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Background: Esophageal squamous cell carcinoma (ESCC) is a highly aggressive malignant tumor. This 
study aims to develop a robust prognostic model for ESCC.
Methods: Expression profiles of ESCC were downloaded from the Gene Expression Omnibus (GEO) and 
The Cancer Genome Atlas (TCGA) databases. Co-expressed modules were constructed by weighted gene 
co-expression network analysis (WGCNA). Differentially expressed genes (DEGs) between ESCC and 
normal samples were identified with the screening criteria of adjusted P value <0.05 and log |fold change 
(FC)| >1. After univariate and multivariate Cox regression analysis, an 8-gene module was constructed. A 
receiver operating characteristic (ROC) curve for overall survival (OS) was used to assess the prediction 
efficacy of the risk score. A nomogram was developed based on the risk score, age, gender, and stage for 1-, 2- 
and 3-year survival. The potential biological functions and pathways of the 8 genes were predicted using the 
Metascape database.
Results: The 2 ESCC-related co-expression modules were built via WGCNA. Among all DEGs, 55 
survival-related genes were identified for ESCC. Based on these genes, an 8-gene module was constructed, 
composed of CFAP53, FCGR2A, FCGR3A, GNGT1, IGF2, LINC01524, MAGEA3, and MAGEA6. The 
area under the curve (AUC) was 0.961, suggesting that the risk score could effectively predict the OS of 
patients with ESCC. Furthermore, the nomogram exhibited high accuracy in predicting the survival rate of 
ESCC patients at 1, 2, and 3 years. These genes were mainly involved in ESCC-related pathways such as 
extracellular matrix organization, collagen formation, and blood vessel development.
Conclusions: Our nomogram based on the 8-gene risk score could be a reliable prognostic tool for ESCC.

Keywords: Esophageal squamous cell carcinoma (ESCC); weighted gene co-expression network analysis 

(WGCNA); risk score; nomogram; prognosis

Submitted Nov 23, 2021. Accepted for publication Jan 20, 2022.

doi: 10.21037/atm-21-6935

View this article at: https://dx.doi.org/10.21037/atm-21-6935

14

https://crossmark.crossref.org/dialog/?doi=10.21037/atm-21-6935


Xie et al. Prognosis model of ESCCPage 2 of 14

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(2):88 | https://dx.doi.org/10.21037/atm-21-6935

Introduction

Esophageal cancer is the eighth most common cancer 
globally (1). Due to recurrence and metastasis, its 5-year 
survival rate is <20% (2). Esophageal squamous cell 
carcinoma (ESCC) is the main malignant subtype of 
esophageal cancer, accounting for over 90% of esophageal 
cancer cases (3). Despite advances in diagnosis and 
treatment techniques for ESCC, the 5-year survival rate 
is still very low (4). Current treatment methods include 
chemotherapy, radiation therapy, and surgery. There is still 
a lack of approved targeted therapy drugs for ESCC (5).  
The tumor node metastasis (TNM) staging system 
remains the gold standard for ESCC prognosis. Due to the 
heterogeneity of ESCC, the prognosis of patients in the 
same clinical stage varies (6). That is to say, relying on the 
TNM staging system to predict the prognosis of ESCC is 
often not accurate enough. Therefore, predictors that can 
accurately assess ESCC prognosis will be of great value for 
the individualized management of ESCC1.

With the development of high-throughput technologies 
such as microarray and RNA-seq, gene expression 
profiling has become a powerful tool for identifying 
prognostic biomarkers of ESCC (7-9). Furthermore, 
various differentially expressed genes (DEGs) and signaling 
pathways involved in the progression of ESCC have been 
identified (7-9). Nevertheless, the application of relevant 
research to clinical practice guidance is still very few. In this 
study, to obtain reliable results, we first used 2 independent 
datasets to build the 2 ESCC-related co-expression 
modules via weighted gene co-expression network analysis 
(WGCNA). By combining DEGs and genes in the ESCC-
related modules, an 8-gene module was developed. Due 
to the heterogeneity and complexity of ESCC, multi-
parameter markers are more accurate than a single marker 
for ESCC prognosis (10). Therefore, this study established 
a prognostic nomogram based on the 8-gene module and 
other factors. Furthermore, we explored the underlying 
mechanisms of the 8 genes during ESCC progression. Our 
findings may provide novel clues for the development of a 
promising prognostic tool for ESCC.

We present the following article in accordance with 
the TRIPOD reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-21-6935/rc).

Methods

Datasets

ESCC microarray and RNA-seq expression profiles were 
retrieved from the Gene Expression Omnibus (GEO) 
(https://www.ncbi.nlm.nih.gov/geo/) database (accession: 
GSE23400 and GSE130078) and The Cancer Genome 
Atlas (TCGA) database (https://portal.gdc.cancer.gov/). 
The GSE23400 dataset contained 53 ESCC samples and 
53 matched normal samples (11). The GSE130078 dataset 
contained 23 ESCC samples and 23 corresponding normal 
samples (12). The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013).

WGCNA

The GSE23400 and GSE130078 datasets were used for 
WGCNA, which was performed by the WGCNA package 
in R (13). To ensure a scale-free co-expression network, the 
soft threshold value β (the range was 0–30) was determined 
by the pickSoftThreshold function. The correlation 
coefficient matrix between genes (called an adjacency 
matrix) was constructed. Genes with similar expression 
patterns were assigned into a module. The dynamic cutting 
tree method was utilized to assign gene modules. Using 
topological overlap matrix (TOM), co-expression modules 
were constructed. The minimum number of genes in 
each gene module was set to 30. The correlation between 
gene significance (GS) and module significance (MS) was 
assessed.

Differential expression analysis

Differential expression analysis between ESCC and 
normal samples was performed using the GEO2R and 
DESq2 packages in R in the GSE23400 and GSE130078 
datasets (14). The threshold of DEGs was set as adjusted P 
value <0.05 and log |fold change (FC)| >1. P values were 
corrected by Bonferroni’s method.

Functional enrichment analysis

Functional enrichment analysis was carried out via the 
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Metascape online database (15). Metascape integrates 
multiple authoritative data resources such as Gene 
Ontology (GO), Kyoto Encyclopedia of Genes and 
Genomes (KEGG), UniProt, and DrugBank. It not only 
completes pathway enrichment and biological process 
annotation, but also performs gene-related protein network 
analysis and related information. Based on the integration 
of the above-mentioned database information, the rich 
biological pathways and protein complexes contained in the 
data are explained. The adjusted P value <0.05 was set as a 
significant result.

Construction of a prognostic risk score

Gene expression data and clinical information were obtained 
from TCGA database. Univariate Cox regression analysis 
was utilized to screen survival-related genes (P<0.05). The 
results were visualized by the forest package in R. Using 
multivariate Cox regression analysis, a prognostic model 
was built and the risk score was calculated according to the 
expression level of each gene and its regression coefficient. 
The Akaike information criterion (AIC) was calculated 
to assess the model. All ESCC samples from TCGA 
database were divided into high- and low-risk score groups. 
Kaplan-Meier survival analysis was then performed using 
the survival package in R. The prediction efficacy of the 
model was assessed by construction of a time-dependent 
receiver operating characteristic (ROC) curve utilizing the 
survivalROC package in R.

Nomogram

Based on the Cox proportional hazards regression model, 
a nomogram was constructed by integrating gender, age, 
stage, and the risk score through the rms package in R. The 
Bootstrap self-sampling method was utilized to verify the 
prediction effect of the model, which was assessed by the 
C-index.

mRNA-lncRNA co-expression network

The correlation between mRNAs and lncRNAs was 
analyzed based on the disease-related co-expression gene 
modules. Then, the mRNA-lncRNA co-expression network 
was visualized using Cytoscape software (version 3.7.2) (16). 
Functional enrichment analysis of the co-expressed mRNAs 
was achieved using the Metascape database.

Statistical analysis

All analyses were performed with R version 4.0.2 (https://
www.r-project.org/) and the corresponding packages. OS 
was assessed with the Kaplan-Meier method and log-
rank test for variance analysis. P value less than 0.05 was 
considered statistically significant.

Results

Identification of ESCC-related co-expression modules

In this study, 2 datasets were utilized for WGCNA. In the 
GSE23400 dataset, to ensure the network was scale-free, the 
optimal soft threshold β was determined as 6 (Figure 1A).  
Highly similar genes were assigned to a module. Finally, a 
total of 13 modules were determined by dynamic cutting 
tree (Figure 1B). A total of 400 genes were randomly 
selected for the heatmap. As shown in Figure 1C, 1 module 
was independent from the others. Among the 13 modules, 
the brown module was significantly correlated with ESCC 
(r=0.74 and P=4e−10), which was considered as a disease-
related module (Figure 1D). In Figure 1E, the genes in the 
brown module were highly related to ESCC (r=0.82 and 
P<1e−200). Furthermore, we performed WGCNA in the 
GSE130078 dataset. The optimal soft threshold β was set to 
20 (Figure 2A). Following module assignment by dynamic 
cutting tree, 13 modules were constructed (Figure 2B).  
In Figure 2C, the heatmap depicted that 1 module was 
independent from the others based on the 400 randomly 
selected genes. The yellow module had the highest 
correlation with ESCC (Figure 2D; r=0.9 and P=3e−17). 
In the module, the genes had a highly positive relationship 
with ESCC (Figure 2E; r=0.87 and P<1e−200).

DEGs in the ESCC-related co-expression modules

The genes in the ESCC-related “brown” module obtained 
from the GSE23400 dataset were intersected with the genes 
in the ESCC-related “yellow” module from the GSE130078 
dataset. These overlapped genes were considered as ESCC-
related genes. With the threshold of adjusted P value 
<0.05 and log |FC| >1, 222 DEGs were screened between 
ESCC and normal samples in the GSE23400 dataset (table 
available at https://cdn.amegroups.cn/static/public/atm-
21-6935-1.xlsx). Furthermore, 5,661 DEGs were identified 
for ESCC in the GSE130078 dataset (table available at 
https://cdn.amegroups.cn/static/public/atm-21-6935-2.xlsx). 

https://cdn.amegroups.cn/static/public/atm-21-6935-1.xlsx
https://cdn.amegroups.cn/static/public/atm-21-6935-1.xlsx
https://cdn.amegroups.cn/static/public/atm-21-6935-2.xlsx
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Figure 1 Construction of a co-expression network for esophageal squamous cell carcinoma (ESCC) in the GSE23400 dataset. (A) 
Determination of soft threshold β. (B) Gene dendrogram through average linkage hierarchical clustering. Different colors below the tree 
diagram indicate the assigned modules determined by dynamic tree cutting. The gray module contains genes that cannot be assigned to 
any module. (C) Heatmap of topological overlap in a gene network. Each row and column correspond to a gene. The depth of the color is 
proportional to the degree of topological overlap. The lower and right sides of the tree diagram express the modules marked in different 
colors. (D) A module-trait relationship network. Red expresses positive correlation and blue expresses negative correlation. In the box, the 
first line is the correlation coefficient, and the second line is the P value. (E) Scatter plot of the correlation between module membership and 
gene significance in the brown module.
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Figure 2 Construction of a co-expression network for esophageal squamous cell carcinoma (ESCC) in the GSE130078 dataset. (A) 
Determination of soft threshold β. (B) Gene dendrogram through average linkage hierarchical clustering. (C) Heatmap of topological 
overlap in a gene network. (D) A module-trait relationship network. (E) Scatter plot of the correlation between module membership and 
gene significance in the yellow module.
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Then, these ESCC-related genes were overlapped with 
DEGs from the 2 datasets. Finally, 3 ESCC-related DEGs 
(DUXAP10, WDR72, and FST) were identified, which 
could be critical genes for ESCC (Figure 3A). To probe the 
underlying biological functions and pathways of the genes 
in the 2 ESCC-related co-expression modules, functional 
enrichment analysis was carried out using the Metascape 
database. In Figure 3B,3C, genes in the ESCC-related co-
expression module from the GSE23400 dataset were mainly 
involved in mitochondrial gene expression, non-coding RNA 
(ncRNA) metabolic process, and chromosome segregation. 
Genes in the module from the GSE130078 dataset were 
mainly involved in extracellular matrix organization, 
collagen formation, NABA matrisome associated, skeletal 
system development, PID integrin 1 pathway, blood vessel 
development, collagen fibril organization, and regulation of 
cell adhesion (Figure 3D,3E).

A nomogram based on an 8-gene prognostic model for 
ESCC

After univariate Cox regression analysis, 55 survival-related 
genes were identified for ESCC through TCGA database 
(Table 1). MAGEA6, MAGEA3, LINC01524, CFAP53, IGF2, 
GNGT1, FCGR3A, and FCGR2A were used to construct 
a prognostic model for ESCC following multivariate Cox 
regression analysis (Table 2). The risk score was calculated 
based on coefficients and their expression levels. Among 
them, in Figure 4A, MAGEA6 [hazard ratio (HR): 0.270, 
95% confidence interval (CI): 0.087–0.850, P=0.026], 
CFAP53 (HR: 0.080, 95% CI: 0.014–0.460, P=0.004), 
GNGT1 (HR: 0.340, 95% CI: 0.150–0.920, P=0.009), and 
FCGR3A (HR: 0.370, 95% CI: 0.150–0.920, P=0.033) 
were protective factors for ESCC. Also, LINC01524 (HR: 
2.7e+06, 95% CI: 518.649–0.850, P<0.01), IGF2 (HR: 
2.000, 95% CI: 1.205–3.400, P=0.008), and FCGR2A (HR: 
3.400, 95% CI: 1.287–9.200, P=0.014) were risk factors 
for ESCC. All ESCC patients were divided into high and 
low risk groups in line with the median value of the risk 
score. Kaplan-Meier survival analysis results demonstrated 
that patients with a high-risk score usually had a poorer 
overall survival (OS) time than those with a low-risk score  
(Figure 4B; P=1.78e−05). An ROC curve was generated 
to validate the prediction performance for the prognosis 
of ESCC. The area under the curve (AUC) was 0.961, 
suggesting that the risk score was highly sensitive and 
accurate for prognostic prediction (Figure 4C). Furthermore, 
4 prognostic factors (gender, age, stage, and risk score) were 

used to establish a nomogram for OS prediction. As shown 
in Figure 4D, the predictive ability of the nomogram was 
accurate for the OS of ESCC patients.

Identification of 8 prognostic factors for ESCC

We further performed Kaplan-Meier survival analysis 
for CFAP53 (Figure 5A), FCGR2A (Figure 5B), FCGR3A  
(Figure 5C), GNGT1 (Figure 5D), IGF2 (Figure 5E), 
LINC01524 (Figure 5F), MAGEA3 (Figure 5G), and 
MAGEA6 (Figure 5H). The results showed that ESCC 
patients with low CFAP53  (P=1.04e−02),  GNGT1 
(P=2.059e−02), MAGEA3 (P=1.144e−02), and MAGEA6 
(P=3.648e−02) expression had a shorter OS time than those 
with high expression. Also, high FCGR2A (P=1.001e−01), 
FCGR3A  (P=3.816e−02), IGF2  (P=1.211e−01), and 
LINC01524 (P=3.139e−02) expression indicated poorer OS 
compared to low expression.

Construction of an mRNA-lncRNA co-expression network 
for ESCC

Based on the 8 prognostic signatures, a mRNA-lncRNA co-
expression network was constructed for ESCC (Figure 6A).  
Co-expressed RNAs of the 8 prognostic RNAs were 
enriched in various biological processes and signaling 
pathways such as extracellular matrix organization, collagen 
formation, NABA matrisome associated, skeletal system 
development, and blood vessel development (Figure 6B). 
Pathway enrichment network diagram results revealed that 
the functional network of these RNAs was complex and 
diverse (Figure 6C).

Discussion

As the main histological subtype of esophageal cancer, 
ESCC is a highly aggressive malignant tumor. A variety 
of environmental factors contribute to ESCC, such as 
smoking, drinking, and chemical exposure. Genomic studies 
have confirmed that changes in gene expression in ESCC 
mediate the biological behavior of tumor cells (17). Despite 
in-depth studies on its molecular mechanisms, the clinical 
outcomes of ESCC patients are still unsatisfactory. Thus, in 
this study, we constructed a robust prognostic nomogram 
based on the 8-gene signature, age, gender, and stage. 
This model exhibited good performance for prognostic 
prediction of ESCC. Hence, our study may provide novel 
clues for the early detection and treatment of ESCC.
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Table 1 The 55 survival-related genes for ESCC

Gene HR z P value

MAGEA6 0.632622 −3.06737 0.00216

MAGEA3 0.64959 −3.04259 0.002346

LINC02154 1.57539 3.030769 0.002439

AMIGO2 2.050024 3.015008 0.00257

LUCAT1 3.411003 2.91137 0.003598

TREML2 13.93435 2.894222 0.003801

LINC02081 2.495196 2.836985 0.004554

LINC01524 9571.259 2.829145 0.004667

CFAP53 0.286082 −2.78916 0.005284

IGF2 1.681858 2.771445 0.005581

GNGT1 0.425633 −2.77041 0.005599

HAS2-AS1 2.432934 2.74082 0.006129

SLC44A5 0.511921 −2.70496 0.006831

IFITM3 1.839623 2.681378 0.007332

FCGR3A 1.722055 2.644744 0.008175

FCGR2A 1.802957 2.623342 0.008707

FCER1G 1.80513 2.608749 0.009087

IFITM1 1.556451 2.582223 0.009817

MSC 1.548024 2.531968 0.011342

LINC00898 0.018806 −2.52327 0.011627

KIAA1324L 0.427248 −2.44412 0.014521

RPL29P19 1.60387 2.443574 0.014543

SLC2A3 1.885667 2.435088 0.014888

GAS1 1.462505 2.402565 0.016281

C3AR1 2.049546 2.379985 0.017313

SPP1 1.313026 2.365654 0.017998

SERPINH1 2.181163 2.354909 0.018527

DENND2D 0.332112 −2.33765 0.019405

CTSL 1.718827 2.319918 0.020345

LY96 1.904947 2.294088 0.021785

APBA2 1.929652 2.292849 0.021857

C1R 1.625295 2.28929 0.022063

IFITM2 1.776594 2.277153 0.022777

HOXC8 2.075444 2.274953 0.022909

POPDC3 1.532657 2.259542 0.02385

Table 1 (continued)

Table 1 (continued)

Gene HR z P value

MAGEA11 0.595434 −2.25558 0.024097

APLN 1.751567 2.236769 0.025301

STC2 1.705247 2.185285 0.028868

MIR4435-2HG 2.654231 2.166308 0.030288

HAS2 1.608846 2.165967 0.030314

MNDA 1.79297 2.119068 0.034085

PARVB 2.112533 2.115255 0.034408

G0S2 1.502597 2.112957 0.034604

CSF3 0.579595 −2.08523 0.037048

TWIST2 1.729333 2.084705 0.037096

TNFRSF11B 0.301497 −2.08378 0.03718

FAM225A 538.3035 2.071588 0.038304

HOOK1 0.565932 −2.07044 0.038411

TIMP1 1.623557 2.046971 0.040661

HSPD1P6 141.4708 2.03818 0.041532

FCGR1A 2.772473 2.030437 0.042312

HK3 2.14885 1.9925 0.046316

ACAN 4.27515 1.978141 0.047913

OSM 2.206695 1.978062 0.047922

PDLIM7 1.62091 1.969755 0.048866

P values less than 0.01 were considered significant. ESCC, 
esophageal squamous cell carcinoma; HR, hazard ratio; z, 
the value of the hypothesis test statistic for the regression 
coefficients.

WGCNA has been widely applied to explore ESCC-
related modules. For instance, TPX2, CDK1, and CEP55 
hub genes related to relapse-free survival have been 
identified in ESCC by WGCNA (18). In this study, we 
constructed 2 ESCC-related co-expression modules from 
2 GEO datasets. Functional enrichment analysis results 
demonstrated that genes in the 2 co-expression modules 
were significantly involved in ESCC-related pathways such 
as mitochondrial gene expression (17), ncRNA metabolic 
process (19), and chromosome segregation (20), which 
confirmed the clinical significance of the 2 modules for 
ESCC. Based on univariate and multivariate Cox regression 
analyses, an 8-gene model was built for ESCC. TNM 
staging is the main tool used to guide therapeutic strategies 
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for ESCC as a prognostic indicator. However, due to 
heterogeneity at the molecular level, the clinical outcome of 
patients is different. Our findings proposed that the 8-gene 
signature could accurately predict the prognosis of ESCC 
patients, the risk scores have the ability to discriminate 
high-risk patients, who have worse survival than low-risk 
patients. ROC confirmed its good performance for the 
prognostic prediction of ESCC. In a previous study, an 
immune-related nomogram was shown to provide more 
accurate prognostic prediction for patients with operable 
ESCC, as a supplement to TNM staging (21). In this 
study, by integrating the risk score and other factors, the 
nomogram could more accurately predict the OS of patients 
with ESCC.

Our survival analysis revealed that ESCC patients with 
low CFAP53, GNGT1, MAGEA3, and MAGEA6 expression 
had a shorter OS time than those with high expression. 
Moreover, high FCGR2A, FCGR3A, IGF2, and LINC01524 
expression indicated poorer OS than low expression. 
Thus, these 8 genes are considered as potential prognostic 
markers for ESCC. In previous study, CFAP53 has been 
detected in the bronchial epithelium (22), and is highly 
expressed in the sputum of asthmatics. FCGR2A gene 
polymorphism is related to the prognosis and treatment 
response of a variety of cancer types. For example, the 
FCGR3A-158 gene polymorphism may predict the efficacy 
of trastuzumab for early ERBB2/HER2-positive breast 
cancer patients (23). What this study suggests to us is that 8 
gene signatures in the prognostic models may be targets for 
therapy. The FCGR2A rs1801274 variant is associated with 

a high risk of gastric cancer in the Chinese population (24). 
MiR-139-3p is a candidate serum biomarker for predicting 
the prognosis of ESCC. Previous study showed that 
FCGR2A could be mediated by miR-139-3p at the post-
transcriptional level (25). GNGT1 can predict the response 
to platinum-based chemotherapy drugs (26). IGF2 could 
maintain the stem cell characteristics of ESCC cells (27), 
and the prognostic potential of IGF2 in ESCC has been 
confirmed (28). IGF2 may promote ESCC cell migration 
and invasion (29). High expression of IGF2 can enhance the 
chemoresistance of ESCC (30). In comparison to mRNAs, 
lncRNAs possess higher tissue specificity, which is easier to 
detect (31). Thus, lncRNAs are also a key marker for ESCC 
diagnosis and prognosis. Only one study has demonstrated 
that LINC01524 is up-regulated in Helicobacter pylori-
positive gastric cancer tissues compared to Helicobacter 
pylori-negative tissues (32). MAGEA3 is an independent 
prognostic factor for ESCC patients (33). Its expression is 
induced by decitabine, thereby enhancing the recognition 
of ESCC by T cells (34). The roles of the 8 genes in ESCC 
require in-depth exploration.

An mRNA-lncRNA co-expression network was built 
based on the 8 genes for ESCC. These co-expressed 
genes are involved in a variety of biological functions. For 
example, the extracellular matrix participates in the adhesion 
and metastasis of ESCC cells (35), which could be mediated 
by these co-expressed genes. Collagen is a component of 
the extracellular matrix, and is closely related to tumor 
growth as well as epithelial-mesenchymal transition (36). 
Blood vessel development as a key prognostic factor was 
distinctly enriched by these genes (37). Combining previous 
research, the 8 genes may participate in the progression 
of ESCC through complex interactions. However, there 
are still some limitations in this study. Firstly, the 8-gene 
signature should be verified in an independent dataset. 
Secondly, more clinical features should be integrated into 
our nomogram model. Thirdly, the specific functional 
mechanism of the 8-gene signature and 3 ESCC-related 
DEGs (DUXAP10, WDR72, and FST) (Figure 3A) in ESCC 
needs further study. Fourth, the relationship between 
risk levels and disease treatment response remains to be 
explored in treatment-group samples.

In this study, in the GSE23400 and GSE130078 
datasets, WGCNA was carried out, and the co-expression 
gene modules related to ESCC were determined. Then, 
the genes in these modules were analyzed by Metascape, 
revealing that these genes might play important roles in 

Table 2 An 8-gene model for ESCC based on univariate and 
multivariate Cox regression analysis

Gene Exp (coef)

MAGEA6 0.271936

MAGEA3 2.102895

LINC01524 2737999

CFAP53 0.080066

IGF2 2.014585

GNGT1 0.338051

FCGR3A 0.372708

FCGR2A 3.446703

ESCC, esophageal squamous cell carcinoma; Exp (coef), 
weighting factor for gene expression.
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Figure 4 A nomogram based on an 8-gene prognostic model for esophageal squamous cell carcinoma (ESCC). (A) A forest diagram 
depicting the correlation between the 8 genes and the overall survival of ESCC patients. (B) Kaplan-Meier survival analysis of the risk score 
for ESCC patients. (C) Construction of a receiver operating characteristic (ROC) curve for validation of the prediction performance of the 
risk score for the prognosis of ESCC patients. (D) A nomogram used to predict the overall survival of ESCC patients. *, P<0.05; **, P<0.01; 
***, P<0.001. AIC, Akaike information criterion; AUC, area under the curve.
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Figure 5 Kaplan-Meier survival analysis of 8 genes for esophageal squamous cell carcinoma (ESCC). (A) CFAP53; (B) FCGR2A; (C) 
FCGR3A; (D) GNGT1; (E) IGF2; (F) LINC01524; (G) MAGEA3; (H) MAGEA6.
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ESCC. Combining the genes in these modules and DEGs, 
we identified 8 survival-related genes in TCGA database. 
The Cox regression model composed of these 8 genes 
demonstrated good performance in predicting prognosis. At 
the same time, the mRNA-lncRNA co-expression network 
was analyzed, indicating that these 8 genes exhibited 
complex interaction relationships. In summary, the 8 genes 
found by the analysis of multiple datasets can be used as 
ESCC biomarkers to provide certain theoretical support for 

ESCC research.

Conclusions

Taken together, WGCNA identified ESCC-related co-
expression modules. A robust 8-gene signature could 
accurately predict the prognosis of ESCC patients. 
Furthermore, a prognostic nomogram based on risk score, 
age, gender, and stage was constructed for ESCC, which 
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A

B

C

Figure 6 Construction of an mRNA-lncRNA co-expression network for esophageal squamous cell carcinoma (ESCC). (A) The mRNA-
lncRNA co-expression network. Triangles indicate 8 prognostic-related RNAs, dots indicate RNAs in the yellow module, and square dots 
indicate RNAs in the brown module. Yellow-green represents mRNA, and light purple represents lncRNA. (B) Pathway enrichment bar 
chart. (C) Pathway enrichment network diagram.



Annals of Translational Medicine, Vol 10, No 2 January 2022 Page 13 of 14

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(2):88 | https://dx.doi.org/10.21037/atm-21-6935

may be beneficial for early diagnosis and treatment. In future 
studies, the 8 genes will be verified in more clinical trials.
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