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Even if anabolic androgenic steroid (AAS) abuse is clearly associated with a wide

spectrum of collateral effects, adolescents and athletes frequently use a large group

of synthetic derivatives of testosterone, both for aesthetic uses and for improving

performance. Over the last few years, the development of MicroRNA (miRNA)

technologies has become an essential part of research projects and their role as potential

molecular biomarkers is being investigated by the scientific community. The circulating

miRNAs detection as a diagnostic or prognostic tool for the diagnosis and treatment of

several diseases is very useful, because with a minimal quantity of sample (peripheral

blood), miRNAs are very sensitive. Even more, miRNAs remain stable both at room

temperature and during freeze-thaw cycles. These characteristics highlight the important

role of miRNAs in the near future as new tools for anti-doping. The article provides a

systematic review and meta-analysis on the role of miRNAs as new potential molecular

biomarkers of AAS use/abuse. Particularly, this paper analyzed the “miRNA signature”

use as biomarkers for health disorders, focusing on the organ damages which are related

to ASS use/abuse. Moreover, this review aims to provide a future prospect for less

invasive or non-invasive procedures for the detection of circulating miRNA biomarkers

as doping assumption signaling.

Keywords: anabolic androgenic steroids (AASs), adverse effects, miRNAs, doping, new molecular biomarkers

INTRODUCTION

Even if anabolic androgenic steroid (AAS) abuse is clearly associated with a wide number of
collateral effects, adolescents and athletes frequently use a large group of synthetic derivatives of
testosterone, both for aesthetic uses and for improving performance (Smurawa and Congeni, 2007;
Bailey et al., 2013; Dickinson et al., 2014).

The market for performance enhancing drugs is now huge and constantly increasing. In fact,
the phenomenon of doping no longer affects only professional athletes, but also subjects practicing
sports activities at the amateur level (Reardon and Creado, 2014).

The adverse events for long-term usage among adolescents are very similar to those of adults,
even if doses and duration are significantly less. On the other hand acceleration of pubertal
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development and early epiphyseal closure, resulting in reduced
adult height, are typical adolescent adverse effects; while
masculinization of females and acne appears to be more severe
in adolescent (Pärssinen et al., 2000; Zitzmann and Nieschlag,
2003).

The most frequently abused androgens are nandrolone,
testosterone, stanozolol, methandienone, and methenolone
(Pope and Katz, 1994; Evans, 1997a,b). In particular, athletes
seem to prefer intramuscular injections over oral formulations
(Evans, 1997a; Hoffman et al., 2009). The use of more than
one androgen is more frequent than single agents (Pope and
Katz, 1994; Evans, 1997a; Hoffman et al., 2009). For example,
athletes may resort to masking agents in order to avoid androgen
detection. Among them, diuretics are the most common
used, because of increasing urinary volume, thus lowering the
concentration of urinary detectable substances. However, multi-
analytic screening analyses are capable of detecting them, instead
desmopressin and glycerol, other masking agents, require more
sophisticated methods (Cadwallader et al., 2010; World Anti-
Doping Agency, 2014).

The current anti-doping methods consisting in a single
time point evaluation, so limited to the standardized detection
techniques that developed until that moment. Therefore, these
methods will never be up to date with the increasingly
sophisticated doping regimens and the ongoing development of
new substances. With this aim, WADA elaborated the athlete
biological passport (ABP) as the evolution of drug testing
techniques (Bucknall et al., 2014). The final goal of ABP was to
determine a highly specific profile for each athlete, evaluating
some conventional hematological parameters that should be
stable over time in the absence of pathologies or doping (Lippi
and Plebani, 2011). Nevertheless, to date the fight to the doping
remains open and for all these reasons, the identification of
new molecular biomarkers remains an ambitious target for the
scientific community.

Over the last few years, the development of MicroRNA
(miRNA) technologies has become an essential part of research
projects and their role as potential molecular biomarkers
is being investigated by the scientific community. Main
clinical applications of miRNA dosage and deregulation are:
(i) cancer characterization and prediction of the course of
a disease (Yu et al., 2008; Segura et al., 2010; Salerno et al.,
2018); (ii) viral infection diagnosis (Lecellier et al., 2005);
(iii) implications in nervous system development (Mehler
and Mattick, 2007); (iv) cardiovascular disorder diagnosis
(Van Rooij et al., 2006; Hébert and De Strooper, 2009; Ai
et al., 2010; Wang et al., 2010); (v) identification of specific
patterns in primary muscular disorders (Eisenberg et al.,
2007); (vi) differences among diagnosed type 1 diabetes
and healthy control diabetes (Nielsen et al., 2012). These
associations demonstrate that utilizing these abnormally
expressed miRNAs as biomarkers for diseases is a valuable
diagnostic strategy.

This article provides a systematic review and meta-analysis
on the role of miRNAs as potential new molecular biomarker
of AAS use/abuse. Particularly, this paper analyzed the “miRNA
signature” use as biomarkers for health disorders, focusing on the

organ damages which are related to ASS use/abuse. Moreover,
this review aims to provide a future prospect for less invasive or
non-invasive procedures for the detection of circulating miRNA
biomarkers as doping assumption signaling.

MECHANISMS OF ANDROGEN ACTION

The anabolic androgenic effects are linked to the androgen
receptor (AR)-signaling action. Androgen receptors are
expressed in myosatellite cells (also named satellite cells); these
are the precursors of skeletal muscle cells (Sinha-Hikim et al.,
2004).

There are three main action mechanisms: (i) directly on AR;
(ii) via dihydrotestosterone (DHT) produced by the action of 5-
a-reductase, and (iii) via estrogen receptors by means of estradiol
produced by CYP19 aromatase. In particular, free testosterone
is transported into target tissue cell cytoplasm; binding to
the AR takes place either directly or after conversion to 5α-
dihydrotestosterone (DHT) by the cytoplasmic enzyme 5-alpha
reductase. Into the cell nucleus, both free or bound, testosterone
acts on specific nucleotide sequences of the chromosomal DNA.
The produced mRNA can activate DNA transcription of specific
responsive genes (Handelsman et al., 2015).

AAS mimics the testosterone physiological effects, and
primarily act via the androgen receptor. However, even if the
anabolic action of androgens on the skeletal muscle has been
extensively investigated, it is not completely known. Evidence
supports the theory that androgens influence differentiation
of mesenchymal, multipotent stem cells, promoting myogenic
lineage going to the detriment of the adipogenic one (Singh et al.,
2003, 2006, 2009).

ADVERSE EFFECTS OF ANDROGEN
ABUSE

To date, the AAS use/abuse is frequently linked to widespread
serious health damages: indeed, even the cases of a one-
time cycle (use over a specific time-period) at very low
doses can cause irreversible harmful effects after the cycle is
completed. Moreover, recreational users and/or athletes utilize
AASs in association with other drugs, such as stimulants and/or
depressants. In this way, the correct attribution of adverse effects
to AAS use/abuse becomes very difficult. Furthermore, when a
side effect occurs in athletes or bodybuilders, it is very difficult to
elucidate if the adverse effects were linked to androgen use or to
“athlete” status (Pope et al., 2014).

Nonetheless, as illustrated in Figure 1, a large number of
side effects related to AAS use/abuse has been described. The
illicit use of AASs provokes or favors the development of
serious health pathological conditions, such as hypertension,
atherosclerosis, hepatic damages and tumors, tendon ruptures,
reduced libido, and psychiatric/behavioral disorders such
as aggressiveness and irritability (Stannard and Bucknell,
1993; Yesalis and Bahrke, 1995; Mewis et al., 1996; Bertozzi
et al., 2017; White and Noeun, 2017; Junior et al., 2018).
The effects on mood and behavior are also well established:
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FIGURE 1 | Principal adverse effects of AAS use/abuse.

depressive, hypomanic or manic episodes, sometimes associated
with psychotic symptoms, increased risk of suicidal or
homicidal death have been observed in AAS users (Pope
and Katz, 1994; Kanayama et al., 2008; Piacentino et al., 2015).
Occasional studies reported adverse renal, immunologic and
musculoskeletal effects (Kanayama et al., 2010; Pope et al.,
2014).

CIRCULATING MICRORNAS: NEW
MOLECULAR BIOMARKERS

MicroRNAs (miRNAs) are 20–22 nucleotide non-coding
RNA molecules, which regulate gene expression at the post-
transcriptional level, located in intergenic or intronic regions
as individual or clustered genes (Bartel, 2004). Several steps
must occur before miRNAs can act, including the action of
many enzymes, such as RNA polymerase II, Drosha, Exportin
5, Dicer and Argonaute (Ago). Figure 2 shows a schematic
description of miRNA biogenesis (MacFarlane and Murphy,
2010; Slezak-Prochazka et al., 2010).

miRNA nomenclature was based simply on the sequence of
discovery, with few notable exceptions (such as let-7 and lin-4).
Subsequently, the identifiers indicating the species (hsa, human;
mmu, murine; etc.) were added. Moreover, other symbols (such

as “∗”) or numbers (-5p or 3p) could be added, identifying better
the miRNAs (for example indicating the homology, the guide
miRNA strand, etc...) (Desvignes et al., 2015).

These small non-coding RNAs regulate gene expression by
RNA-RNA interactions, but this is not the only mechanism to
control protein production; other mechanisms are: ribosomal
RNA modifications, repression of mRNA expression by RNA
interference, alternative splicing (Catalanotto et al., 2016).

Emerging evidence demonstrate that serum miRNAs remain
stable at different temperature conditions if compared to other
source of miRNA. This characteristic is very important because
miRNAs could be used to detect illicit substance consumption in
the same way that they are used as biomarkers of diseases (Chana
et al., 2013).

To date, several papers have described the potential use
of circulating miRNAs as specific biomarkers in the anti-
doping field. For example, the use of continuous erythropoietin
receptor activator induces higher plasma levels of miR-144:
the plasma dosage of this miRNA could be used for the
detection of erythropoiesis-stimulating agents (Zhou et al.,
2015). Another study described a relationship between the
expression of 4 miRNAs and the use of recombinant human
GH (Keane et al., 2015). Moreover, the study of Leuenberger
et al. highlighted the importance of circulating miRNAs as
biomarkers for autologous blood transfusions (Leuenberger et al.,
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FIGURE 2 | Schematic description of miRNA biogenesis. In the nucleus RNA polymerase II transcribed the long primary miRNA which is later converted by the

endonuclease Drosha intopre-miRNA. This pre-miRNA is exported into the cytoplasm and further cleaved by Dicer, developing mature miRNAs.This latter recognizes

3′ untranslated regions, guided by RNA, inducing silencing complexes (RISC). The result is the silencing of target expression.

2013b). The use of circulating miRNAs to detect performance-
enhancing agents could be incorporated into the adaptive model
of the ABP, considering their high stability in blood and
unmodified characteristics when exposed to the environmental
factors (Ponzetto et al., 2016). Furthermore, the possibility to
detect miRNAs not only in serum and plasma but also in urine,
saliva and other body fluids (Gilad et al., 2008), makes these
new molecular biomarkers the new frontier of the fight against
doping.

CIRCULATING MICRORNAS AND AAS
ADVERSE EFFECTS

In the next sections, all side effects related to AAS abuse
are analyzed, reporting the candidate miRNAs investigated in
previous studies for their possible use as molecular biomarkers
(Table 1).

Cardiovascular System and Heart
The adverse effects on the heart and cardiovascular system caused
by AAS abuse have been frequently investigated: harmful changes
in the risk factors for cardiovascular pathology are frequently
described, such as the decrease in plasma HDL cholesterol levels
(Payne et al., 1985; Glazer, 1991; Daly et al., 2003; Frati et al.,
2015a) and changes in clotting factors (Ansell et al., 1993).
Moreover, perhaps through a direct cardiotoxic action, which
results in cardiomegaly and cardiovascular failure, AASs are often
involved in the sudden cardiac death of young consumers (Frati
et al., 2015b; Albano et al., 2017; Sessa et al., 2018). Nevertheless,
the relation between AAS use/abuse and cardiovascular adverse
effects should be clarified (Corona et al., 2014; Morgentaler et al.,
2015).

MiRNAs exert their action though signaling and
transcriptional pathways affecting cardiac development,
function, and disease. With the aim of identifying miRNAs
related to dysfunctions, several heart diseases (Ischemia,
Hypertrophy, cardiac fibrosis, and Arrhythmia) have been
investigated.

MyomiRs (miR-208a, miR-208b and miR-499) play a pivot
role in the control ofmyosin heavy chain isoform expression (Van

Rooij et al., 2009), while miR-1 andmiR-133a carry out important
functions in cardiac differentiation and development (Liu and
Olson, 2010; Humphreys et al., 2012). miR-133a is associated
with a large number of cardiac pathologies; miR-1 expression in
the ischemic zone was found to be significantly increased (Yang
et al., 2007). Moreover, miR-1 and miR-133 increased the risk
of arrhythmia in the ischemic heart (Huang et al., 2011; Song
et al., 2015). Several studies reported elevated plasma levels of
miR-1, miR-133, miR-208a, and miR-499, after acute myocardial
infarction, suggesting a role as valuable prognostic biomarkers
(Hata, 2013; Joladarashi et al., 2014; Wong et al., 2016).

Musculoskeletal Apparatus
Skeletal muscle represents the example of the tissue subjected
to environmental impulses (nutrients and exercise) and, about
that, AAS use is frequently combined with resistance training.
This practice is linked to a higher risk of tendon injury (Seynnes
et al., 2013). Moreover, when the use/abuse occurs in adolescents,
a premature closure of the epiphyses could take place, reducing
the influencing the height (Schultzel et al., 2014).

Several studies using northern blot analyses reported that the
myomiR family (miR-1, miR-133a, miR-133b, miR-206, miR-
208a, miR-208b, and miR-499) is strictly striated-muscle specific
(Sempere et al., 2004; McCarthy, 2008; Van Rooij et al., 2009;
Zhang et al., 2016).

Muscle fibers are typically distinguished in type I (slow)
and type II (fast) fibers. miR-208b and miR-499 could play
an important role in inhibition of fast myofiber genes and
promotion of slow myofiber genes (Nie et al., 2015). Considering
that AASs are strictly related to muscular hypertrophy, a direct
relationship to these miRNA levels expressed in plasma and drug
abuse could be hypothesized.

It is interesting that after training the mature levels of miR-1,
miR-206 and miR-133 decrease both at the tissue level and the
plasma level (Kirby et al., 2015). Furthermore, miR-206 plasma
levels were reported to be up-regulated in aged human skeletal
muscle (Kim et al., 2014).

At the light of these findings, a direct relationship between
miRNA plasma levels and type of sport practiced could be
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TABLE 1 | Organ damage and miRNA expression profiles investigated in the literature.

Differentially expressed miRNAs References

Upregulated Downregulated

CARDIOVASCULAR SYSTEM AND HEART

Ischemia miR-1

miR-133

Song et al., 2015

Hypertrophy miR-208a; miR-150; miR-23a; miR-24; miR-21;

miR-195; miR-199

miR-1; miR-26b; miR-27a; miR-143; miR-29;

miR-133

Hata, 2013;

Joladarashi et al.,

2014; Wong et al.,

2016

Cardiac fibrosis miR-21; miR-133 miR-29 Joladarashi et al., 2014

Arrhythmia miR-1; miR-133; miR-133a; miR-212;miR-17-

miR-92;miR-106bb-; miR-25

miR-150 Joladarashi et al., 2014

MUSCULOSKELETAN

After 7 days of mechanical

overload

miR-1; miR-133 Kirby et al., 2015

Slow twich fibers miR-208b; miR-499 Kirby et al., 2015

REPRODUCTIVE SYSTEM DISEASE (MALE)

Prostate cancer miR-200c, miR-20a, miR-20b, miR-182 miR-222, miR-221, miR-145, miR-214,

miR-125b, miR-143, miR-29a, miR-24,

miR-199a

Afshar et al., 2014

miR-375; miR-17; miR-93; miR-106a; miR-141;

miR-720; miR-7a; miR-200b; miR-21; miR-106b;

miR-375; miR-663b; miR-615-3p; miR-425-5p;

miR-663a; miR-182-5p; miR-183-5p

miR-205-5p; miR-221-3p; miR-222-3p;

miR-376c-3p; miR-136-5p; miR-455-3p;

miR-455-5p; miR-154-5p

Kristensen et al., 2016

miR-let-7a-2, miR-let-7i, miR-16-1, miR-17-5p,

miR-20a, 21, miR-24-1, miR-25, miR-27a, miR-29a,

miR-29b-2, miR-30c, miR-32, miR-34a, miR-92-2,

miR-93-1, miR-95, miR-101-1, miR-106a, miR-124a-1,

miR-126a-1, miR-135-2, miR-146, miR-149,

miR-181b-1, miR-184, miR-187, miR-191, miR-196-1,

miR-197, miR-199a-1, miR-214, miR-128a, miR-195,

miR-198, miR-199a-1, miR-199a-2, miR-203, miR-206,

miR-2014, miR-2018-2, miR-223, miR-202, miR-210,

miR-296, miR-320, miR-370, miR-373, miR- 498,

miR-503

Let 7a, let- 7b, let-7c, let-7d, let-7g, 16, 23a,

23b, 26a, 92, 99a, 103, 125a, 125b, 143, 145,

195, 199a, 221, 222, 497

Volinia et al., 2006;

Porkka et al., 2007

miR-Let-7a-5p, miR-let-7d-3p, miR- let-7d-5p, miR-

7b-5p, miR-20a- 5p, miR-21-3p, miR-25-3p,

miR-29b-2-5p, miR-30d-3p, miR-92a-3p, miR-92b-3p,

miR-93-3p, miR-96-5p, miR-103b-3p, miR-182-5p,

miR-183-5p, miR-375, miR-421, miR-423-3p,

miR-423-5p, miR- 425-5p, miR-484, miR-615-3p,

miR-663a, miR-663b, miR-664a-3p, miR-1248,

miR-1260a

Kristensen et al., 2016

REPRODUCTIVE SYSTEM DISEASES (FEMALE)

POF (Blood) miR-202; miR-146a; miR-125b-2; miR-139-3p;

miR-654-5p; miR-27a; miR-765; miR-23a; miR-342-3p;

miR-126

miR-Let-7c; miR-144 McGinnis et al., 2015

Follicle atresia miR-936; miR-26b; miR-149; miR-10b; miR-574-5p;

miR-149; miR-1275; miR-99a

miR-Let-7i; miR-92b; miR-92a; miR-1979;

miR-1308; miR-1826

Li M. et al., 2015

Ovarian cancer miR-21; miR-203; miR-205 miR-200 (ovarian cancer cell migration) Donadeu et al., 2017

CENTRAL NERVOUS SYSTEM

Depression (LH) miR-96, miR-141, miR182, miR-183, miR-183*,

miR-198, miR-200a, miR-200a*, miR-200b, miR-200b*,

miR-200c, and miR-429.

Dwivedi, 2014

Non-depression (NLH) miR-96, miR-141, miR182, miR-183,

miR-183*, miR-198, miR-200a, miR-200a*,

miR-200b, miR-200b*, miR-200c, and

miR-429.

Dwivedi, 2014

(Continued)
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TABLE 1 | Continued

Differentially expressed miRNAs References

LIVER

Hepatic hypercholesterol

and hyperlipid metabolism

miR-122; miR-21; miR-23 Szabo and Bala, 2013

Inflammatory response

Hyperinflammation

miR-155, miR-132, miR-125b, miR-146a, miR-150,

miR-181, let-7 and miR-21.20,21

Szabo and Bala, 2013

drug-induced liver injury

(DILI)

miR-710 and miR-711

miR-16a, miR-328 and miR-299-5p

miR-122 and miR-192

miR-122a

Szabo and Bala, 2013

KIDNEY

kidney fibrosis miR-21 Badal and Danesh,

2015

renal fibrosis, tubular

hypertrophy, glomerular

alterations

miR-200a, miR-200b, miR-141, miR-429, miR-205, and

miR-192.

Wei et al., 2013

Acute kidney injury (AKI) mir-21, mir-205, mir-127 and mir-494 Wei et al., 2013

SKIN

Dermatomyositis miR-146b and miR-155 miR-1, miR-133, miR-206, miR-11040;

miR-30a-3p Luo and Mastaglia,

2015

considered, given that frequently AAS use is associated with these
activities.

Reproductive Systems
AASs are related to various side effects in males (hypofertility
and gynecomastia) and in females (virilization and hirsutism,
acne, irregular menses, lower-pitched voice, and male-pattern
baldness, increased body hair and sex drive) (Evans, 1997a;
Parkinson and Evans, 2006; Zahnow et al., 2017).

In males, moreover, there are multiple effects on the
neuroendocrine system such as hypogonadism (especially
following abrupt discontinuation of the drug), impotence,
suppression of spermatogenesis and inhibition of the
hypothalamic–pituitary– testicular axis (Dickerman et al.,
1999; Pertusi et al., 2001; Campion et al., 2012; Rahnema et al.,
2014; Pomara et al., 2016).

Infact, androgens play a pivotal role in development and
maintenance of the male reproductive system; the exogenous
administration of androgens leads to a reduction in endogenous
production, causing testicular atrophy, androgen deficiency, and
infertility (Fronczak et al., 2012; Pomara et al., 2016). Moreover,
AAS abuse promotes prostatic hypertrophy and increases the risk
of prostate cancer (El Osta et al., 2016; Albano et al., 2017).

Aberrant expression of numerous miRNAs was reported
related to different reproductive system diseases. For example,
the expression profile of miR-203 was found to be altered in
prostate imbalance (Bucay et al., 2015). Another study described
a pivotal role for miR-93 and miR-648 in prostate cancer
regulation (Zhang et al., 2014). Afshar et al. (2014) reported a set
of 23 miRNAs with expression changes (17 overexpressed and 6
underexpressed). Notwithstanding the numerous studies, to date
it is very difficult to establish which are the miRNAs that could be
considered as important molecular biomarkers for these diseases
(Bertoli et al., 2016; Luu et al., 2017).

The principal adverse effects derived from AAS use on the
female reproductive system are related to the subtle equilibrium

of the female hypothalamus-pituitary-gonadal axis, which
becomes twisted consequently to increases in concentration of
circulating testosterone and reduction in estrogen activity. In
particular, the diminishing in estrogen and progesterone levels
results in: (i) inhibition of follicle formation; (ii) ovulation,
(iii) irregular menstrual cycle, (iv) amenorrhea (absence of the
menstrual cycle). Some authors, in addition, reported a very
high risk of development of cervical and/or endometrial cancer,
uterine atrophy, and, then, infertility (Sarojini et al., 2012).

As stated before, circulating miRNAs are considered
as possible biomarkers for the identification of different
pathological conditions. miRNA-9, miRNA-18b, miRNA-32,
miRNA-34c, and miRNA-135a were reported to be significantly
increased in polycystic ovary syndrome (McGinnis et al., 2015).
Other studies reported that several miRNAs are upregulated
(hsa-miR-10b, hsa-miR-26b, hsa-miR-99a, hsa-miR-149∗, hsa-
miR-574-5p, Hsa-miR-936, hsa-miR-1275, mmu-miR-1224,
P-miR-466 g-b, P-miR-1275, P-miR-1281, R-miR-26b) in cases of
follicle atresia and others downregulated (hsa-let-7i, hsa-miR-
92a, hsa-miR-92b, hsa-miR-1308, hsa-miR-1826, hsa-miR-1979,
P-miR-923, P-miR-1826, R-let-7a, R-miR-739, ssc-miR-184) (Li
Y. et al., 2015).

It is very interesting that miR-21, miR-203, and miR-205
showed higher levels in ovarian cancer compared to normal ovary
state, suggesting an important role as molecular biomarkers
(Donadeu et al., 2017).

Moreover, in endometriosis a dysregulation of several blood
miRNASs was reported: upregulation of miR-122 and miR-199a
levels while downregulation of miR-9 ∗, miR-141 ∗, miR-145 ∗,
miR-542-3p (Marí-Alexandre et al., 2016).

Central Nervous System
The side effects linked to AAS use on the central nervous
system (CNS) are prevalently linked with the behavioral sphere
such as impulsive behavior, aggression, anxiety, hypomania,
and occasionally, depressive disorders (Henderson et al., 2006;
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Hildebrandt et al., 2014). Moreover, miRNAs are expressed
highly in neurons, and neuronal miRNA pathways can create an
extremely powerful mechanism to dynamically adjust the protein
content of neuronal compartments.

However, miRNAs are hypothesized to play a specialized role
in cellular responses to stress (Hunsberger et al., 2009), indeed
acute stress induces in specific encephalic areas the transient
increase in the expression of several miRNAs (Let-7 a-e, miR-9,
miR-9∗, miR-26b, miR-29b, miR-30b, miR-30c, miR-30e, miR-
125a, miR-126-3p, miR-129-3p, miR-207, miR-212, miR-351,
miR-423, miR-487b, miR-494, miR-690, miR691, miR-709, miR-
711).

As a peripheral biomarker in major depressive disorders,
miRNAs that have been described as dysregulated are miR-
107, miR-133a, miR-148a, miR-200c, miR-381, miR-425-3p, miR-
494, miR-517b, miR-579, miR-589, miR-636, miR-652, miR-
941, and miR-1243. Among them, only two miRNAs, miR-
589 and miR-941, showed stable overexpression in depressive
disorders (Dwivedi, 2014). Moreover, two of the best-studied
miRNAs related to cognitive impairment roles are miR-124 and
miR-137. An up-regulation of miR-124 was associated with an
improvement in learning and memory, while miR-132 plays
an important role in neurogenesis: these two miRNAs could
be used as molecular biomarkers for brain functionally and
pharmacological therapies (Shi, 2014; Nadim et al., 2017; Simion
et al., 2017).

A controversial role is played by miR-128: several reports
in the literature describe a different behavior according to
different biological conditions, resulting in some instances of up-
regulation whereas, in some, it is down-regulated (Adlakha and
Saini, 2014).

Liver
Several adverse effects on the liver are related to AAS use/abuse,
such as hepatic peliosis, cholestatic jaundice and hepatic
neoplasms. This latter pathology was not clinical relevant during

subject lifetime, but it was diagnosed only during autopsies (Søe
et al., 1994; Neri et al., 2011; Turillazzi et al., 2011).

After liver injury, studies have documented the presence of
miRNAs in the circulation. Liver damage caused by chemical
toxins and diet can produce a release of various miRNAs
inside exosomes, microvescicles, HDL, apoptotic bodies and
proteins, in the same way as other disturbances (such as alcohol,
acetaminophen, viral, or bacterial infection, etc...) (Szabo and
Bala, 2013). miR-122 has a central role in the control of lipid
metabolism. MiR-16, miR-33, miR-34, miR-103, miR-104, and
miR-370, instead, are involved in lipid metabolism too: their
serum levels are significantly higher in patients with non-
alcoholic fatty liver disease compared to controls (Takahashi
et al., 2013; Calvopina et al., 2016; Nelson Hayes and Chayama,
2016).

Moreover, a large number of miRNAs have been related to
inflammatory responses (let-7, miR-21.20,21, miR-125b, miR-
132, miR-146a, miR-150, miR-155, and miR-181). As previously
described, serum levels of miR-122, miR-132, and miR-155, seem
to be related to HCV infection, and they were evaluated as
markers of inflammation (Szabo and Bala, 2013; Takahashi et al.,
2013).

Many studies on miRNAs involved in liver injury caused by
drug assumption were evaluated: in serum samples miR-122,
miR-125b, miR-146a, miR-155, and miR-192, were up-regulated
(Bafunno et al., 2012; Takahashi et al., 2013; Calvopina et al.,
2016; Nelson Hayes and Chayama, 2016). Higher level of miR-
122 into the bloodstream were documented after hepatocyte
death: the plasma levels of this miRNA are upregulated in
alcoholic and non-alcholic liver diseases, and virus related
consequences (chronic HBV and HCV) (Takahashi et al., 2013;
Calvopina et al., 2016).

As previously described, miR-122 is involved in several
side effects related to AAS abuse: for this reason, it could be
considered as an important molecular biomarker (Zheng et al.,
2016).

FIGURE 3 | Schematic description of the research hypothesis suggested with this review.
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Kidney
The mechanisms involved in renal injured after AAS use/abuse
can occur in a direct manner, after oral consumption, or an
indirect manner, caused by elevated bile salts in plasma (Van
Slambrouck et al., 2013).

In some cases, anabolic abuse has been related to the
nephrotic syndrome and focal segmental glomerulosclerosis
(Herlitz et al., 2010). As previously reported miR-193a
(upregulated) and miR-31 (downregulated) are related to
focal segmental glomerulosclerosis; moreover, among several
miRNAs analyzed in renal fibrosis, miR-21 (upregulated) and
miR-22 (downregulated) expression were found altered (Badal
and Danesh, 2015).

Other studies described a large number of miRNAs (miR-
141, miR-192, miR-200a, miR-200b, miR-205, miR-429) with an
increased expression profile in human nephrosclerosis biopsies
(Wei et al., 2013).

Several studies described an altered miRNA expression profile
in urinary exosomes in diabetic nephropathy patients (miR-130a
and miR-145 upregulated, while miR-155 and miR-424 under-
regulated) (Li et al., 2014; Li M. et al., 2015).

Skin
Acne vulgaris and folliculitis are frequently described in AAS
users: these symptoms are related to hypertrophy of the
sebaceous glands. These side effects usually stop at the end
of AAS use. Other side effects are related to the methods of
administration: intramuscular injections have been associated
with severe infection, such as necrotizing myositis (Hughes and
Ahmed, 2011; Zomorodian et al., 2015).

In cases of dermatomyositis, an abnormal expression of
miRNAs was detected: with upregulation of miR-146b and miR-
155, and downregulation of miR-1, miR-30a-3p, miR-133, miR-
206, and miR-11040 (Luo and Mastaglia, 2015).

CONCLUSION

The identification of new tools for AAS use/abuse represents
an important challenge for the scientific community. In the
last few years, several studies have highlighted the role of
miRNAs as a highly accurate diagnostic tool. To date, the
limits of traditional techniques for diagnosis of numerous
diseases (such as cardiac imaging) are costs and being not
quantitative. The detection of circulating miRNAs could go
beyond these limitations as diagnostic or prognostic tools
of several diseases, both because miRNAs are very sensitive,
and their detection requires minimal peripheral blood. Several
advantages are linked to the use of circulating miRNAs
as anti-doping methods: high stability during transport and
storage, the long period for detection, not sensitivity to
unregulated room-temperature storage, and the stability in
plasma subjected to multiple freeze-thaw cycles (Leuenberger
et al., 2013a).

These characteristics highlight the important role of miRNAs
in the future as new tools in the anti-doping fight. The

research hypothesis of this review is a direct implication
among drug assumption, side effects, organ damage and miRNA
dysregulation (Figure 3).

At the light of this revision work, a pivot role could be played
by miRNAs that seems dysregulated in the cardiovascular or
liver diseases, because these organs are interested by adverse
effects after AASs use/abuse. For example, it could be very
important performed experimental work dosing MyomiRNAs
that are a subset of muscle-specific miRNAs. This group
comprises a discrete number of molecules (miRNA 1, miRNA
29-b, miRNA 133, miRNA 181-a, miRNA 206, miRNA 208
and miRNA 451). Among these, miRNA 133-a and miRNA
206 were found to be the most promising for understanding
the biological response to physical activity and for the
potential use for diagnosing muscle injury and in anti-
doping testing (Danese et al., 2017). Moreover, performing
new experimental studies based on the dosage of miRNAs
involved in the control of lipid metabolism (such as MiR-
122, MiR-16, miR-33, miR-34, miR-103, miR-104, and miR-
370), new tools for a modern anti-doping fight could be
obtained.

For example, Salamin et al. (2016) identified three
potential candidate miRNAs for testosterone use, even
if one of these showed a response related to dose-effect:
in fact, levels of miR-122 increased 3.5-fold after 1 day
of drug intake. These results suggest that miR-122 could
be used as a reliable fingerprint of testosterone misuse.
As described in the previous paragraph, this miRNA is
strictly related with liver dysfunction: therefore, we could
consider a direct involvement as a liver side effect after AAS
assumption.

Knowledge regarding miRNAs in human diseases related to
AAS use/abuse may eventually lead to identify serum or tissue
biomarkers with anti-doping potential. In this regard, the need
for careful validation of diagnostic miRNA candidates in well-
annotated toxicological studies is mandatory. The rapid progress
in anti-doping technologies using miRNA based strategies for
the discovery of drug-abuse, such as AAS use/abuse, could
optimize new approaches based on existing and emerging
knowledge.
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