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Mutual interactions between the gut microbiota and the host play essential

roles in maintaining human health and providing a nutrient-rich environment

for the gut microbial community. Intestinal epithelial cells (IECs) provide the

frontline responses to the gut microbiota for maintaining intestinal

homeostasis. Emerging evidence points to commensal bacterium-derived

components as functional factors for the action of commensal bacteria,

including protecting intestinal integrity and mitigating susceptibility of

intestinal inflammation. Furthermore, IECs have been found to communicate

with the gut commensal bacteria to shape the composition and function of the

microbial community. This review will discuss the current understanding of the

beneficial effects of functional factors secreted by commensal bacteria on IECs,

with focus on soluble proteins, metabolites, and surface layer components, and

highlight the impact of IECs on the commensal microbial profile. This

knowledge provides a proof-of-concept model for understanding of

mechanisms underlying the microbiota-host mutualism.

KEYWORDS
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probiotics, secretory product, commensal microbiota, mutualism
Introduction

The human microbial community comprises more than one trillion microorganisms,

including bacteria, fungus, viruses, and protozoa, which makes the number of the

microbial cells almost equal to the total number of cells in human body (1, 2). The

taxonomic composition of the human microbiota exhibits high interpersonal differences;

however, microbial genes and metabolic modules share similar functions (3, 4). In the
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gastrointestinal tract of healthy adults, Firmicutes, Bacteroidetes,

Proteobacteria, Actinobacteria, and Verrucomicrobia are the

main commensal microbial phyla (5), with Firmicutes and

Bacteroidetes accounting as the majority of phyla (6). In

contrast to the relative abundance of commensal microbiota,

the normal human gut also contains pathobiota with potential

pathogenic behavior (7). Symbiotic relationships between

commensal bacteria and the host are established through a

variety of ways that are mutually beneficial. The commensal

bacteria provide nutrients to host via digesting dietary

components that can be used as energy sources (8), prevent

the colonization of pathogenic bacteria by competitive inhibition

of pathogen binding to host cells and secretion of antimicrobial

compounds (9), and affect many aspects of host metabolism and

physiological processes that lead to direct influence on

modulating protective immune responses (10), maintaining

intestinal epithelial homeostasis (11) and mediating the gut–

brain axis for the function of the nervous system (12). In turn,

the gut microbiota as the most diverse and populous microbial

assemblage (13) is influenced by the host factors through several

means. In addition to the nutritional support from the host, the

composition of the intestinal microbiome is shaped and

structured by the genotype of the host and factors associated

with lifestyle, environmental exposure, and diseases (1). Further,

increasing evidence reveals that host-derived factors participate

in regulating bacterial adaptation, growth, and function (14).

The health-promoting impact of the mutualistic

relationships between the gut microbiota and the host

supports the therapeutic potential of the microbiota-targeting

approach such as probiotics and prebiotics. Probiotics, which are

beneficial commensal bacteria to host health, have shown

promising outcomes in human, animal, and in vitro studies

(15, 16). The most widely used probiotics, Lactobacillus and

Bifidobacterium, have shown the high survival properties in the

gastrointestinal acidic environment (17, 18). Likewise, prebiotics

is non-digestible dietary ingredients that promote the survival

of beneficial probiotic species (19). However, current

understanding is insufficient to exploit the clinical efficacy of

probiotics (20, 21). In addition to wide variations in probiotic

strain selection and dosing in probiotic clinical trials, uncertain

clinical outcomes result from lack of precision in host variables,

including the health condition, gut microbiome profile, and diet

(15), which may limit probiotic bioavailability and

biopharmacology in the gastrointestinal tract. Therefore,

probiotic bacteria-derived functional factors with effectiveness

for promoting health are in high demand.

The first driver of the gut microbiota and host interactions

occurs at the monolayer of intestinal epithelial cells (IECs). IECs

contain different cell types with unique functions: enterocytes for

absorption of nutrients, transport water and waste products;

goblet cells for production of mucus, enteroendocrine cells for

hormone secretion; Paneth cells for secretion of antimicrobial

peptides (AMPs), and microfold (M) cells involved in antigen
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capture and presentation to immune cells (22). IECs also

contribute to host immunity by secreting cytokines and

chemokines (23, 24). Most importantly, IECs serve as the front

line for the host to interact with the intestinal luminal factors

such as the gut microbiota and their secretory products and

metabolites. The mucosal barrier formed by tight junctional

complexes within IECs (25) and the layer of mucus protects the

host against pathogen and toxic substance invasion (26).

Notably, commensal bacteria stimulate several beneficial

cellular responses in IECs for intestinal development, mucosal

barrier, and intestinal homeostasis (23).

Mechanisms underlying the regulatory effects of commensal

bacterium-derived factors on the host and the impact of

components in the gut luminal environment supported by the

host on shaping the composition and function of commensal

bacteria are beginning to be understood. This review will

highlight updated information on the mutualistic relationships

between IECs and commensal bacteria, with the focus

on commensal bacterium-derived functional factors.

Knowledge to elucidate the mutualism-led health-promoting

outcomes can pave a new avenue for developing microbiota-

targeting therapies.
Commensal bacterium-derived
factors promote intestinal
epithelial homeostasis

Microbe-derived factors refer to a complex of secreted

micro- and macromolecules such as products (proteins,

enzymes, organic acids, and bacteriocins), metabolites (short-

chain fatty acids, SCFAs), and bacterial fractions (muropeptides,

teichoic acids, endo- and exopolysaccharides, and surface-layer

proteins), which are naturally generated by live bacteria or made

in fermentation process (27). Notably, factors produced by

commensal bacteria are recognized by IECs and can induce

beneficial signaling in IECs, resulting in maintaining intestinal

homeostasis. IECs serve as the initial interface with the gut

microbiota and a first line of defense against harmful microbes

and contribute to translating commensal microbiota-elicited

signals into specific cellular responses, thus can operate as the

functional connection of commensal bacterial activity and

hemostasis in the host (17). The beneficial effects of the

interactions between commensal bacteria and epithelial cells

occur not only in the gut but also in other parts of the human

body. Studies have shown that commensal bacteria protect the

skin against local pathogen infection (28). The importance of the

interactions between commensal bacteria and IECs is reflected

by the genetic evidence that the impaired recognition of

commensal bacteria is associated with development of

intestinal inflammatory diseases, such as many inflammatory

bowel disease (IBD) susceptibility genes have been found to be
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involved in regulating host–microbial interactions (29, 30).

Therefore, to prevent uncontrolled inflammatory responses,

new strategies focused on restoring the normal balance of the

intestinal ecosystem are under development (31).
A secretory protein – p40

p40, which was originally isolated from the culture

supernatant of Lactobacillus rhamnosus GG (LGG) (32), is the

first recognized biologically active component of a Gram-

positive commensal and probiotic bacterium, L. rhamnosus

GG (LGG), for benefiting intestinal functional maturation and

protecting IECs against inflammatory insults. Genes encoding

proteins of the p40 cluster are mainly present in species related

to the L. casei, L. paracasei, L. zeae and L. rhamnosus taxonomic

group. In fact, p40 has been detected in culture supernatants of

several strains of Lactobacillus (33–35). p40 homolog genes are

also present in some species of the families Enterococcaceae and

Streptococcaceae (36). C-terminal domain of p40 contains a

histidine-dependent amidohydrolase/peptidase (CHAP) domain

with cell wall hydrolase activity (33). Interestingly, p40 has been

found to bind lipoteichoic acid (LTA) on the external surface of

extracellular vesicles (EVs) released by Lactobacillus casei BL23

(37), suggesting a manner for secretion of p40 by bacteria. It is

unknown that whether there is free form of p40 section.
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Studies have revealed that p40 exerts immediate and long-

lasting effects on IECs (Figure 1) through two distinct

mechanisms and these two functions are independent. The

immediately effect of p40 is through transactivation of

epidermal growth factor receptor (EGFR) and its downstream

target, Akt, in IECs. In addition to direct ligand binding to EGFR

for its activation, EGFR can be transactivated by other pathways

that stimulate A Disintegrin and Metalloproteinase (ADAM)17-

triggered releasing transmembrane EGFR ligands for binding to

EGFR (38). Studies found that p40 up-regulated ADAM17

catalytic activity to stimulate membrane-bound heparin

binding (HB)-EGF release in human and mouse intestinal

epithelial cell lines and in mice (32). The biological

consequences of EGFR transactivation by p40 have been

unraveled, including inhibition of proinflammatory cytokine-

induced apoptosis, preserving tight junctions in IECs (39, 40),

and promoting mucin production by goblet cells (41).

Furthermore, transactivation of EGFR by p40 not only

stimulates protective roles on IECs but also induces innate

immunity: p40 upregulates gene expression and protein

production of proliferation inducing ligand (APRIL) gene

expression in IECs, which is a cytokine involved in B cell class

switching to IgA+ cells, thereby increasing IgA+ plasma cells and

IgA production (42). EGFR activation contributes to multiple

protective cellular effects in colitis (43). Strong evidence

indicates that p40 transactivation of EGFR in IECs contributes

to ameliorating colitis in mice (44).
FIGURE 1

Mutual interactions between commensal bacteria and IECs. p40 is a functional factor secreted from the gut commensal bacteria. p40 has
immediate effects on transactivation of EGF receptor (EGFR) and its downstream target, Akt, leading to protective responses in IECs for
preventing and treating colitis (1). p40 also exerts sustained effects on IECs through upregulation of Setd1b expression and histone 3 (H3)
methylation on lysine residue (H3K4me1/3) to stimulate TGFb gene expression and protein production by IECs, thus p40 supplementation in
early life prevents colitis in adulthood (2). IEC-released extracellular vehicles (EVs) communicate with commensal bacteria and promote the
function of commensal bacteria (3).
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Furthermore, EGFR signaling is required for postnatal

growth (45). p40 significantly enhanced functional maturation

of the intestine, including intestinal epithelial cell proliferation,

differentiation, and tight junction formation, and IgA

production in early life in wild-type mice, which is mediated

by transactivation of EGFR in IECs (46). These results define a

mechanism of p40 regulated immediate effect on protection of

intestinal epithelium through induction of ADAM17-mediated

EGFR ligand release, leading to transactivation of EGFR in IECs.

Colonization of the gut microbiota in a critical window in

early life enables life-long health outcomes in humans and

animals (47). It has been reported that p40 supplementation in

early life stimulated long-lasting effects on TGF-b production by

IECs. Two outcomes of this effects have been reported:

promoting induction of differentiation of regulatory T cells

(Tregs) in the lamina propria of the small intestine and the

colon and protecting of epithelial barrier and inhibiting

proinflammatory cytokine production in IECs. One ultimate

result by early p40 supplementation is to prevent colitis in

adulthood (44, 46).

The long-lasting effects of p40 has been related to its

epigenetic modification of IECs. Epigenetic reprogramming

refers to global remodeling of epigenetic marks via which the

host identifies the microbial signal to convert them into the long-

term specific cellular signal. In the IECs and immune cells,

epigenetic modification permits the gut microbiota to regulate

gene expression and cellular responses (48). The COMPASS

complex contains methyltransferase and adaptors to activate

target gene expression by catalyzing mono- and tri-methylation

of histone 3 lysine 4 residue (H3K4me1/3) at enhancer and

promoter sites (49). Setd1b, a methyltransferase in COMPASS

complex, has a specific function in the assembly and regulation

of H3K4 mono-, di and trimethylation. p40 has been found to

upregulate Setd1b gene expression and protein production,

which mediate programming the TGFb locus into a

transcriptionally permissive chromatin state and promoting

TGFb production in IECs. Interestingly, p40 supplementation

in early life, but in adulthood, could induce sustained H3K4me1/

3 in IECs toward TGFb production (44). These results establish a

novel mechanism involved life-long effects on maintain

homeostasis by supplementation with commensal bacterium-

derived factor in early life.
Metabolites - short-chain fatty acids
and indole

The gut bacteria can metabolite a compound of phytochemicals

in dietary fiber-enriched meals into SCFAs, including acetate,

butyrate, and propionate. In particularly, butyrate is rapidly

absorbed from the intestinal lumen and is the preferred source of

energy for colonic epithelial cells (50). Regulation of epithelial barrier

by SCFAs has been reported through several mechanisms.
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Reinforcing the epithelial barrier and enhancing wound healing

through promoting the expression of the actin-binding protein

synaptopodin (SYNPO) has been identified as a role of a SCFA,

butyrate (51). Butyrate decreases gut permeability by enhancing tight

junction protein claudin-2 upregulated expression via an interleukin

10 receptor subunit alpha (IL-10RA)-dependent mechanism (52).

SCFA produced by the symbiotic bacteria, Akkermansia

muciniphila, Clostridium butyricum, and Faecalibacterium

prausnitzii produce SCFAs in the intestinal tract function as

inhibitors of histone deacetylases (HDACs) by upregulating

histone acetyltransferases activity, while possessing anti-

inflammatory and epithelial barrier maintenance effects in various

animal models (53). As proven, the epigenetic effect of SCFAs as

inhibitors of HDACs is mostly butyrate>propionate>acetate, which

results in increased levels of histone acetylation, decondensation, and

relaxing of chromatin (54). In vitro studies have shown that SCFAs

have the potential to be the intestinal protection barrier by inhibiting

the enzyme Histone Deacetylase (HDAC), which has preventative

effects on DNA transcription, regulates gene expression, and

increases the expression of MUC2, MUC1, MUC3, and MUC4

(55). Furthermore, both butyrate and propionate upregulated

MUC2 transcript expression in LS174T cells. Analysis of the

MUC2 promoter indicated that an active butyrate-responsive

region comprising an AP1 (c-Fos/c-Jun) cis-element is necessary

for the activation of MUC2 by acetylation and methylation of

histones (56). Another study has shown that SCFAs strengthen

the epithelial cell tight junctions, resulting in a robust and healthy

intestinal barrier. Butyrate maintains and enhances the

transepithelial electrical resistance (TEER) in Caco-2 cells that is

mediated by AMP activated protein kinase (AMPK) (57).

SCFAs such as butyrate and propionate play significant roles

in immunity through regulation of IECs and immune cells, such

as T cells, macrophages, and dendritic cells. A report showed

that SCFAs and a high-fiber diet were able to induce vitamin A

metabolism in epithelial cells and CD103+ DCs and this was

associated with enhanced Foxp3 expression in T cells (58). DCs

have been found to play a significant role in the initiation of IgA

production in the gut in response to SCFAs. Metabolite-sensing

mammalian G protein-coupled receptor (GPR43) in DCs

mediated the acetate induction of intestinal IgA response to

microbiota, in that GPR43 knock out mice showed lower IgA

production and decreased numbers of IgA+ B cells in the

intestines (59).

In addition to normal IECs, SCFA plays roles in inhibition of

colorectal cancer cell growth. Major anti-proliferative activity of

SCFAs is associated with butyrate, acetate, and propionate (with

acetate and propionate requiring higher concentrations to be as

effective as butyrate). These SCFA compounds can promote

apoptosis responses in colon cancer cells by influencing

mitochondrial permeability potential, producing reactive

oxygen species (ROS), and activating caspase-3 (27).

Indole and its derivatives are derived from the metabolism of

tryptophan by the gut bacteria containing tryptophanase such as
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Lactobacillus reuteri and Clostridium sporogenes. The

absorption of indole and its derivatives (Indole 3-propionic

acid (IPA), indole-3-ethanol (IEA), and indole-3-acetaldehyde

(IAAld) through the intestinal epithelium is due to the ability to

freely diffuse through lipid membranes (60). Indole and its

derivatives support intestinal immune homeostasis through

activating aryl hydrocarbon receptor (AhR) to protect the

intestinal tight junctional barrier. The activation of the AhR

pathway in IECs is vital for protecting the stem cell niched and

maintaining intestinal barrier integrity (61). The pregnane X

receptor (PXR) is a physiologic regulator associated with gut

permeability (62). IPA has been found as a ligand for epithelial

PXR, and the administration of IPA can up-regulate tight

junction protein-coding mRNAs and enhance the expression

of claudins and occludins (63). Recent studies have showed that

IEA, IPA, and IAAld contribute to maintaining the integrity of

the intestinal tight junctional barrier in an AhR-dependent

manner and alleviating dextran sodium sulfate (DSS)-induced

colitis in mice (64). Indole and its derivatives enhance IL-10

expression through aryl hydrogen receptors (AhR) activation

and promote IL-10 signaling which is linked with barrier

function. Indole-3-aldehyde (IAld) increases epithelial cells

proliferation and upregulates the differentiation of goblet cells,

intestinal barrier integrity and downregulates the systemic

inflammation caused by aging in geriatric mice. This effect

increases the expression of the cytokine IL-10 via AhR but

does not depend on the type I interferon or IL-22 signaling

(65). The activation of AhRs leads to lL-22 transcription, which

can further increase the expression of antimicrobial peptides and

improve colonization resistance against Candida albicans in the

gastrointestinal tract (66).

Overall, these studies support the feasibility of commensal

bacterial metabolites as a strategy to promote mucosal barrier

and intestinal homeostasis. Empirical modulation of the

microbiota using probiotics can increase SCFAs and indole-

producing bacteria for the maintenance of epithelial barrier

integrity in inflammatory models (67). Thus, supplementation

with specific probiotics for beneficial metabolites formation

could provide new avenues to manage disease activity.
Surface layer components - surface layer
protein, exopolysaccharide,
peptidoglycan, and lipoteichoic acid

Bacterial surface layers contain ubiquitous proteins structures

that are abundant in Gram negative and Gram-positive bacteria. In

Gram-positive bacteria, the S-layer lattice is generally composed of a

single protein and is attached to peptidoglycan-bound secondary

cell-wall polymer by non-covalent interactions (68). As the

outermost structure of the cell, the surface layer lattice is generally

considered to be the first bacterial components that have a direct

interaction with host cells. The effects of cell surface molecules are
Frontiers in Immunology 05
diverse and have been shown to play roles in many bacterial

functionalities, such as adhesion to the host cells, strengthening of

the gut barrier integrity, pathogen exclusion, stimulation of the host

mucosal system to improve mucus production, and secretion of

defense molecules such as b defensins (69).

Surface layer protein A (SPA-A) derived from Lactobacillus

acidophilus NCK2187 binds to the C-type lectin SIGNR3 and

initiates regulatory signals, leading to maintenance of healthy

gastrointestinal microbiota, protecting gut mucosal barrier

function, and prevention of colitis (70). Recent study revealed that

SLP of Lactobacillus acidophilus NCFM strain led to a reduction in

myeloperoxidase activity and TNF-a expression whereas

significantly increased the IL-10 levels. The administration of these

surface proteins significantly reversed the histopathological damages

induced by the colitogens and improved the overall histological score

in TNBS colitis mice model (71). Results from in vitro studies

indicated that purified SLPs from L. plantarum exert a protective

effect on Caco-2 cells infected with EPEC by increasing their

transepithelial resistance (TEER) and down-regulating their

permeability (72). Further, L. acidophilus contains three different

SLPs, SLP-A, SLP-B, and SLP-X, which interact with pattern

recognition receptors (PRRs) in IECs and modulate the immune

response. L. acidophilus SLPs decrease interleukin (IL-8) secretion in

Caco-2 cells stimulated by S. typhimurium (73).

Exopolysaccharide (EPS) are metabolic by-product of

microorganisms (74). EPS consists of homopolysaccharides

(HoPS) or heteropolysaccharides (HePS), depending on the main

chain composition and mechanisms of synthesis. The most HePS-

producing bacteria are Lactobacillus, Lactococcus, Streptococcus and

Enterococcus strains frequently isolated from fermented dairy

products and the human gastrointestinal tract (GIT), whereas

most HoPS are produced by Lactobacillus, Leuconostoc,

Pediococcus, Streptococcus, and Weissella strains present in animal

GIT, vegetables and fermented beverages (75). EPS-1 contributes to

maintaining the intestinal barrier integrity against the disruption by

lipopolysaccharide (LPS) in Caco-2 monolayer mediated by

enhancing. the expression of tight junction. On the transcriptional

level, LPS-decreased expression of several tight junction genes was

inhibited by S. thermophilus-derived HePS in vivo (76). Further, the

role of EPS in epithelial adhesion of commensal bacteria makes EPS

of particular interest for preventing adhesion of pathogenic bacteria.

It has been demonstrated that EPS produced by Lactobacillus

paracasei subsp. Paracasei BGSJ2 plays an essential role in the

prevention of adhesion of E. coli to Caco-2 cells (77). Further, the

immunoregulatory effects of EPS on IECs are supported by the fact

that EPS activates C-type lectin receptors on IECs to elicit an

immunological response. Upon stimulation by EPS, IECs secrete

several cytokines and chemokines, including interleukins, TNF,

growth factors, and beta-defensins (78). Therefore, IECs play an

essential role in the recruitment of dendritic cells, which are

responsible for controlling both innate and acquired

immunological responses (79). In addition, EPS has shown to

mitigate experimental colitis, improving mucosal barrier function,
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and modulating gut microbiota composition (80–82). Moreover,

recent studies have suggested that applying EPS from lactic acid

bacteria to the skin enhances skin health and proven to be aid in

gastrointestinal wound healing in different in-vitro and in-vivo

studies (83, 84). It would be advantageous to consider EPS as a

feasible prebiotic choice for therapeutic purposes due to its two

feathers: EPS is indigestibility to the host cells, thus, arriving in the

colon intact and consumed by specific gut microbiota in the

colon (85).

Peptidoglycan (PGN) is a large polymeric molecule present

in the Gram positive and Gram-negative bacterial cell wall. The

basic overall structure of PGN is conserved between different

organisms, but there are backbone and crosslinking

modifications that increase the variability among the bacterial

species. PGN in probiotic bacteria undergo variety of

modifications in the sugar structure including deacetylation,

O-acetylation, and N-glycosylation, which create the

differences in sugar structure leading to the alteration in the

properties of the cell wall (86). There are different receptors to

detect the peptidoglycan or its fragments, for example, the innate

immune system can detect PGN through peptidoglycan

recognition proteins (PGLYRPs) (87), which are mostly

expressed in eosinophils and neutrophils and could potentially

act on inflammation (88). In the intestinal lumen, PGN-

contained cell wall fragments can be released from commensal

bacteria after digestion by Paneth cell-derived lysozyme. It has

been suggested that PGN can be absorbed by crypt-based

immature intestinal epithelial cells and in transported over the

intestinal epithelium (89). Functional analysis has shown that

PGN secreted by Lactobacillus and Bifidobacterium enhanced

the expression of tight junction proteins, including claudins,

occludin, and ZO-1 and improved the integrity of the gut barrier

via Toll-like receptors 2 signaling (90, 91).

Lipoteichoic acid (LTA) is one of the major cell wall

components of Gram-positive bacteria that can be considered

the pivotal components for immunomodulating effects (92). In

addition to its immunoregulatory effects, such as LTA from L.

casei YIT9029 and L. fermentum YIT0159 cause TNF-a
production in macrophages through TLR2 receptors (93), LTA

from Lactobacillus plantarum confers anti-inflammatory

responses in porcine intestinal epithelial cell line, IPEC-J2 (94).

This evidence supports the note that commensal bacterial

surface components act through evolutionary-optimized

mechanism that targets IECs to benefit intestinal homeostasis.
IECs modulate the composition and
function of the gut microbiota

The microbiota-host interactions result in a mutually

advantageous setting that provides a nutrient-rich environment

favorable to microbiota development and survival. It is well-known

that microbiota composition is mostly influenced by host genetics
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and environmental factors, such as diet, nutrient availability,

immunological responses, and disease states (95, 96). A recent

study has demonstrated the contribution of IECs to shape the

composition of the gut microbiota. The lack of MHC class II in

IECs resulted in the decrease in microbial-bound IgA, regulatory T

cells, and immune repertoire selection, which is associated with the

increase in interindividual microbiota variation and altered

proportions of two taxa in the ileum. This evidence suggests that

MHC class II in IECs regulates the microbiota composition (97).

Paneth cells in the intestinal epithelium are the primary source of

lysozyme that directly encounters commensal bacteria. It has been

reported that luminal lysozyme abundance determines the

composition of mucolytic microbiota in the gut and regulates

mucosal inflammatory responses (98). These findings reveal the

specific molecules in IECs that are involved in shaping the gut

microbial community.

Regarding the impact of IECs on the function of the gut

microbiota, a study has revealed that a cellular structure,

extracellular vesicles (EVs) released by IECs mediate trans-

kingdom interactions and regulation of the function of the gut

microbial community. EVs are the membrane-bound vesicles

secreted through multivesicular bodies and are comprised of

complex cargos including lipids, proteins, and nucleic acids. EVs

are important messengers for the intercellular communication

among mammalian cells (99). The first action of IEC-released

EVs on the gut microbes was discovered to inhibit growth of

pathogens (100, 101). Recent studies have unraveled novel effects

of EVs released by IECs on promoting the function of

commensals (Figure 1). As a commensal bacterial model,

protein cargos in IEC-released EVs were found to be

transferred to LGG, suggesting that EVs can serve as a

communication approach between LGG and IECs. Further,

IEC-released EVs stimulate production of functional factor by

LGG (102). Remarkably, HSP90 in EVs has been shown to

contribute the increase the function of LGG (102). HSP90 is

highly conserved from bacteria to mammals and displays

functional overlaps in protein folding, enabling the stability

and transportation of client proteins (103, 104). Client

proteins of HSPs in Lactobacilli regulate growth, metabolism,

transport functions, and protein synthesis under normal and

stress conditions (105). Therefore, this finding provides

knowledge for mechanistic understanding of the impact of the

host on the functional aspects of the gut microbiota.
Discussion

There are several challenges in the research area of the gut

microbiota-derived functional factors. Elucidating the potential of

commensal bacterium-derived functional factors in treatment and

prevention of diseases, such inflammatory bowel disease (IBD),

including ulcerative colitis (UC) and Crohn’s disease (CD) has

high clinical relevance. IBD is caused by inappropriate immune
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responses to the intestinal microbiota in genetically susceptible

individuals, leading to autoimmune damage of the intestinal

barrier and chronic inflammation (106). IBD is associated with

an increased risk of development of colorectal cancer (CRC).

Dysbiosis serves as a risk factor or/and a consequence of

inflammation and inflammation-associated carcinogenesis.

Studies showed that qualitative and quantitative alteration in gut

microbiota is highly associated with the abnormal immune

responses and thus influence the course and development of

IBD (107, 108). Moreover, the concentration of butyrate in IBD

is considerably lower than in healthy controls, indicating that the

dysbiosis has likely produced metabolic changes (109). Although

there is evidence to show that specific intestinal microbes are

associated with CRC development and progression, the

mechanisms through which the abnormal microbial community

mediates CRC development remains unclear. Enterotoxigenic

Bacteroides fragilis (ETBF) can raise levels of chemokine L20

and prostaglandin E2 in intestinal epidermal cells; prostaglandin

E2 plays a vital role in proliferation and enhances the secretion of

IL-17 and related factors secreted by Th17 cells, leading to the

development of inflammation-related CRC (110). Further,

microbial products are sensed by Toll-like receptors, which

trigger MyD88-mediated production of IL-23 proinflammatory

cytokine which activates IL-17a, IL-6, and IL-22 release and thus

promotes CRC development (111, 112). Dysbiosis related to CRC

aids its progression via different pathways, such as driving

inflammatory response, inducing DNA damage, stimulating cell

and causes microbial homeostasis in specific microbiota. The

imbalance of the gut microbial profile promotes functions

associated with cancer such as uncontrolled cell proliferation

and the loss of apoptosis. Moreover, differences in the species of

gut microflora during tumorigenesis can be used as a biomarker

and diagnostic tool for CRC (113).

Recent advances defining the protective effects of commensal

bacterium-derived functional factors raise the theoretical

possibility for alleviating the epithelial damage by commensal

bacterium-derived functional as adjunct therapies for current IBD

treatments that are focused on functional failure inhibition of

proinflammatory responses.

The efficacy of probiotics in clinical applications is poorly

understood (20, 21). Probiotics exert beneficial effects through
Frontiers in Immunology 07
multiple mechanisms and modalities (114–117). Approaches to

enhance the action of probiotics, including increasing production of

functional factors, will broaden the therapeutic applications of

probiotics. Ongoing work towards comprehensively

understanding of the host impact on the microbiota will likely

open new avenues towards developing approaches for increasing

the efficacy of probiotics for clinical application and generating

next-generation probiotics.
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