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Abstract
Purpose of Review  Type 2 diabetes (T2D) is a multifactorial, heritable syndrome characterized by dysregulated glucose 
homeostasis that results from impaired insulin secretion and insulin resistance. Genetic association studies have successfully 
identified hundreds of T2D risk loci implicating many genes in disease pathogenesis. In this review, we provide an overview 
of the recent T2D genetic studies from the past 3 years with particular focus on the effects of sample size and ancestral 
diversity on genetic discovery as well as discuss recent work on the use and limitations of genetic risk scores (GRS) for 
T2D risk prediction.
Recent Findings  Recent large-scale, multi-ancestry genetic studies of T2D have identified over 500 novel risk loci. The 
genetic variants (i.e., single nucleotide polymorphisms (SNPs)) marking these novel loci in general have smaller effect sizes 
than previously discovered loci. Inclusion of samples from diverse ancestral backgrounds shows a few ancestry specific loci 
marked by common variants, but overall, the majority of loci discovered are common across ancestries. Inclusion of com-
mon variant GRS, even with hundreds of loci, does not substantially increase T2D risk prediction over standard clinical risk 
factors such as age and family history.
Summary  Common variant association studies of T2D have now identified over 700 T2D risk loci, half of which have been 
discovered in the past 3 years. These recent studies demonstrate that inclusion of ancestrally diverse samples can enhance 
locus discovery and improve accuracy of GRS for T2D risk prediction. GRS based on common variants, however, only 
minimally enhances risk prediction over standard clinical risk factors.

Keywords  Type 2 diabetes · Human genetics · GWAS · Genetic risk score · Polygenic risk score · Multi-ancestry

Type 2 Diabetes Is a Heterogeneous 
but Heritable Syndrome

Type 2 diabetes (T2D) is characterized by impaired glu-
cose metabolism arising from defects in insulin resistance 
and secretion [1]. In clinical practice, T2D is diagnosed by 
elevated blood glucose levels most commonly assessed via 
point measurements in the fasting state or averaged over 

months via glycated hemoglobin (HbA1c) tests. Clinical 
presentation and disease progression may vary consider-
ably among individuals, and the prevalence of T2D varies 
between different ethnic groups; for example, Hispanic and 
Black populations have higher age-adjusted T2D preva-
lence compared to White and Asian groups [2, 3]. Clinical 
complications of T2D include microvascular complications 
such as retinopathy, neuropathy, and nephropathy as well as 
macrovascular complications such as myocardial infarction 
and stroke [4]. Cardiovascular disease (CVD) is the leading 
cause of death in people with T2D who have up to a three-
fold increase in CVD risk as compared to people without 
T2D [5].

The pathogenesis of T2D involves both environmental 
and genetic causes. Environmental factors including obesity, 
stress, and lifestyle choices such as an unhealthy, energy-
dense diet, and a sedentary lifestyle have been closely asso-
ciated with the development of T2D [6]. The heritability of 
T2D ranges from 30 to 70% [7] and family history of T2D 
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is a significant risk factor, with an approximate two-fold 
relative risk for siblings [8] and a three-fold increased risk 
for first-degree relatives of a T2D individual [9]. A handful 
of robust disease genes were identified by early small-scale 
genetic association studies for T2D [10, 11] and related 
Mendelian diabetes syndromes [12]. With the advent of 
genotyping arrays and the systematic cataloging of com-
mon genetic variation by the International HapMap project, 
population-scale genome-wide association studies (GWAS) 
became feasible, leading to the identification of hundreds of 
T2D associated loci [13]. This review focuses on the T2D 
genetic association studies conducted over the past 3 years.

T2D Risk Loci Marked by Common Genetic 
Variants Are Mostly Shared Across 
Ancestries

In the early 2000s, collaborative efforts spanning multiple 
institutions across the globe coalesced into several interna-
tional consortia focused on genetic mapping of T2D along 
with its related traits and even complications (summarized 
in Table 1). Initially, consortia such as DIAGRAM [14] and 
MAGIC [15] aggregated participants of a single ancestry 
(mostly northern European), but more recently, they have 
included participants across a variety of ancestries [16, 17•]. 
As of 2018, the list of T2D associations included over 200 
independent loci [18] (Table 2). Subsequent studies over the 
past 3 years have built upon earlier work by meta-analyzing 
previously collected samples with samples obtained across 
multiple ancestries to identify an additional 500 T2D risk 
loci, defined as those > 500 kb and linkage disequilibrium 
(LD) r2 < 0.05 from previously reported loci (Table 2).

The largest T2D genetic association study to date meta-
analyzed GWAS from eight cohorts including population-
based biobanks such as the Million Veteran Program (MVP) 
and Biobank Japan as well as dedicated T2D case–control 
cohorts such as DIAMANTE [19•]. These cohorts contained 
individuals from five different ancestral groups (European, 
African American, Hispanic, South Asian, and East Asian) 
for a total of 228,499 T2D cases and 1,178,783 controls. A 
total of 568 T2D risk loci were identified at genome-wide 
significance, 293 of which were novel in this study [19•]. 
These newly identified loci had smaller effect sizes (aver-
age beta regression coefficient of 0.032 ± 0.012 per allele) 
than previously discovered T2D risk loci (average beta 
of 0.054 ± 0.045 per allele), demonstrating that increased 
sample size enhanced statistical power to detect association 
signals with smaller biological effects. Additionally, within 
the MVP cohort, Vujkovic et al. performed ancestry-specific 
GWAS which identified an additional 21 loci in Europeans 
and 4 loci in African Americans not initially identified in 
the original meta-analysis. A few loci demonstrated higher 

effect sizes for T2D in African Americans compared with 
Europeans, but the majority of loci (92.1%) showed no sig-
nificant heterogeneity in effect estimates between Europeans 
and African Americans.

The most recently published multi-ancestry T2D 
case–control genetic study illustrates the dominant effect of 
sample size in driving locus discovery [20]. Polfus et al. 
conducted a GWAS meta-analysis of 53,102 T2D cases and 
193,679 controls from the multi-ethnic Population Archi-
tecture Genomics and Epidemiology (PAGE) consortium 
along with the DIAGRAM consortium, and replicated their 
findings in independent ancestry-specific samples from mul-
tiple T2D consortia including DIAMANTE, Asian Genetic 
Epidemiology Network (AGEN), Slim Initiative in Genomic 
Medicine for the Americas (SIGMA), and African Ameri-
cans from the MEta-analysis of type 2 DIabetes in Afri-
can Americans (MEDIA) [20]. They identified four novel 
loci from the discovery PAGE + DIAGRAM GWAS, two 
of which replicated in single ancestry replication GWAS: 
(1) rs11466334 near the transforming growth factor beta-1 
(TGFB1) gene and (2) rs13052926 near beta-secretase 
2 (BACE2). Only the TGFB1 locus (rs11466334) was an 
ancestry-specific variant occurring more commonly in Afri-
can (minor allele frequency (MAF) = 6.8%) and Hispanic 
populations (MAF = 1.3%) as compared with other ances-
tries (MAF < 1%). The single nucleotide polymorphism 
(SNP) was also predicted to be functionally consequential 
via disrupting a CCCTC-binding factor (CTCF) binding 
motif potentially leading to altered enhancer-promoter inter-
actions. Although this study identified four novel loci, it did 
not re-identify over 90% of the genome-wide significant loci 
identified in previous studies [18, 19•] (Table 2). The critical 
distinguishing factor was the sample size, highlighting this 
as the major determinant of genetic discovery in common 
variant association studies for T2D.

To examine the effect of ancestry on loci associated with 
glycemic traits (fasting glucose, fasting insulin, 2-h glucose, 
and HbA1c) in non-diabetic individuals, Chen et al. and 
the MAGIC investigators first conducted meta-analyses of 
GWAS within each of the following single-ancestry popula-
tions: European, African American, Hispanic, East Asian, 
or South Asian. They then meta-analyzed these “single-
ancestry GWAS” in a “trans-ancestry” GWAS consisting of 
a total of 281,416 non-diabetic individuals [17•]. From the 
trans-ancestry GWAS, they identified 235 loci associated 
with at least one glycemic trait, and 7 additional loci from 
the single-ancestry GWAS that did not rise to genome-wide 
significance in the trans-ancestry analysis. Interestingly, the 
single-ancestry loci had similar allele frequencies across the 
sampled ancestries, potentially suggesting epistatic effects 
with other ancestry-specific variants or that they rose to sig-
nificance in a particular single-ancestry analysis simply by 
chance.
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Of the 235 trans-ancestry glycemic trait-associated loci, 
93 were novel at the time of publication and Chen et al. 
performed an instructive simulation to quantify the ben-
efit of including multiple ancestries as opposed to simply 
increasing sample size to enhance novel locus discovery. 
By re-scaling the standard errors of the European single-
ancestry GWAS to simulate the trans-ancestry sample size, 
Chen et al. found that that 21 out of the 93 (22.6%) newly 
discovered trans-ancestry loci would not have been identified 
in a GWAS restricted to European ancestry. This suggests 
that while the majority of novel loci were identified due to 
increase in sample size, a modest benefit was obtained by 
including non-European samples.

Furthermore, this study examined the effect of single- 
versus trans-ancestry analyses on the resolution of genetic 
fine-mapping to identify causal variants. To do this, the 
authors identified 98 locus-trait associations that had a single 
causal variant from both single- and trans-ancestry fine-map-
ping and found that 72 (73%) locus-trait associations showed 
improvements in the resolution of fine-mapping, as quanti-
fied by a decreased number of variants in the 99% credible 
sets. Of these 72 locus-trait associations, 53% were improved 
due to larger sample size in the trans-ancestry analysis and 
47% were improved due to the inclusion of diverse ancestries 
as demonstrated by a decrease in the median number of vari-
ants in the 99% credible sets from 24 to 15 variants (37.5% 
median reduction). Thus, for about half the loci identified, 
inclusion of diverse ancestries enabled a reduction of about 
10 variants from the final 99% credible sets for the causal 
variant.

In addition to the above-described multi-ancestry stud-
ies, recent large-scale T2D genetic studies have also been 
performed in East Asian populations which have been previ-
ously under-represented in GWAS. In a T2D case–control 
GWAS meta-analysis including Biobank Japan participants, 
Suzuki et al. examined 36,614 T2D cases and 155,150 con-
trols of Japanese ancestry and identified 88 T2D risk loci, 
28 of which were novel [21]. The majority (77%) of the 
identified lead variants are common (MAF > 0.05) in both 
Japanese and European populations, and Suzuki et al. dem-
onstrated that effect sizes are strongly correlated (Pearson’s 
r = 0.83, P = 8.7e-51) and directly consistent (94%) between 
the Japanese GWAS and a comparable T2D European 
GWAS, indicating that the majority of genetic susceptibil-
ity between Japanese and European ancestry is shared. In 
addition to this study in Japanese individuals, the largest 
meta-analysis of T2D GWAS in individuals of East Asian 
ancestry to date examined 77,418 T2D cases and 356,122 
controls across 23 studies including AGEN and Biobank 
Japan to identify 183 loci, of which 61 were novel [22•]. 
Upon comparison with a previously published T2D GWAS 
in European individuals of similar sample size, Spracklen 
et al. demonstrated that effect sizes of variants significantly 

associated with T2D in both East Asian and European 
ancestry were strongly correlated (r = 0.87). Furthermore, 
the authors find that only 8.4% of variants showed signifi-
cant heterogeneity in effect size between the East Asian and 
European GWAS results, and the variants which have the 
greatest differences in effect sizes between the two popula-
tions are those that are common or low-frequency in East 
Asians but rare in Europeans (MAF < 0.1%). Overall, these 
recent T2D genetic association studies in East Asian ances-
try cohorts underscore the finding that genetic susceptibil-
ity to T2D captured by common genetic variation is mostly 
shared across ancestries.

Genetic Risk Scores for T2D Do Not 
Substantially Enhance Risk Prediction 
over Traditional Clinical Risk Factors

While over 700 loci identified by common variant associa-
tion studies (i.e., GWAS) combine to explain almost 20% 
of T2D heritability [19•], each individual common variant 
(i.e., SNP) has a small to modest effect (10–30%) on disease 
risk as compared to simply knowing family history of T2D, 
which if present in a parent confers a large increase in risk 
(~ two–threefold)[23]. Combining multiple variants geno-
typed in a single person into a genetic risk score (GRS, also 
commonly referred to as polygenic risk score) is a logical 
strategy to enhance the clinical utility of genetic information 
from common variants to identify individuals at high risk 
[24]. GRS combining multiple loci were initially tested in 
the early 2000s with the first T2D GWAS studies. One of the 
first studies calculated a T2D GRS from a combination of 
18 loci finding that genetic information minimally enhanced 
risk prediction when combined with traditional clinical risk 
factors such as age, sex, or family history of diabetes [25]. In 
the past few years, there has been a resurgence of interest in 
GRS leveraging many more loci identified from large-scale, 
multi-ancestry cohorts.

In the largest T2D GWAS to date (Table 2), Vujkovic 
et al. used results from a previous European GWAS [18] to 
calculate GRS for participants in the MVP and demonstrated 
that individuals with the highest T2D GRS (90–100% GRS 
percentile) presented the highest risk for T2D (OR = 5.21, 
95% CI = 4.94–5.49) compared to those with the lowest T2D 
GRS (0–10% GRS percentile) [19•]. Using the GWAS effect 
estimates from the T2D GWAS conducted by Vujkovic et al., 
Polfus et al. computed a GRS for T2D in a multi-ethnic 
cohort [20]. From this, they found that GRS constructed 
from multi-ethnic computed weights demonstrated nominal 
increases in predictive power compared to single-ancestry 
computed weights, and observed strongly significant hetero-
geneity across ancestries for accuracy of T2D risk predic-
tion. For instance, the multi-ethnic GRS without adjustment 
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for clinical risk factors performed best in European and East 
Asian populations (AUC = 0.66 and 0.63, respectively) and 
most poorly in African Americans (AUC = 0.57).

These recent studies which have generated GRS for T2D 
and its related phenotypes have demonstrated that GRS has 
the highest discriminative ability when applied to European 
populations and that performance is subsequently improved 
in non-European ancestries when GRS is computed using 
multi-ancestry weights [20, 26]. However, even after a dec-
ade of methodological refinement as well as an increase in 
the number of loci to calculate GRS, the predictive power 
of GRS for T2D is comparable to discrimination by clinical 
risk factors alone (Fig. 1). However, GRS may have a role 
in detecting individuals at high risk before clinical risk fac-
tors become apparent. Whether information from GRS can 
motivate preventative therapy to meaningfully reduce rates 
of future incident T2D remains to be studied. GRS have also 
been applied widely beyond T2D to other heritable diseases 
such as heart disease and cancer [27, 28] and even been 
offered as a tool for embryo screening during in vitro ferti-
lization [29–31]. But the current consensus among geneti-
cists, ethicists, and clinicians is that the scientific and tech-
nical uncertainty in GRS and their limited predictive power 
should limit their use in genetic screening [32].

Perspective on Future Genetic Mapping 
Studies in T2D

With over 700 T2D risk loci identified by common variant 
genetic association studies (i.e., GWAS), decades of fol-
low-up biological studies in cellular and organismal model 
systems will be required to fully understand the causal 
genes and molecular mechanisms of disease pathogenesis. 
Thus, it is unlikely that simply aggregating larger T2D 
case:control cohorts for association analysis will provide 
scientific and clinical insight into T2D. Here, we expect 
that an enhanced focus on T2D complications, which are 
the leading cause of death in T2D[5] and are indepen-
dently heritable of diabetes[38], using common variant 
association methodology will advance understanding and 
treatment as has been ongoing for T1D [39].

It has long been appreciated that T2D is a highly het-
erogeneous disorder classically defined along a spectrum 
of insulin secretion and insulin resistance which ultimately 
belies differences in clinical presentation, disease progres-
sion, response to treatment, and susceptibility to compli-
cations [40]. Recent work added four clinically available 
variables to insulin and glucose to refine T2D subtypes 
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which were shown to differ in patient characteristics and 
risk of comorbidities [41]. Genetic association analysis of 
these T2D subtypes has revealed partially distinct genetic 
backgrounds and heritability demonstrating progress in 
refining T2D classification to reduce clinical heterogeneity 
[42]. We expect that the use of omics measurements such 
as transcriptomics, proteomics, and metabolomics applied 
to blood samples will enable the identification of novel 
patterns to resolve T2D heterogeneity and in combina-
tion with genetic association methodologies enable iden-
tification of distinct biological pathways. Early efforts in 
the application of metabolic measurements to fasting and 
postprandial samples in concert with GWAS have shown 
the potential of such omics approaches [43].

In contrast to common variants which were generated 
millions of years ago in an genetically equilibrated ances-
tral human population, rare genetic variants (MAF << 
0.01) which arose during the “out of Africa” human pop-
ulation expansion [44] potentially offer different mecha-
nisms of disease causation. As exome and whole genome 
sequencing are becoming more commonplace, investiga-
tors have begun to examine rare variant associations with 
T2D [45]. The challenge with rare variant association 
studies is that the sample size requirement vastly increases 
due to the low allele frequency and increase in multiple 
hypothesis testing burden from the large number of rare 
variants [46]. Using a combination of methodological 
enhancements such as “burden tests” which aggregate rare 
variants across a gene to reduce the multiple hypothesis 
testing burden and population-scale biobanks like the UK 
Biobank to increase sample size, investigators have identi-
fied novel T2D loci such as GIGYF1 [47] and FAM234A 
[48] which were not marked by common variant signals.

In summary, we expect that large-scale exome and whole-
genome sequencing of population scale biobanks will facili-
tate rare-variant association studies of T2D to identify novel 
loci beyond what has been identified by common variant 
association studies thus far. Additionally, focusing genetic 
mapping efforts on micro- and macrovascular diabetes com-
plications is likely to maximize the value of novel locus 
discovery to further understand and treat T2D.
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