 2021,

21, 6443. https://doi.org/10.3390/

s21196443

Academic Editor: Vittorio M.N.

Passaro

Received: 27 August 2021

Accepted: 23 September 2021

Published: 27 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Smart Air Mobility, Korea Aerospace University, Goyang-si 10540, Korea; jmz416@kau.kr
2 Korea Electronics Technology Institute (KETI), Seongnam 13509, Korea; ycjung@keti.re.kr
3 Department of Information and Communication Engineering and Convergence Engineering for Intelligent

Drone, Sejong University, Seoul 05006, Korea; seongjoo@sejong.ac.kr
4 School of Electronics and Information Engineering, Korea Aerospace University, Goyang-si 10540, Korea
* Correspondence: yjung@kau.ac.kr; Tel.: +82-2-300-0133

Abstract: This paper presents the design and implementation results of an efficient fast Fourier
transform (FFT) processor for frequency-modulated continuous wave (FMCW) radar signal process-
ing. The proposed FFT processor is designed with a memory-based FFT architecture and supports
variable lengths from 64 to 4096. Moreover, it is designed with a floating-point operator to prevent
the performance degradation of fixed-point operators. FMCW radar signal processing requires
windowing operations to increase the target detection rate by reducing clutter side lobes, magnitude
calculation operations based on the FFT results to detect the target, and accumulation operations
to improve the detection performance of the target. In addition, in some applications such as the
measurement of vital signs, the phase of the FFT result has to be calculated. In general, only the
FFT is implemented in the hardware, and the other FMCW radar signal processing is performed
in the software. The proposed FFT processor implements not only the FFT, but also windowing,
accumulation, and magnitude/phase calculations in the hardware. Therefore, compared with a
processor implementing only the FFT, the proposed FFT processor uses 1.69 times the hardware
resources but achieves an execution time 7.32 times shorter.

Keywords: fast Fourier transform (FFT); memory-based FFT architecture; frequency modulated
continuous wave (FMCW) radar; field-programmable gate array (FPGA)

1. Introduction

Recently, various types of sensors (passive infrared (PIR), ultrasonic, cameras, and
lidar) have been used for target detection [1–4] but they all have weaknesses. PIR sensors
cannot detect stationary targets or multiple targets, and if warm air is injected, a false-
alarm detection may occur [1]. Ultrasonic sensors have trouble detecting targets at a
distance greater than 5 m, and their angular resolution is poor compared with that of other
sensors [2]. Camera sensors are less effective in the dark or in the presence of obstacles, and
they require high-performance hardware due to onerous computational signal processing,
which also has serious privacy issues [1,3]. Finally, Lidar sensors are limited by their high
cost and susceptibility to weather conditions [4].

Unlike these types of sensors, radar sensors have the advantages of not being affected
by harsh environmental conditions, such as light and weather, and of being able to measure
the range, velocity, and angle of a target directly. It can detect stationary or moving objects
and can detect multiple targets simultaneously. Therefore, it is free from privacy issues.
Radar sensors can also measure small movements such as breathing and heart rate for
vital-sign monitoring and tracking gestures and gait [1]. Because of these strengths, radar
sensors are used in industrial machinery, drones, automobiles, and wearable devices [5–9].

Recently, [10] developed a method for detecting a human subject by investigating
physical characteristics using Doppler radar. The trained support vector machine (SVM)

Sensors 2021, 21, 6443. https://doi.org/10.3390/s21196443 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0223-1131
https://orcid.org/0000-0001-5332-8980
https://orcid.org/0000-0001-9344-7052
https://orcid.org/0000-0003-2299-9911
https://doi.org/10.3390/s21196443
https://doi.org/10.3390/s21196443
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21196443
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21196443?type=check_update&version=2

Sensors 2021, 21, 6443 2 of 16

had an accuracy of 96%. In addition, [11] a method of simultaneously performing target
classification and estimating movement direction showed an identification accuracy of 85%
even for newly acquired data by using the “you only look once (YOLO)” scheme. In [12],
a compact radar system for autonomous walking for the visually impaired and blind was
developed. By integrating a Tx/Rx circuit board with a radar antenna, the whole radar
system was miniaturized.

Radar can be broadly classified into pulse or frequency-modulated continuous wave
(FMCW) radar, the latter of which is simple to implement and has received increasing atten-
tion [13]. This radar systems can be divided into slow- and fast-ramp FMCW according to
the transmission waveform used. Slow-ramp FMCW uses a triangle-shaped transmission
waveform and a pairing technique to extract the range and velocity of the target. However,
slow-ramp FMCW suffers from a serious disadvantage in that a ghost target appears when
extracting the target’s range and velocity. Therefore, fast-ramp FMCW radar systems are
more widely used. These use a sawtooth transmission waveform to extract the target’s
range and velocity using a two-dimensional fast Fourier transform (2D FFT) [5,8].

Figure 1 shows a block diagram of typical fast-ramp FMCW radar signal processing
for target detection. The received beat signal is digitized in the pre-processing step and
the DC component is removed. If a low-reflectance target exists, it may not be detected
because of the relatively strong side lobe of the clutter, which is reduced by applying
a windowing function before the FFT. The 2D FFT is then applied to extract the range
and velocity. The 2D FFT suboperations are called the range FFT and the Doppler FFT,
and the result is called a range-Doppler map (RDM). Range FFT and Doppler FFT lengths
are parameters that determine the maximum detection range and Doppler resolution.
Therefore, FFT processors must support variable lengths because the length used depends
on the performance required for each application [14].

Pre-processing Windowing

Post-processing

Beat signal Range FFT

Magnitude

Calculation

Magnitude

Calculation

CFAR

Phase

Calculation
Accumulation

Doppler FFT

Information

CFAR
Accumulation

Figure 1. Block diagram of FMCW radar signal processing.

FFT processors are generally designed and implemented using a fixed-point format
because of their simplicity. However, because fixed-point formats have a limited number
representation range, implementing the FFT with a fixed-point operator requires adjusting
the result according to the possible representation. Therefore, fixed-point FFT processors
offer poor FFT performance because of quantization noise (Q-noise). In FMCW radar,
Q-noise accumulates because the FFT is repeatedly performed during signal processing.
Therefore, many studies have proposed designing and implementing the FFT processor
using a floating-point operator [15–19].

After 2D FFT, it is common to conduct constant false alarm rate (CFAR) detection.
The range and velocity of a target are measured by changing the threshold depending
on the local average noise power. The accumulation of magnitude components improves
detection performance [20–24]. Therefore, it is necessary to calculate and accumulate the
magnitude component of the FFT result. In addition, the phase component of the FFT
result is often used to acquire various vital signs such as respiration and heart rate [25,26].
Therefore, it is also necessary to calculate the phase component of the FFT result.

Because FFT computations are the most resource-intensive among these, an optimized
hardware implementation is required. The hardware architecture of FFT processors can
be divided into two types: pipelined FFTs and memory-based FFTs. Memory-based FFTs
are also called “in-place” or “iterative” FFTs [27]. In long FFT processors, pipelined FFT
structures consume a lot of area, so memory-based FFT structures are preferred [28–32].
Furthermore, given the computational speed and variable length of the transformations, it

Sensors 2021, 21, 6443 3 of 16

is generally appropriate to use a mixed-radix butterfly unit with a mixture of radix-4 and
radix-2 [28].

In this paper, we propose an FFT processor hardware structure supporting a variable
length of 64–4096 and windowing, magnitude/phase calculation, and accumulation op-
erations. We also present the results of an FPGA-based implementation of the proposed
processor. Our results show that the proposed FFT processor can carry out the signal pro-
cessing required for FMCW radar systems, reduce computation times, and achieve a high
signal-to-quantification-noise ratio (SQNR) performance by using a floating-point operator.

The rest of this paper is organized as follows. Section 2 reviews the FMCW radar
signal-processing algorithm. Section 3 describes the hardware architecture of the proposed
FFT processor. Section 4 presents the implementation results. Finally, Section 5 presents
our conclusions.

2. FMCW Radar Algorithm
2.1. Measuring Range and Velocity in FMCW Radar

FMCW radar employs a transmission waveform the frequency of which varies linearly
with time. This waveform can be either triangular or sawtooth. It is challenging to use
FMCW radar based on the triangular transmission waveform in multi-target scenarios
because it is difficult to remove the ghost target signal. Therefore, FMCW radar systems
with sawtooth transmission waveforms are commonly used. The frequency of the sawtooth
waveform is defined by Equation (1).

f (t) = fc +
B
T

t, (1)

where fc is the carrier frequency; B is the bandwidth; T is the period; and t is time.
For convenience, B/T is replaced by α. The instantaneous phase of the transmission
waveform can be obtained by integrating the frequency of the transmission waveform with
respect to time t, as in Equation (2).

ϕ(t) = 2π
∫ t

0
f (t)dt = 2π

∫ t

0
(fc + αt)dt = 2π

(
fct +

αt2

2

)
(2)

Here, t = nT + ts, and ts is the time between 0 and T. If the initial phase of the
transmission signal is ϕ0 and the amplitude is A, the transmission waveform of the first
chirp is given by Equation (3).

sTx(t) = A cos
(

2π

(
fct +

αt2

2

)
+ ϕ0

)
(3)

By substituting t = nT + ts into Equation (3), the nth transmission signal can be
obtained as shown in Equation (4).

sTx(n, ts) = A cos
(

2π

(
fc(nT + ts) +

α(nT + Ts)2

2

)
+ ϕ0

)
(4)

After the delay time τ, the received signal can be expressed as in Equations (5) and (6).

sRx(n, ts) = A′ cos
(

2π

(
fc(nT + ts − τ) +

α(nT + Ts− τ)2

2

)
+ ϕ0

)
(5)

τ =
2(R + vt)

c
=

2(R + v(nT + ts))

c
(6)

Here, A′ is the amplitude of the received signal; R is the range of the target; v is the
velocity of the target, and c is the speed of light.

Sensors 2021, 21, 6443 4 of 16

Demodulation is performed by multiplying the received signal reflected from the
target and the transmitted signal as shown in Equation (7).

sM(n, ts) = sTx(n, ts)× sRx(n, ts) (7)

The phase component of the demodulated signal sM(n, ts) is in the form of a sum
of cosine terms, and the high-frequency signal is removed by a low-pass filter. Thus,
the in-phase components of the signal can be arranged as shown in Equation (8).

sM−I(n, ts) =
C
2

cos
(

2π

(
fcτ + ατts −

ατ2

2

))
=

C
2

cos
(

2π

(
fc

(
2(R + v(nT + ts))

c

)
+ αts

(
2(R + v(nT + ts))

c

)
− α

2

(
2(R + v(nT + ts))

c

)2))
,

(8)

where C is the product of A and A′. Equation (9) can be derived by expanding Equation (8).

sM−I(n, ts) =
C
2

cos
(

2π

((
2αR

c
+

2 fcv
c

+
2αvnT

c
− 4αRv

c2 − 4αnTv2

c2

)
ts

+

(
2 fcv

c
− 4αRv

c2

)
nT +

2 fcR
c

+
2αvts

2

c
− 2αR2

c2 − 2αv2n2T2

c2 − 2αv2ts
2

c2

)) (9)

In Equation (9), c is very large, so 1/c2 terms are negligible. Moreover, 2 fcv/c and
2αvnT/c are very small compared to 2αR/c and can be ignored. If the same approach is
applid to 2αvts

2/c, Equation (9) can be approximated by the expression for sM−I shown in
Equation (10). Through the same process, the quadrature components can be approximated
by Equation (11).

sM−I(n, ts) =
C
2

cos
(

2π

(
2αR

c
ts +

2 fcv
c

nT +
2 fcR

c

))
(10)

sM−Q(n, ts) =
C
2

sin
(

2π

(
2αR

c
ts +

2 fcv
c

nT +
2 fcR

c

))
(11)

The range to the target R and the beat frequency fb can be defined as in Equations (12)
and (13).

R =
cτ

2
=

c fb
2α

= fb × ∆R× T (12)

fb =
2αR

c
(13)

The frequency of the received signal reflected by the moving target can be defined as
shown in Equation (14) by considering the Doppler effect.

fr =

(
1 + v/c
1− v/c

)
ft (14)

Here, fr is the reception frequency, and ft is the transmission frequency. Equation (14)
can be transformed into Equation (15) using the binomial series.

fr =
(

1 +
v
c

)(
1 +

(v
c

)
+
(v

c

)2
+ · · ·

)
ft =

(
1 + 2

v
c
+ 2
(v

c

)2
+ · · ·

)
ft (15)

Sensors 2021, 21, 6443 5 of 16

Because the speed of light c is very large, the higher-order terms can be removed to
obtain Equation (16).

fr =
(

1 + 2
(v

c

))
ft = ft + 2

(v
c

)
ft (16)

The Doppler frequency is defined as fd = 2v fc/c. By substituting fb and fd in
Equations (10) and (11), Equations (17) and (18) are obtained.

sM−I(n, ts) =
C
2

cos
(

2π

(
fbts + fdnT +

2 fcR
c

))
(17)

sM−Q(n, ts) =
C
2

sin
(

2π

(
fbts + fdnT +

2 fcR
c

))
(18)

Equation (19) can be derived by expressing the in-phase and quadrature components
in exponential functions using Euler’s formula.

sM(n, ts) =
C
2

exp
(

j2π

(
fbts + fdnT +

2 fcR
c

))
(19)

The beat frequency can be obtained by performing the discrete Fourier transform
(DFT) on the expression of sM(n, ts) shown in Equation (19) for one chirp, that is, ts. Using
Equation (12), we can obtain the range to the target from the beat frequency. In addition,
the Doppler frequency can be obtained by performing the DFT on the frequency change
of the signal for several chirps, that is, nT. Because fd = 2v fc/c, we can use the Doppler
frequency to calculate the velocity of the target.

If the number of samples in the range direction, i.e., the range FFT length, is defined
as M, the sampling interval becomes T/M, and thus the sampling frequency Fs is given by
Equation (20). Furthermore, the relationship between the maximum detection range Rmax
and M can be derived from Equations (21) and (22).

Fs =
M
T

(20)

Rmax = fbT∆R =
Fs

2
T∆R =

M
2

∆R =
cM
4B

(21)

M =
4BRmax

c
(22)

Moreover, if we define the number of chirps, i.e., the Doppler FFT length, as N, then
the sampling frequency is 1/T, and ∆ fD can be derived as in Equation (23).

∆ fD =
1

NT
=

2
λ

∆v (23)

∆v =
λ

2NT
(24)

N =
λ

2T∆v
(25)

Here, ∆v is the Doppler resolution. Equations (22) and (25) confirm that the range
FFT and Doppler FFT lengths are essential parameters for determining the maximum
detection range and Doppler resolution, respectively. Depending on the radar application,
the maximum detection range and Doppler resolution requirements vary. Therefore,
the FFT processor should ideally support variable lengths.

2.2. CFAR Algorithm

The simplest way to detect the range and velocity of a target in an FMCW radar
system is to set a constant threshold. The detection algorithm then compares the magnitude
component of the FFT result to this threshold. However, the average noise power varies

Sensors 2021, 21, 6443 6 of 16

with time. This is because various parameters of the environment where the radar operates,
such as temperature and humidity, are not constant. Therefore, the false alarm detection
rate can be very high while using a constant threshold. False alarms directly affect system
performance by wasting radar resources owing to continuous detection.

The CFAR algorithm is widely used to reduce the false alarm rate in radar systems.
The CFAR algorithm does not maintain the threshold constant but instead adjusts it
according to the average noise power. The basic CFAR algorithm proceeds as follows.
(1) The magnitude component of the FFT result is calculated. (2) The signal for which it
needs to be determined whether it is a target or not is called a test signal. The average local
noise power is generated by the surrounding signals. (3) The algorithm checks if a test
signal is a target by comparing it to the threshold generated using the surrounding signals.
(4) Finally, steps (2) and (3) are repeated for all signals.

The FMCW radar system should apply CFAR detection using to both the range and
Doppler axes directions to extract the range and velocity information from the target.
To improve the detection performance, 1D data are generated by accumulating RDMs
over the range or Doppler axes directions [23,24]. Therefore, a function to calculate and
accumulate the FFT results into a magnitude component is required.

3. Hardware Architecture of the Proposed FFT Processor

As shown in Figure 2, the proposed FFT processor consists of a window multiplication
unit (WMU), a butterfly unit (BFU), a magnitude/phase calculation unit (MPU), and an
accumulation unit (ACU). In addition, it was designed with four channels to reduce execu-
tion time. The memory of the processor consists of FFT RAM to store input/output values,
WIN RAM to store window coefficient values, and ACC RAM to store accumulated values.

The WMU performs windowing before the FFT operation. The WMU was designed
so as to operate by reading from a separate WIN RAM. Therefore, the window coefficients
can be changed easily by the user. Windowing is performed on the input data, but no
windowing is performed on the intermediate calculated values of the FFT. Therefore,
the WMU selectively outputs through a multiplexer (MUX). In addition, because only the
real value of the window function is used, eight multipliers are used.

The BFU performs the butterfly operation of the FFT. This unit can perform radix-4/2
butterfly operations for various transform lengths. Because the input comes from four
channels, inputs 3 and 4 are set to zero when radix-2 butterfly operations are performed.
The intermediate value of the FFT obtained through the BFU is stored in the FFT RAM. Then,
the BFU repeatedly performs butterfly operations until the final FFT result is obtained.

The MPU performs an operation that calculates, from the FFT result, the corresponding
magnitude and phase components. We implemented it using an algorithm that approxi-
mates the magnitude and phase components to reduce the necessary hardware resources.
Therefore, we implemented the MPU using only shifters and adders. The algorithms for
approximating the magnitude and phase are discussed in detail in Section 3.2.

The ACU accumulates the FFT results. In contrast to windowing, accumulation is
performed directly on the FFT results, but not on the intermediate calculated values of the
FFT. Therefore, the ACU selectively outputs through a MUX. The accumulation process
requires adding the current FFT result to the accumulated value. Thus, the accumulated
values are written to, and read from, a separate ACC RAM.

Sensors 2021, 21, 6443 7 of 16

Single-channel data : HFP-adder : HFP-multiplierFour-channel data

FFT RAM

WIN RAM

ACC RAM

WMU BFU

R4/R2BF

R4/R2BF

0

0

TW LUT

Cplx.

Mult.

2 Multiplier

2 Multiplier

MPU

A
p

p
ro

x
im

a
te

d

N
o
rm

U
n

it

A
rc

ta
n

g
en

t

U
n

it

Real

Imag

ACU

4 Adder

4 Adder
Real

Real

Imag

Imag

Real 1

Win 1

Imag 1

Real 2

Win 2

Imag 2

Internal

RAM

MUX

Input

Output

Input

Output

Input

Output

Figure 2. Hardware architecture of the proposed FFT processor.

3.1. HFP Operation

To measure the range and velocity of a target using the FMCW radar, 2D FFT had
to be performed on the input data from ADC. Since 2D FFT increases quantization noise
compared to the 1D FFT, essential information may be lost. For example, in the case of a
hand gesture recognition radar system, the value of the echo signal was very small because
the radar cross section of the human hand is very small [33,34]. If the quantization noise is
overlapped and increased by the 2D FFT, important data for a hand gesture with a small
echo signal value may be lost. To achieve a reasonable recognition performance, the SQNR
of the 2D FFT needed to be large enough.

Table 1 compares the 2D FFT SQNR performance based on a fixed-point and a floating-
point operator when the number of bits in the input data ranged from 16 to 28. When the
floating-point number system hads 16-bits of data, it was called a half-precision floating-
point (HFP) format. As shown in Table 1 , the SQNR degradation occurs seriously in the
fixed-point number system, especially when the number of bits in the input data was 16
to 24 for 4096× 4096 data. Fixed-point systems did not exhibit significant performance
penalties when the bit width was 28 bits; their SQNR performance was close to that of
HFP systems.

Table 2 compares the hardware resources used after designing and synthesizing an FFT
processor based on either the 28-bit fixed-point operator or the HFP operator. The results
showed that the FFT processor, implemented with the HFP operator, used more LUTs
than that implemented by the fixed-point operator. Because the Xilinx FPGA’s block RAM
(BRAM) is composed of 16-bit units, an FFT processor implemented with a fixed-point
operator required twice the BRAM.

Sensors 2021, 21, 6443 8 of 16

Table 1. Comparison of 2D FFT SQNR (dB) of fixed-point and floating-point number systems.

Format 64 × 64 128 × 128 256 × 256 512 × 512

Fixed-point (16 bits) 34 26 22 14
Fixed-point (20 bits) 51 50 45 38
Fixed-point (24 bits) 52 51 51 50
Fixed-point (28 bits) 52 51 51 51

HFP (16 bits) 59 57 57 55

Format 1024 × 1024 2048 × 2048 4096 × 4096

Fixed-point (16 bits) 10 2 0
Fixed-point (20 bits) 34 26 22
Fixed-point (24 bits) 45 41 35
Fixed-point (28 bits) 51 50 50

HFP (16 bits) 54 53 52

Table 2. Comparison of hardware resources.

Resource Fixed-Point HFP
Device Zynq UltraScale+ Zynq UltraScale+

Bit width 28 16
Radix 2, 4 2, 4
LUT 9846 10,891
FF 7377 6365

BRAM 20 10
DSP 76 20

The Xilinx FPGA’s DSP consists of fixed bits of the complement multipliers of two
and is used to implement multipliers. Because the number of DSP bits is fixed, the DSP
is used extensively during multiplications if the bit width is large. Therefore, a processor
configured with a fixed-point operator will require approximately three times the DSP
capacity. Therefore, it seems preferable to design an FFT processor with an HFP operator
from the point of view of FFT performance degradation and the required hardware.

A floating-point number consists of a sign, an exponent, and a mantissa and performs
operations by treating their components separately. The HFP-adder performs addition by
separating the input data into sign, exponent, and mantissa, as shown in Figure 3. The sign
is determined using sign logic. If two numbers have the same sign, the sign of the addition
result is the same. If the signs of the two numbers are different, the sign of the result must
be determined by comparing the numbers’ exponents and mantissas. Finally, sign logic is
used to determine the sign of addition and the addition/subtraction of the mantissa.

Alignment

oDATA

Sign1

Sign2

Exp1

Exp2

Mant1

Mant2

iDATA1

iDATA2

Sign Logic

Exponent

Comparison

HFP-adder

Rounding

Post-Normal.

E_diff
overflow

LZD

Normal.

Exponent

Adjustment

Sum

Figure 3. Hardware architecture of the HFP-adder.

Sensors 2021, 21, 6443 9 of 16

The exponent of the result is determined in three steps. First, the larger value is
selected by comparing the two exponent values. Then, the difference resulting from the
mantissa calculation is added. Finally, if overflow occurred in post-normalization, it is
adjusted to determine the final exponent. Adjustment ensures that the exponent did
not overflow.

The mantissa is determined through a more complex process than that for the previous
two components. It is calculated through a process of alignment, operation, normalization,
rounding, and post-normalization. First, if the two input values have different exponents,
an alignment process is required to match the number of digits. To use only one addition
and subtraction operator, we compared two values of the mantissa and swapped them.
After matching and swapping, the operation result was added or subtracted according to
sign logic.

Then, leading zeros are detected; changes in the exponent value are calculated; and nor-
malization to the floating-point format is performed. The least significant bits (LSBs) lost in
this process are used as rounding bits, which are used to perfoem rounding and normaliza-
tion. If an overflow occurs, normalization is performed again through post-normalization.
Finally, the components are combined to generate the final result.

Similar to the HFP-adder, the HFP-multiplier performs multiplication by separating
the input data into sign, exponent, and mantissa, as shown in Figure 4. The sign is
determined by an exclusive-OR logic gate. The exponent of the floating-point number
system uses a biased notation instead of a two’s complement [35]. Therefore, the HFP-
multiplier adds the two exponent values and subtracts the bias values. Then, the difference
resulting from the mantissa calculation is added. Finally, the result is adjusted to ensure
the exponent does not overflow.

Sign Logic

bias

Rounding

Post-Normal.

E_diff overflow

oDATA
iDATA1

iDATA2

Sign

Extension

Shift LZD

Normal.

Exponent

Adjustment

HFP-multiplier

Product

Sign1

Sign2

Exp1

Exp2

Mant1

Mant2

Figure 4. Hardware architecture of the HFP-multiplier.

Mantissa calculations are performed in the following order: operation, normalization,
rounding, and post-normalization. In contrast to the HFP-adders, the HFP-multipliers do
not require alignment processing because multiplication can be conducted for inputs with
any number of digits. The bits of the multiplication result are twice those of the operand.
Because the number of bits of the multiplication result is too large, we reduce the number
by shifting. The LSB that is lost at this point is used to generate three rounding bits.

Subsequently, an HFP-adder-like process follows. The leading zeros are detected and
the changes in the exponent value are calculated. Normalization to floating-point format
is then performed. The LSBs lost in this process are used as rounding bits. Rounding is
then performed using the rounding bits generated in the operation and normalization
steps. Again, overflows may occur during rounding; if it does, normalization is performed
again through post-normalization. Finally, the components are combined to generate the
final result.

3.2. Magnitude/Phase Calculation Unit

The MPU is used to calculate the magnitude and phase components of the FFT result.
If the magnitude component is calculated using an approximation method, such as that

Sensors 2021, 21, 6443 10 of 16

shown in Equation (26), the number of calculations can be efficiently reduced by replacing
the multiplication with an addition without significant performance degradation [36].

‖x‖ = 3
8
(|Re(x)|+ |Im(x)|) + 5

8
max(|Re(x)|, |Im(x)|) (26)

Here, x is the FFT result; Re(·) is a function that calculates the real part of an input
value; Im(·) is a function that calculates the imaginary part of an input value; and max(a, b)
is a function that selects the largest between two given values. In this case, it selects the
largest absolute value between the real and imaginary parts.

The approximated norm unit was implemented as shown in Figure 5. After comparing
the real and imaginary parts, the resulting magnitude is approximated using shifters and
adders. A comparison between two floating-point numbers is performed through exponent
and mantissa comparisons. The shifter subtracts the exponent by 2 and 3 to make 1/4 and
1/8, respectively. Finally, the numbers are added using HFP-adders, producing the same
result as Equation (26).

Real

Imag
>>3

>>2

Approximated Norm Unit

APPR_Norm

Comparison

: HFP-adder

Figure 5. Hardware architecture of the approximated norm unit.

The calculation of the phase component of the FFT result was implemented using a co-
ordinate rotation digital computer (CORDIC) algorithm. The CORDIC algorithm is an iter-
ative computation method that views a function as a vector in a two-dimensional plane and
obtains a converged value through repeated vector rotation. In Equations (27) through (29),
if a real value is substituted in x(1) and an imaginary value is substituted in y(1) and the
operation is repeatedly performed until y(i) becomes 0, the phase value comes out in z(i)

[37]. Here, di = −sign(x(i) · y(i)).

x(i+1) = x(i) − diy(i)2(−i) (27)

y(i+1) = y(i) + dix(i)2(−i) (28)

z(i+1) = z(i) − di × arctan(2(−i)) (29)

The arctangent unit, composed of a shifter, a controller, a MUX, and an adder, was
implemented as shown in Figure 6. When implementing CORDIC in a pipeline architecture,
units must be used as many times as the number of iterations. Therefore, one unit is used
repeatedly to calculate the phasor component. The shifter was implemented so that the
exponent could be subtracted from 0 to 12, and the nth constant had a value of arctan (2(−i)).

Sensors 2021, 21, 6443 11 of 16

Shifter

Shifter

0

1

2

Arctangent Unit

nth

constant

: HFP-adder

Figure 6. Hardware architecture of the arctangent unit.

4. Implementation Results of the Proposed FFT Processor

The proposed FFT processor was designed using hardware description language
(HDL) and implemented on a Xilinx Zynq UltraScale+ device-based FPGA platform.
As shown in Table 3, the FFT processor was implemented with 10,891 LUTs, 6365 FFs,
and 20 DSPs. It used 1.69 times more hardware resources than the BFU, which performed
only the FFT operation.

Table 3. Implementation results of the proposed FFT processor.

Block LUT FF DSP
WMU 637 393 8
BFU 6430 3570 12
MPU 2868 1811 0
ACU 956 591 0
Total 10,891 6365 0

As shown in Figure 7, the proposed FFT processor was configured on the FPGA
platform using an advanced extensible interface (AXI) bus interface for verification. Figure 8
shows the verification environment for the FPGA platform. The system structure consisted
of an FFT processor, a master interface for data transmission/reception with double data-
rate (DDR) memory, a slave interface for communication with a microprocessor (MP),
internal RAM and a register that can change the operation mode of the FFT processor.
Input data for hardware verification were initialized in DDR memory, and FFT length was
set using the MP. When the start signal of the FFT IP was input through the MP, the initial
data of the DDR memory was stored in the internal RAM of the FFT IP. After reading all
the data, the FFT processor performed the necessary operations. When these operations
were completed, the result was stored in DDR memory through the master interface.

Sensors 2021, 21, 6443 12 of 16

Figure 7. FPGA platform configuration for the verification of the proposed FFT processor.

Figure 8. Verification environment using an FPGA platform.

Table 4 shows the evaluation results forexecution the time of FMCW radar signal
processing, which refers to windowing the input data, performing a 2D FFT, calculating
the magnitude/phase components, and accumulating it. To evaluate the speed of the FFT
processor, we implemented different versions and measured their execution times across
three versions: one using only software, one using dedicated hardware only for the FFT
(similar to existing FFT processors), and one using the proposed FFT processor.

Sensors 2021, 21, 6443 13 of 16

Table 4. Execution time for FMCW radar signal processing when using the proposed FFT processor.

Data Size
Execution Time (ms)

Full SW FFT Accel. WMU/FFT/MPU/ACU
(Full) Accel.

64 × 64 4.40 1.89 0.61
128 × 128 20.10 6.39 1.20
256 × 256 90.14 23.89 3.00
512 × 512 399.59 94.89 11.16

1024 × 1024 1761.42 373.39 38.22
2048 × 2048 7706.01 1331.16 168.06
4096 × 4096 32,973.46 4537.62 618.78

When performing radar signal processing with 4096 × 4096 data, implementing only
the FFT in the hardware shortened the execution time from 32.97 to 4.54 s compared to than
using only software. This corresponded to a 7.26-fold acceleration. Execution time was
reduced from 32.97 to 0.62 s when implementing the proposed FFT processor instead of
only software. This corresponded to a 53.29-fold acceleration. Compared to implementing
only FFT in hardware, the proposed FFT processor accelerated the radar signal processing
by 7.32 times.

Table 5 shows a comparison between the hardware resources of the proposed FFT
processor and those of an existing FFT processor [38] and Xilinx’s FFT IP [39], both of which
were implemented with a memory-based architecture using a floating-point operator. Since
the memory-based FFT architecture was implemented based on a single butterfly operator,
the effect of the transform length on LUT and FF in FPGA was not significant. Therefore,
the normalization for transform length was not applied. Because they only performed the
FFT operation, it was more appropriate to consider only the hardware resources of the BFU
of the proposed processor. Even though the LUT and FF of [38] were normalized by the bit
width, it could be seen that the BFU of the proposed processor required fewer hardware
resources. Compared with [39], the BFU of the proposed FFT processor required a similar
amount of hardware resources with a similar clock frequency. However, the proposed
FFT processor is expected to be much faster than that of [39] for FMCW radar signal
processing owing to the integration of the WMU, MPU, and ACU. Therefore, the proposed
FFT processor is more efficient than the others when considering the trade-off between
hardware resources and execution time.

Table 5. Comparison of the proposed FFT processor with those from previous studies.

[38] [39]
Proposed

BFU FFT

FPGA Virtex-4 Zynq
UltraScale+

Zynq
UltraScale+

Zynq
UltraScale+

Architecture Memory-
based

Memory-
based

Memory-
based

Memory-
based

Transform length 1024 4096 64–4096 64–4096
Radix 4 4 2, 4 2, 4

Format Floating-point Floating-point Floating-point Floating-point
Windowing - - - O
Mag/Phase - - - O

Accumulation - - - O
LUT 24,472 6237 6430 10,891
FF 13,834 3756 3570 6365

Clock freq. (MHz) 100 300 300 300

Sensors 2021, 21, 6443 14 of 16

5. Discussion and Conclusions

We developed an FFT processor for FMCW radar signal processing to support vari-
able lengths by applying a mixed-radix algorithm. It also supports windowing, magni-
tude/phase calculations, and accumulation functions. The processor was implemented
using a Xilinx Zynq UltraScale+ device. In our implementation, 10,891 LUTs, 6365 FFs,
10 RAM blocks, and 20 DSPs were used as hardware resources.

Since the general FFT processor only supports FFT operation, it is appropriate to
compare it with the BFU of the proposed processor. The Xilinx FFT processor and the BFU
of the proposed FFT processor used similar hardware resources. However, the proposed
processor required more hardware resources. Comparing the execution time of window-
ing, 2D FFT, magnitude/phase calculation, and accumulation, the proposed processor
significantly shortened it 7.32 times compared to the Xilinx FFT processor.

As mentioned, the proposed FFT processor supported a high SQNR and special
functions such as windowing, magnitude/phase calculation, and accumulation. Therefore,
it is very efficient for FMCW radar signal processing and can be used for other applications
such as wireless communication with orthogonal frequency division multiplexing (OFDM)
modulation and voice recognition systems with frequency analysis, which requires a high
SQNR and the abovementioned special functions [40,41].

In future work, we will implement a radar signal processor that includes the proposed
FFT processor in VLSI. It and will be expected to find wide use in automobiles, drones and
wearable devices that require low-cost, llow-power implementation.

Author Contributions: J.H. designed the FFT processor, performed the experiment and evaluation,
and wrote the paper. Y.J. (Yongchul Jung) and S.L. implemented the processor and revised this
manuscript. Y.J. (Yunho Jung) conceived of and led the research, analyzed the experimental results,
and wrote the paper. All authors read and agreed to the published version of the manuscript.

Funding: This work was supported by the Institute of Information & communications Technology
Planning & Evaluation (IITP) grant funded by Korean government (MSIT) (No. 2019-0-00056, 2020-0-
00201), and the CAD tools were supported by IDEC.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cardillo, E.; Li, C.; Caddemi, A. Embedded heating, ventilation, and air-conditioning control systems: From traditional

technologies toward radar advanced sensing. Rev. Sci. Instrum. 2021, 92, 061501. [CrossRef] [PubMed]
2. Shao, Y.; Chen, P.; Cao, T. A grid projection method based on ultrasonic sensor for parking space detection. In Proceedings

of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018;
pp. 3378–3381.

3. Son, Y.; Heo, S.W. A novel multi-target detection algorithm for automotive FMCW radar. In Proceedings of the 2018 International
Conference on Electronics, Information, and Communication (ICEIC), Honolulu, HI, USA, 24–27 January 2018; pp. 1–3.

4. Han, J.; Liao, Y.; Zhang, J.; Wang, S.; Li, S. Target fusion detection of LiDAR and camera based on the improved YOLO algorithm.
Mathematics 2018, 6, 213. [CrossRef]

5. Piotrowsky, L.; Jaeschke, T.; Kueppers, S.; Siska, J.; Pohl, N. Enabling high accuracy distance measurements with FMCW radar
sensors. IEEE Trans. Microw. Theory Tech. 2019, 6, 5360–5371. [CrossRef]

6. Park, J.; Park, S.; Kim, D.H.; Park, S.O. Leakage mitigation in heterodyne FMCW radar for small drone detection with stationary
point concentration technique. IEEE Trans. Microw. Theory Tech. 2019, 67, 1221–1232. [CrossRef]

7. Pérez, R.; Schubert, F.; Rasshofer, R.; Biebl, E. Single-frame vulnerable road users classification with a 77 GHz FMCW radar sensor
and a convolutional neural network. In Proceedings of the 2018 19th International Radar Symposium (IRS), Bonn, Germany,
20–22 June 2018; pp. 1–10.

8. Zhang, Z.; Tian, Z.; Zhou, M. Latern: Dynamic continuous hand gesture recognition using FMCW radar sensor. IEEE Sens. J.
2018, 18, 3278–3289. [CrossRef]

9. Hyun, E.; Jin, Y.S.; Lee, J.H. Moving and stationary target detection scheme using coherent integration and subtraction for
automotive FMCW radar systems. In Proceedings of the 2017 IEEE Radar Conference (RadarConf), Seattle, WA, USA, 8–12 May
2017; pp. 0476–0481.

10. Kim, Y.; Ha, S.; Kwon, J. Human detection using Doppler radar based on physical characteristics of targets. IEEE Geosci. Remote
Sens. Lett. 2014, 12, 289–293.

http://doi.org/10.1063/5.0044673
http://www.ncbi.nlm.nih.gov/pubmed/34243491
http://dx.doi.org/10.3390/math6100213
http://dx.doi.org/10.1109/TMTT.2019.2930504
http://dx.doi.org/10.1109/TMTT.2018.2889045
http://dx.doi.org/10.1109/JSEN.2018.2808688

Sensors 2021, 21, 6443 15 of 16

11. Kim, J.C.; Jeong, H.G.; Lee, S. Simultaneous Target Classification and Moving Direction Estimation in Millimeter-Wave Radar
System. Sensors 2021, 21, 5228. [CrossRef]

12. Di Mattia, V.; Manfredi, G.; De Leo, A.; Russo, P.; Scalise, L.; Cerri, G.; Cardillo, E. A feasibility study of a compact radar system
for autonomous walking of blind people. In Proceedings of the 2016 IEEE 2nd International Forum on Research and Technologies
for Society and Industry Leveraging a Better Tomorrow (RTSI), Bologna, Italy, 7–9 September 2016; pp. 1–5.

13. Hyun, E.; Jin, Y.S.; Lee, J.H. A pedestrian detection scheme using a coherent phase difference method based on 2D range-Doppler
FMCW radar. Sensors 2016, 16, 124. [CrossRef]

14. Ahmad, W.A.; Kucharski, M.; Ergintav, A.; Abouzaid, S.; Wessel, J.; Ng, H.J.; Kissinger, D. Multimode W-Band and D-Band
MIMO Scalable Radar Platform. IEEE Trans. Microw. Theory Tech. 2020, 69, 1036–1047. [CrossRef]

15. Swartzlander, E.E.; Saleh, H.H. FFT implementation with fused floating-point operations. IEEE Trans. Comput. 2010, 61, 284–288.
[CrossRef]

16. Chen, J.; Lei, Y.; Peng, Y.; He, T.; Deng, Z. Configurable floating-point FFT accelerator on FPGA based multiple-rotation CORDIC.
Chin. J. Electron. 2016, 25, 1063–1070. [CrossRef]

17. Chen, X.; Lei, Y.; Lu, Z.; Chen, S. A variable-size FFT hardware accelerator based on matrix transposition. IEEE Trans. Very Large
Scale Integr. (VLSI) Syst. 2018, 26, 1953–1966. [CrossRef]

18. Li, Y.; Chen, H.; Xie, Y. An FPGA-Based Four-Channel 128k-Point FFT Processor Suitable for Spaceborne SAR. Electronics 2021,
10, 816. [CrossRef]

19. Hou, J.; Zhu, Y.; Shen, Y.; Li, M.; Wu, Q.; Wu, H. Enhancing precision and bandwidth in cloud computing: Implementation of a
novel floating-point format on fpga. In Proceedings of the 2017 IEEE 4th International Conference on Cyber Security and Cloud
Computing (CSCloud), New York, NY, USA, 26–28 June 2017; pp. 310–315.

20. Kronauge, M.; Rohling, H. Fast two-dimensional CFAR procedure. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 1817–1823.
[CrossRef]

21. Zhang, S.S.; Zeng, T.; Long, T.; Yuan, H.P. Dim target detection based on keystone transform. In Proceedings of the IEEE
International Radar Conference, Arlington, VA, USA, 9–12 May 2005; pp. 889–894.

22. Peng, W. Decision-making Optimization of Logistics Supply Chain Based on Small Target Echo Coherent Accumulation Algorithm
Based on LTE Signal. Acoust. Speech Signal Process. 2019, 1, 1–6.

23. Zheng, Q.; Yang, L.; Xie, Y.; Li, J.; Hu, T.; Zhu, J.; Xu, Z. A Target Detection Scheme with Decreased Complexity and Enhanced
Performance for Range-Doppler FMCW Radar. IEEE Trans. Instrum. Meas. 2020, 70, 1–13. [CrossRef]

24. Hyun, E.; Jin, Y.S.; Lee, J.H. Design and development of automotive blind spot detection radar system based on ROI pre-processing
scheme. Int. J. Automot. Technol. 2017, 18, 165–177. [CrossRef]

25. Alizadeh, M.; Shaker, G.; De Almeida, J.C.M.; Morita, P.P.; Safavi-Naeini, S. Remote monitoring of human vital signs using
mm-Wave FMCW radar. IEEE Access 2019, 7, 54958–54968. [CrossRef]

26. Wang, Y.; Wang, W.; Zhou, M.; Ren, A.; Tian, Z. Remote monitoring of human vital signs based on 77-GHz mm-wave FMCW
radar. Sensors 2020, 20, 2999. [CrossRef]

27. Garrido, M.; Qureshi, F.; Takala, J.; Gustafsson, O. Hardware architectures for the fast Fourier transform. In Handbook of Signal
Processing Systems; Springer: Cham, Switzerland, 2019; pp. 613–647.

28. Garrido, M.; Sánchez, M.Á.; López-Vallejo, M.L.; Grajal, J. A 4096-point radix-4 memory-based FFT using DSP slices. IEEE Trans.
Very Large Scale Integr. (VLSI) Syst. 2016, 25, 375–379. [CrossRef]

29. Liu, S.; Liu, D. A high-flexible low-latency memory-based FFT processor for 4G, WLAN, and future 5G. IEEE Trans. Very Large
Scale Integr. (VLSI) Syst. 2018, 27, 511–523. [CrossRef]

30. Hsiao, C.F.; Chen, Y.; Lee, C.Y. A generalized mixed-radix algorithm for memory-based FFT processors. IEEE Trans. Circuits Syst.
II Express Briefs 2010, 57, 26–30. [CrossRef]

31. Jung, Y.; Cho, J.; Lee, S.; Jung, Y. Area-efficient pipelined FFT processor for zero-padded signals. Electronics 2019, 8, 1397.
[CrossRef]

32. Jeon, H.; Jung, Y.; Lee, S.; Jung, Y. Area-Efficient Short-Time Fourier Transform Processor for Time–Frequency Analysis of
Non-Stationary Signals. Appl. Sci. 2020, 10, 7208. [CrossRef]

33. Hügler, P.; Geiger, M.; Waldschmidt, C. RCS measurements of a human hand for radar-based gesture recognition at E-band. In
Proceedings of the 2016 German Microwave Conference (GeMiC), Bochum, Germany, 14–16 March 2016; pp. 259–262.

34. Kärnfelt, C.; Péden, A.; Bazzi, A.; Shhadé, G.E.H.; Abbas, M.; Chonavel, T. 77 GHz ACC radar simulation platform. In Proceedings
of the 2009 9th International Conference on Intelligent Transport Systems Telecommunications (ITST), Lille, France, 20–22 October
2009; pp. 209–214.

35. Kahan, W. IEEE Standard 754 for Binary Floating-Point Arithmetic. Lect. Notes Status IEEE 1996, 754, 11.
36. Adjoudani, A.; Beck, E.C.; Burg, A.P.; Djuknic, G.M.; Gvoth, T.G.; Haessig, D.; Wolniansky, P.W. Prototype experience for MIMO

BLAST over third-generation wireless system. IEEE J. Sel. Areas Commun. 2003, 21, 440–451. [CrossRef]
37. Muller, J.M. Discrete basis and computation of elementary functions. IEEE Trans. Comput. 1985, 34, 857–862. [CrossRef]
38. Yu, J.Y.; Huang, D.; Li, X.; Xu, K.; Guo, L.M.; Gao, J.J. Four parallel channels radix-4 FFT with single floating-point butterfly. Appl.

Mech. Mater. 2013, 427, 708–711. [CrossRef]
39. Xilinx, Inc. Available online: https://www.xilinx.com/support/documentation/ip_documentation/xfft/v9_0/pg109-xfft.pdf

(accessed on 24 August 2021).

http://dx.doi.org/10.3390/s21155228
http://dx.doi.org/10.3390/s16010124
http://dx.doi.org/10.1109/TMTT.2020.3038532
http://dx.doi.org/10.1109/TC.2010.271
http://dx.doi.org/10.1049/cje.2016.08.002
http://dx.doi.org/10.1109/TVLSI.2018.2846688
http://dx.doi.org/10.3390/electronics10070816
http://dx.doi.org/10.1109/TAES.2013.6558022
http://dx.doi.org/10.1109/TIM.2020.3027407
http://dx.doi.org/10.1007/s12239-017-0017-5
http://dx.doi.org/10.1109/ACCESS.2019.2912956
http://dx.doi.org/10.3390/s20102999
http://dx.doi.org/10.1109/TVLSI.2016.2567784
http://dx.doi.org/10.1109/TVLSI.2018.2879675
http://dx.doi.org/10.1109/TCSII.2009.2037262
http://dx.doi.org/10.3390/electronics8121397
http://dx.doi.org/10.3390/app10207208
http://dx.doi.org/10.1109/JSAC.2003.809724
http://dx.doi.org/10.1109/TC.1985.1676643
http://dx.doi.org/10.4028/www.scientific.net/AMM.427-429.708
https://www.xilinx.com/support/documentation/ip_documentation/xfft/v9_0/pg109-xfft.pdf

Sensors 2021, 21, 6443 16 of 16

40. Gautam, V.; Ray, K.C.; Haddow, P. Hardware efficient design of variable length FFT processor. In Proceedings of the 14th IEEE
International Symposium on Design and Diagnostics of Electronic Circuits and Systems, Cottbus, Germany, 13–15 April 2011;
pp. 309–312.

41. Wang, C.; Gan, W.S.; Jong, C.C.; Luo, J. A low-cost 256-point FFT processor for portable speech and audio applications. In
Proceedings of the 2007 International Symposium on Integrated Circuits, Singapore, 26–28 September 2007; pp. 81–84.

	Introduction
	FMCW Radar Algorithm
	Measuring Range and Velocity in FMCW Radar
	CFAR Algorithm

	Hardware Architecture of the Proposed FFT Processor
	HFP Operation
	Magnitude/Phase Calculation Unit

	Implementation Results of the Proposed FFT Processor
	Discussion and Conclusions
	References

