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Objective: The aim of this study is to identify prognostic imaging biomarkers and create a
radiogenomics nomogram to predict overall survival (OS) in gastric cancer (GC).

Material: RNA sequencing data from 407 patients with GC and contrast-enhanced
computed tomography (CECT) imaging data from 46 patients obtained from The Cancer
Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA) were utilized to identify
radiogenomics biomarkers. A total of 392 patients with CECT images from the Nanfang
Hospital database were obtained to create and validate a radiogenomics nomogram
based on the biomarkers.

Methods: The prognostic imaging features that correlated with the prognostic gene
modules (selected by weighted gene coexpression network analysis) were identified as
imaging biomarkers. A nomogram that integrated the radiomics score and
clinicopathological factors was created and validated in the Nanfang Hospital database.
Nomogram discrimination, calibration, and clinical usefulness were evaluated.

Results: Three prognostic imaging biomarkers were identified and had a strong
correlation with four prognostic gene modules (P < 0.05, FDR < 0.05). The
radiogenomics nomogram (AUC = 0.838) resulted in better performance of the survival
prediction than that of the TNM staging system (AUC = 0.765, P = 0.011; Delong et al.). In
addition, the radiogenomics nomogram exhibited good discrimination, calibration, and
clinical usefulness in both the training and validation cohorts.

Conclusions: The novel prognostic radiogenomics nomogram that was constructed
achieved excellent correlation with prognosis in both the training and validation cohort of
Nanfang Hospital patients with GC. It is anticipated that this work may assist in clinical
preferential treatment decisions and promote the process of precision theranostics in
the future.
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INTRODUCTION

Although the incidence of gastric cancer (GC) has decreased over
the last 3 decades, it remains the second leading cause of cancer-
related death worldwide and the most prevalent cancer in eastern
Asia, whose burden is still substantial (1). Patients experience a high
rate of tumor recurrence (20%–40%) although following treatment
with traditional standard therapies—surgical resection plus
adjuvant chemotherapy or radiochemotherapy (2, 3). The
American Joint Committee on Cancer (AJCC) tumor-node-
metastasis (TNM) staging system is currently the most commonly
used tumor staging system worldwide and is considered to be the
most valuable method for assessing the prognosis of malignant
tumors (4). However, large variations in clinical outcomes have
been shown in patients with the same stage and similar treatment
regimens (5, 6). These findings suggest that the present GC staging
system provides inadequate prognostic information and does not
reflect the biological heterogeneity of GC (7). Therefore, identifying
additional effective prognostic model that owns incremental value to
the TNM staging system is necessary to achieve individualized
medical treatments.

A radiogenomic analysis aimed at investigating molecular
biomarkers can identify imaging traits that correspond to different
molecular phenotypes with clinical and biologic relevance. It
represents the evolution of the radiology–pathology correlation
from the tissue level to the subcellular level and can
compensate for the deficiency that the biological interpretations of
imaging traits are lacking. Radiogenomics analysis can hold the
promise to meet the clinical demand noninvasively and
comprehensively, compared to biopsy with limited specimens,
because the extensive imaging features for each patient can
comprehensively describe the tumor phenotype characteristics.
This non-invasive method can be performed repeatedly and is
therefore eminently suitable for treatment follow-up.

Recent advances in the radiogenomics of other cancers, such
as hepatocellular carcinoma (8), non–small cell lung cancer (9),
glioblastoma multiforme (10), breast cancer (11), and liver
cancer (12), have confirmed the potential synergy of
integrating imaging and genomic data. However, thus far, few
studies have investigated the radiogenomics of GC.

A nomogram is based on multivariate regression analysis and
includes important influencing factors related to tumor prognosis.
The nomogram has become the focus of interest in cancer research
in recent years and is considered a useful tool for quantifying risk
(13, 14). Therefore, this study aimed to develop a predictive model
of the overall survival (OS) nomogram based on the radiogenomic
features combined with the clinicopathological characteristics to
predict prognosis and validate its incremental prognostic value to
the traditional TNM staging system.
MATERIALS AND METHODS

Data Source
We studied 407 patients with GC whose data (including RNA
sequencing data and clinical information) was obtained from
Frontiers in Oncology | www.frontiersin.org 2
The Cancer Genome Atlas (TCGA) (15)—a landmark cancer
genomics program that contains a large amount of genomic and
clinical datasets. RNA sequencing data were normalized using
the fragments per kilobase transcriptome per million reads
method. Among the 407 patients with GC, 46 patients with
contrast-enhanced computed tomography (CECT) imaging data
were obtained from The Cancer Imaging Archive (TCIA) (16)—
a service that hosts a large archive of medical images of cancer
accessible for public download. Most patients underwent
imaging on a multi-detector row CT scanners: 4-, 16-, or 64-
slice CT scanners with slice thickness of 2.5~5 mm at 120 kVp
and 200~500 mA.

In addition, because the number of the patients in TCGA
database was limited (there were only 46 patients who owned
imaging data), we obtained external 424 patients with GC with
imaging data in Nanfang Hospital to develop a prognostic
nomogram model. Thirty-two patients were excluded for the
invisible lesion or insufficient image quality, and then 392
patients with GC were included in further research. All of
these patients underwent partial or total radical gastrectomy
and did not receive other therapy preoperatively. All of the
contrast-enhanced abdominal CT images were acquired within
30 days before surgical resection; the detailed inclusion and
exclusion criteria were described in our previous study (17).
Patient characteristics are detailed in Table 1.

Imaging Feature Extraction
To avoid artificial and subjective deviation, two professional
abdominal radiologists cooperated to delineate each tumor using
the Medical Imaging Interaction Toolkit (MITK) (version 3.6.0
Apr. 1, 2017) without referring to any clinical information. Four
samples are shown in Supplementary Figure S1. Forty-four
imaging features were extracted, including four first-order
statistics and 40 texture features, from the delineated tumor
outlines for each person using MATLAB automatically. Four
different matrices, including the gray-level cooccurrence matrix
(GLCM) (18), the neighborhood gray-tone difference matrix
(NGTDM) (19), the gray-level size zone matrix (GLSZM) (20),
and the gray-level run-length matrix (GLRLM) (21), were
utilized to evaluate the 40 texture features of the regions of
interest (ROIs). A detailed description of the four matrices and
the features is shown in Supplementary Table S1.

Intra- and interclass correlation coefficients (ICCs) were used
to assess the intra- and interobserver reproducibility of radiomics
feature extraction. Thirty images were chosen randomly for ROI
segmentation and feature extraction. The ROI segmentation was
performed by two radiologists with, respectively, 12 (reader 1)
and 8 years (reader 2) of experience in gastric CT interpretation.
Reader 1 then repeated the same procedure 1 week later. An ICC
greater than 0.75 indicates good agreement of the feature
extraction. To ensure the independence of imaging features, we
removed the features with high correlation. We calculated the
mean absolute correlation using the “findCorrelation” function
in the caret package (version 6.0-84) in R software. When the
pairwise correlation was greater than 0.8, the feature was
identified as the one with redundancy and will be eliminated.
June 2022 | Volume 12 | Article 882786
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Gene Module Clustering
Compared with traditional analysis methods, which focus on a
single gene or a few genes, we used weighted gene coexpression
network analysis (WGCNA) (22), a systematic biological method
to describe the pattern of gene association between different
samples and obtain highly synergistic gene sets. The distinct
advantage is that WGCNA converts an enormous amount of
highly correlated genes into modules defined as clusters
of densely interconnected genes to eliminate the problem of
multiple hypothesis testing corrections.

WGCNA methodology can be used to construct a gene
coexpression network, identify modules using hierarchical
clustering and the dynamic tree cut method, study module
relationships using eigengene networks, and obtain hub genes—
the key regulators of each module. Because of the early advantages,
the application of the WGCNA method has therefore been
extended to variable types of high-throughput datasets, such as
proteomic and metabolomic datasets, in recent years (23–25). To
ensure the reliability of the prognostic gene modules, all the 407
patients with gene expression data were included.

Survival Analysis and Functional
Enrichment of Gene Modules
The survival analysis of a time-to-event outcome is a widely
applied method to predict survival from a set of patient
Frontiers in Oncology | www.frontiersin.org 3
predictors or covariates. Univariate Cox proportional hazards
regression (26) was used to identify the gene modules with
significant prognostic ability in OS, defined as the time from
pathology diagnosis to the date of death or the last follow-up. For
the module eigengene of gene modules that were continuous, the
contributions to OS were investigated by Kaplan–Meier survival
analysis (log-rank test).

We annotated the biological functions of the survival-related
modules of GC using Gene Ontology (GO) enrichment analysis
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis, allowing the identification of common
biologic pathways from a public database. GO and KEGG
analyses were performed using the clusterProfiler package (27,
28) in R. In addition, we calculated the false discovery rate (FDR)
using the Benjamini–Hochberg method (29) to correct the
multiple hypothesis testing of the survival analysis.

Development and Ability Evaluation of
Imaging Features
We utilized Spearman rank correlations to build a radiogenomic
map combining selected imaging features and prognostic gene
modules. The FDR was used again to correct for multiple testing.
The imaging features that showed high correlation with the
prognostic gene modules (P < 0.05, FDR < 0.05) were further
analyzed by the univariate Cox proportional hazards model to
TABLE 1 | Clinicopathologic characteristics of patients.

Variables TCGA Cohort
(n = 45)

Nanfang Cohort
(Training) (n = 196)

Nanfang Cohort
(Validation) (n = 196)

P-value

OS (days) 780.64 ± 472.38 894.49 ± 698.54 916.22 ± 711.10 0.76
Age (years) 65.00 ± 9.17 55.43 ± 10.87 54.59 ± 11.00 0.45
Sex (male) 39 (84.8%) 136 (69.4%) 139 (70.9%) 0.74
Pathological lymph node
positive detection rate

0.25 ± 0.27 0.22 ± 0.27 0.22 ± 0.28 1.00

T stage 0.28
T1 0 34 (17.3%) 29 (14.8%)
T2 1 (2.2%) 23 (11.7%) 17 (8.7%)
T3 25 (55.6%) 24 (12.2%) 17 (8.7%)
T4 19 (42.2%) 115 (58.7%) 133 (67.9%)

N stage 0.81
N0 10 (22.2%) 63 (32.1%) 62 (31.6%)
N1 9 (20.0%) 37 (18.9%) 35 (17.9%)
N2 12 (26.7%) 38 (19.4%) 34 (17.3%)
N3 14 (31.1%) 58 (29.6%) 64 (32.7%)
Unknown 0 0 1 (5%)

M stage 0.31
M0 43 (95.6%) 190 (96.9%) 193 (98.5%)
M1 2 (4.4%) 6 (3.1%) 3 (1.5%)

TNM Stagea 0.70
I 1 (2.2%) 41 (20.9%) 37 (18.9%)
II 8 (17.8%) 35 (17.9%) 33 (16.8%)
III 31 (68.9%) 96 (49.0%) 107 (54.6%)
IV 5 (11.1%) 24 (12.2%) 19 (9.7%)

Lauren’s classification 0.85
Intestinal 40 (88.9%) 35 (17.9%) 36 (18.4%)
Diffuse 0 51 (26.0%) 55 (28.1%)
Mixed 5 (11.1%) 9 (4.6%) 6 (3.1%)
unknown 0 101 (51.5%) 99 (50.5%)
June 2022 | Volume 12 | Article
Data are expressed as mean ± standard deviation or number (%); there are no significant differences between the training and validation cohorts in Nanfang Hospital database (P > 0.05).
aAccording to the 8th edition of the American Joint Committee on Cancer classification.
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assess the prognostic significance. Afterward, a bootstrap
approach (30) was used to assess whether the prognostic
signature had significant power compared with random chance
(C-index = 0.5). For 100 times, we calculated the C-index of the
imaging signature based on 35 randomly selected samples with
correct outcome data and on 35 randomly chosen samples with
random outcome data. The Wilcoxon test was applied to assess
the differences between the two distributions (imaging signature
and random chances).The prognostic signature with significant
power (P < 0.05) was identified as the imaging biomarker.

Generation of the Radiomics Score
On the basis of the prognostic imaging biomarkers identified
from the TCGA database, the radiomics score (RIS) was
constructed using a multivariate Cox proportional hazards
regression model. The equation of RIS is detailed in the
Supplementary Material . Because the median RIS is
convenient for clinical application, it was used as a cutoff value
to divide the patients into low‐risk and high‐risk groups. The log-
rank test (Mantel–Cox test) was used to compare the difference in
the survival status between two groups. We calculated RIS both in
the TCGA database and Nanfang Hospital database, and log-rank
test was used to identify their prognostic value. To discuss the
prognostic significance of the imaging biomarkers and RIS, we
tried to explain it from the perspective of immunity. We utilized
the CIBERSORT algorithm (an algorithm that calculates the
ratios of infiltrated immune cells) to investigate the immune
infiltration level in patients with GC.

Construction and Validation of
the Nomogram
To compensate for the limitation of the number of patients in
TCGA database, we utilized the database from Nanfang Hospital
to construct a prognostic nomogram model for its large samples.
We divided patients from Nanfang Hospital into training and
validation cohorts in a ratio of 1:1 using the stratified
randomization method. The training cohort was used to
construct the nomogram that integrated both the RIS and
significant clinicopathological characteristics, and the
validation cohort was used to identify the predictive accuracy
of the nomogram. The nomogram was constructed using “rms”
package (31) of R software. With the application of the bootstrap
method (1,000 replicates), a calibration curve was used to
visualize the deviation of predicted probabilities from what
actually happened. Moreover, decision curve analysis (32) was
employed to quantify the clinical utility and compare the
nomogram that we created with the TNM staging system.
Finally, the receiver operating characteristic curve (ROC)
analysis (33) was performed to measure the predictive
performance of the nomogram score and the TNM stage. The
Delong test was used to assess the differences between the
two models.

Statistical Analysis
Only two-sided P-value < 0.05 was considered to have necessary
to statistic. The statistical analysis was implemented on R
software (version 4.0.4). Several packages including ggplot2,
Frontiers in Oncology | www.frontiersin.org 4
rms, survival, survivalROC, survminer, nomogramFormula,
and rmda were used to perform other statistical calculations
and graphical work.
RESULTS

Imaging Feature Extraction
We extracted 44 imaging features from each person, and 16
imaging features were removed because their pairwise
correlation was greater than 0.8. The correlation matrix is
shown in Supplementary Figure S2. The intraobserver ICCs
ranged from 0.812 to 0.978, and the interobserver ICCs ranged
from 0.786 to 0.912, indicating a favorable intra- and
interobserver feature extraction reproducibility.

Gene Module Clustering and
Function Annotation
We grouped transcripts with correlated expression levels into
gene coexpression modules using the WGCNA approach. The
cluster dendrogram and gene counts for each module are shown
in Supplementary Figure S3A. Analysis of network topology for
various soft-thresholding powers is shown in Figures S3B, C.
The soft thresholding power b was set at 9 because the scale
independence reached 0.8 (Figure S3B) and had a relatively
high-average connectivity (Figure S3C). At last, we identified 33
gene modules among 58,428 genes. Across the 33 modules, four
prognostic modules (MEgreen, MEwhite, MEdarkturquoise, and
MEroyalblue) were identified using univariate Cox proportional
hazards regression (Table 2), and the Kaplan–Meier plots of the
four prognostic modules are shown in Figure 1. Afterward, four
modules were tested for the enrichment of specific biological
functions in GO terms and KEGG pathways. The results are
shown in Supplementary Table S2. For example, the gene
module MEdarkturquoise, enriched in protein kinase activator
activity, was strongly correlated with a poor prognosis (P < 0.05).
The gene module MEwhite, enriched in NADH dehydrogenase
activity, was strongly correlated with positive survival.

Radiogenomic Correlation
We created the radiogenomic map that combined the remaining
imaging features and four prognostic gene modules using
Spearman rank correlations (Figure 2).

One first-order statistic (volume.eccentricity) and 14 texture
features (GLCM.Energy, GLCM.Contrast, GLCM.Entropy,
GLCM.Variance, GLRLM.GLN, GLRLM.RP, GLRLM.SRLGE,
GLRLM.LRLGE, GLSZM.GLN, GLSZM.ZSN, GLSZM.ZP,
TABLE 2 | Gene modules with significant prognosis in OS.

Gene Module Cox p Hazard Ratio CI (Lower–Upper)

MEdarkturquoise 0.0013 29.25 3.74–229.10
MEgreen 0.0058 13.96 2.14–90.94
MEroyalblue 0.0415 148.10 1.21–18,094.00
MEwhite 0.0331 1.60e−05 6.50e−10–0.41
June 2022 | Volume
CI, confidence interval.
12 | Article 882786

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. Radiogenomics for Gastric Cancer
GLSZM.HGZE, GLSZM.LZLGE, and NGTDM.Complexity)
were identified to have a strong correlation with the gene modules
(P < 0.05, FDR < 0.05). There were 19 pairs of significant correlations
among the features and gene modules. For example, the gene
module MEdarkturquoise was negatively correlated with
GLCM.Energy (P = 0.0379), GLRLM.GLN (P = 0.0161),
GLSZM.ZSN (P = 0.0181), and GLSZM.ZP (P=0.0224) and
Frontiers in Oncology | www.frontiersin.org 5
positively correlated with GLCM.Contrast (P = 0.0079) and
GLRLM.SRLGE (P = 0.0115).

Identification of Imaging Biomarkers and
Radiomics Score
Univariate Cox proportional hazards regression was employed to
assess the survival relationship of the 15 imaging features with
A B

C D

FIGURE 1 | Kaplan–Meier plot with the univariate survival analysis of four gene modules. (A) The Kaplan–Meier plot shows that patients with a higher
“MEdarkturquoise” value have shorter OS (blue lines), and patients with a lower “MEdarkturquoise” value have longer OS (red lines). (B) The Kaplan–Meier plot
shows that patients with a higher “MEgreen” value have shorter OS (blue lines), and patients with a lower “MEgreen” value have longer OS (red lines). (C) The
Kaplan–Meier plot shows that patients with a higher “MEroyalblue” value have shorter OS (blue lines), and patients with a lower “MEroyalblue” value have longer OS
(red lines). (D) The Kaplan–Meier plot shows that patients with a higher “MEwhite” value have longer OS (blue lines), and patients with a lower “MEwhite” value have
shorter OS (red lines).
FIGURE 2 | Radiogenomic map revealing 19 statistically significant associations between 15 CT semantic features and four prognostic gene modules in GC.
Significant pairwise correlations (P < 0.05) are indicated with star symbols. The corresponding correlation coefficients are displayed in a heatmap; the red color
indicates positive correlations, and the blue color indicates negative correlations.
June 2022 | Volume 12 | Article 882786
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survival outcomes. Three texture features, namely,
NGTDM.Complexity, GLRLM.LRLGE, and GLSZM.ZP (shown
in Table 3), were significantly correlated with OS. By using the
bootstrap method, the Wilcoxon test showed significant
differences between the imaging features and random chances.
Thus, the three imaging features were identified as the imaging
biomarkers of GC. In the TCGA database, the RIS was
constructed using a multivariate Cox proportional hazards
regression model based on three imaging features and their
corresponding coefficients (Table S3). Then, patients were
divided into a low-RIS group (n = 22) and a high-RIS group
(n = 23) according to the median RIS. Compared with the low-
RIS group, high-RIS group had a significantly lower OS rate
[Hazard Ratio (HR) = 3.05, 95% confidence interval (CI): 1.35–
6.92] (Figure 3A). To verify the ability of the RIS in predicting
the OS of patients with GC, we further validated our findings in
the database from Nanfang hospital, which yielded the similar
results as above (HR = 3.41,95% CI: 2.41–4.82) (Figure 3B).
Furthermore, multivariate Cox regression analysis was
performed to determine whether the RIS was an independent
prognostic factor for patients’ OS in both databases. In TCGA
database, the P-value of RIS was 0.003 (HR = 1.99, 95% CI: 1.27–
3.12), and in the database from Nanfang hospital, the P-value of
RIS was less than 0.001(HR = 2.04, 95% CI: 1.52–2.75). Thus, RIS
could be identified as an independent prognostic factor.
Correlation between the imaging biomarkers/RIS and immune
infiltration level is shown in the Supplementary Material.
Frontiers in Oncology | www.frontiersin.org 6
Building a Predictive Radiomics
Nomogram for OS Prediction in GC
In the training cohort of Nanfang Hospital database, the
multivariate Cox analysis was employed to identify the
independent prognostic factor in the RIS and clinicopathological
characteristics. RIS, tumor metastasis, pathological lymph node
positive detection rate, primary tumor, and age were significantly
associated with OS (Table 4), and they were integrated to
construct a nomogram (Figure 4A). After adding the sum of
the points of the five variables, we can obtain the patients’ OS
probabilities. Patients were divided into high– and low–
nomogram point groups based on the median point. The
Kaplan–Meier curve showed that the OS of the high–nomogram
point group was significantly poorer [ hazarad ratio (HR) = 8.58,
95% CI: 5.17–14.23, P < 0.001] (Figure 4B). The calibration curve
of our nomogram is shown in Figures 4C, D, which demonstrated
the accurate predictive ability of the nomogram. Moreover, the
nomogram model showed a better net benefit and broader
threshold probability than the AJCC TNM staging system in the
decision curves (Figure 4E), and if the threshold probability is
between 0 and 0.53, then using the radiogenomics nomogram to
predict OS adds more benefit than AJCC stage. ROC analysis
revealed that the nomogram model (AUC = 0.838) had a better
prognostic value compared to the TNM stage (AUC = 0.765)
(Figure 4F). Moreover, the AUC value of 1-, 3-, and 5-year
survival were 0.801 (95% CI: 0.707–0.895), 0.829 (95% CI:
0.755–0.904), and 0.809 (95% CI: 0.688–0.931), respectively
TABLE 3 | Imaging features with significant prognostic value for OS.

Imaging Features Cox p Hazard Ratio CI (Lower–Upper) FDR C-index Wilcoxon Test p

NGTDM.Complexity 0.0055 0.87 0.79–0.96 0.0155 0.7040 0.0278
GLRLM.LRLGE 0.0333 25451.93 2.23–2.91e+08 0.0333 0.5330 0.0392
GLSZM.ZP 0.0103 3.497e+20 71659.00–1.707e+36 0.0155 0.6190 0.0150
Ju
ne 2022 | Volume 1
CI, confidence interval; FDR, false discovery rate.
A B

FIGURE 3 | Kaplan–Meier estimates of the patients’ survival using the radiomics score. The Kaplan–Meier plots were used to visualize the patients’ survival
probabilities for the low-RIS versus high-RIS group of patients based on the median radiomics score. (A) Kaplan–Meier curves for TCGA database patients
(N = 45). (B) Kaplan–Meier curves for patients from Nanfang Hospital database (N = 392). The differences between the two curves were determined by the
two-side log-rank test.
2 | Article 882786
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(Figure 4G). It indicated that the nomogram model was a
powerful tool for predicting patients’ survival.

Validation of the Radiomics Nomogram in
the Validation Cohort
To further identify the predictive ability of the nomogram, we
performed similar analysis in the validation cohort. The
nomogram score for each patient was calculated in the same
way (detailed in Table S4). Consisted with the findings
mentioned above, Kaplan–Meier analysis showed that the
patients in high–nomogram point group had a poor OS (HR =
4.93, 95% CI: 3.05–7.95, P < 0.001) (Figure S4A). Moreover,
ROC analysis demonstrated that the nomogram (AUC = 0.791)
model improved prognostic value in the validation compared
with the TNM stage (AUC = 0.686) (Figure S4B). In addition,
the time-dependent ROC showed that the nomgrammodel had a
good accuracy with 0.843 (95% CI: 0.772–0.913) in 1 year, 0.772
(95% CI: 0.686–0.857) in 3 years and 0.767 (95% CI: 0.664–
0.869) in 5 years (Figure S4C).
DISCUSSION

In this study, we integrated quantitative CT imaging features
with RNA sequencing data to create a radiogenomic map and
identified radiogenomic biomarkers of GC. The results revealed
three prognostic imaging biomarkers and 19 significant pairwise
associations between the imaging features and prognostic gene
modules. Then, a RIS based on the three biomarkers was
developed and proved to be independently associated with OS.
A nomogram integrating both the RIS and clinicopathological
characteristics performed better than the traditional TNM
staging system, which demonstrated well the incremental value
of the radiogenomic biomarker for individualized OS estimation.

The advantages of our radiogenomics analysis are as follows. First,
radiogenomics analysis can hold the promise to meet the clinical
demand noninvasively and comprehensively. Although the
molecular biomarkers gained from preoperative biopsy have
clinical benefit for prognosis of GC, the invasive approach may
Frontiers in Oncology | www.frontiersin.org 7
increase the potential risk to the patients. Moreover, compared with
biopsy with limited specimens, we extracted extensive imaging
features for each patient to comprehensively describe the tumor
phenotype characteristics. In addition, there are barriers of high cost
and technical problems when implementing invasive biopsy (34).
Second, as for traditional radiomics research studies, the imaging
features lack biological interpretations. Radiogenomics, combining
the imaging features and molecular signatures, can compensate for
this deficiency. In our study, prognostic value for clinical imaging
with relevant molecular biology information is provided. Third,
in contrast to traditional gene analysis methods, which focus on a
single gene or a few genes and fail to reflect the association between
genes, we employed WGCNA to divide 58,428 genes of each GC
sample into 33 modules according to the correlation between genes.
Therefore, complicated combinations and multiple testing problems
can be avoided. In addition, we studied molecular prognostic
significance by measuring OS predictors from public cohorts,
which showed the prognostic associations of each gene module in
GC. The three imaging biomarkers and correlations between the
prognostic gene modules and imaging features were discussed in the
Supplementary Material.

In the nomogram, RIS, tumor metastasis, lymph node
positive detection rate, primary tumor, and age were kept after
multivariate Cox analysis. The AUC of this radiogenomic
nomogram is 0.838 in the training cohort and 0.791 in the
validation cohort, which is higher than the previously published
genomic nomogram (AUC = 0.744) by Chen et al. (35) and
radiomic nomogram (AUC = 0.771) by Wang et al. (36). In
addition, combining radiogenomic, clinical, and pathological
information together produced this nomogram with better
performance than using TNM staging information alone
(Figure 4F). Thus, this comprehensive and individualized risk
score calculation method could be used as stratification criteria
in randomized studies and clinical trials.

Our study still had some limitations. First, the sample size of
the CT images corresponding to gene expression profiles in
TCGA database was not large enough, which may limit the
reliability (8). Therefore, further studies with larger sample sizes
are needed. However, to some extent, external validation from
Nanfang Hospital was used to improve the dependability in this
study. Second, the image datasets downloaded from the TCIA
were extremely heterogeneous in terms of scanner modalities,
manufacturers, and acquisition protocols, which may have
resulted in adverse effects (37). Third, because of the limited
experimental conditions and lack of enough funding, the
significant correlations between imaging features and gene data
could not be validated in molecular biology experiment and
clinical trials. However, to our knowledge, this is the first study to
predict OS for patients with GC by radiogenomics, which might
provide valuable references in this field.
CONCLUSION

In conclusion, in this study, we presented three imaging biomarkers
with significant prognostic value and a nomogram prognostic
model for patients with GC. The imaging biomarkers correlated
TABLE 4 | Multivariable Cox regression analysis of clinical pathological
parameters in training cohort and the whole cohort.

Trian Cohort Whole Cohort

Item HR (95% CI) P-value HR (95% CI) P-value

RIS_scorea 2.16 (1.40–3.32) < 0.001 2.04 (1.52–2.75) < 0.001
Agea 1.03 (1.00–1.06) 0.02 1.02 (1.00–1.04) 0.013
Lymphva 4.07 (1.65–10.04) 0.002 7.34 (4.00–13.43) < 0.001
fT
T1 1.00 (Reference) 1.00 1.00 1.00
T2 4.60 (0.51–41.85) 0.18 1.87 (0.31–11.21) 0.49
T3 6.61 (0.68–64.28) 0.10 7.80 (1.61–37.74) 0.01
T4 9.98 (1.35–73.68) 0.024 6.34 (1.5–26.01) 0.01

fM
M0 1.00 1.00 1.00 0
M1 2.96 (1.12–7.87) 0.03 2.06 (0.94–4.51) 0.07
aContinuous variable.
HR, hazard ratio; CI, confidence interval.
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FIGURE 4 | Development and validation of the raidiomics nomogram. (A) Nomogram constructed in conjunction with the radiomics score and clinical
characterization that predict the 3- and 5-year overall survival of patients with gastric cancer. (B) Kaplan–Meier curves for patients with high and low nomogram
score in the training cohort. (C, D) Plots depict the calibration of radiomics nomograms in terms of agreement between predicted and observed 3-year (C) and 5-
year (D) outcomes. (E) Decision curves of the nomogram model and TNM stage for the survival predictions of patients with GC. (F) The ROC comparation between
the nomogram model and the TNM stage. (G) Time‐dependent ROC analysis of the nomogram model for OS prediction in the training cohort. The area under the
ROC curve was 0.803, 0.838, and 0.811 for the nomogram score at 1, 3, and 5 years, respectively.
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with RNA expression profiles can provide possible biological
interpretations and may facilitate a better understanding of the
molecular characterization of GC. The proposed nomogram
showed better prognostic performance than the TNM staging
system. Researchers, clinicians, and patients can easily predict the
survival probability using this nomogram.
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