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Limits of Predictability of Cascading 
Overload Failures in Spatially-
Embedded Networks with 
Distributed Flows
A. Moussawi1,2, N. Derzsy1,2, X. Lin2,3, B. K. Szymanski   2,3 & G. Korniss1,2

Cascading failures are a critical vulnerability of complex information or infrastructure networks. Here 
we investigate the properties of load-based cascading failures in real and synthetic spatially-embedded 
network structures, and propose mitigation strategies to reduce the severity of damages caused by 
such failures. We introduce a stochastic method for optimal heterogeneous distribution of resources 
(node capacities) subject to a fixed total cost. Additionally, we design and compare the performance 
of networks with N-stable and (N-1)-stable network-capacity allocations by triggering cascades using 
various real-world node-attack and node-failure scenarios. We show that failure mitigation through 
increased node protection can be effectively achieved against single-node failures. However, mitigating 
against multiple node failures is much more difficult due to the combinatorial increase in possible sets 
of initially failing nodes. We analyze the robustness of the system with increasing protection, and find 
that a critical tolerance exists at which the system undergoes a phase transition, and above which the 
network almost completely survives an attack. Moreover, we show that cascade-size distributions 
measured in this region exhibit a power-law decay. Finally, we find a strong correlation between 
cascade sizes induced by individual nodes and sets of nodes. We also show that network topology alone 
is a weak predictor in determining the progression of cascading failures.

In complex information or infrastructure networks even small localized disruptions can give rise to congestion 
that can trigger cascading failures (avalanches), a sequence of consecutive failures1. For example in transportation 
systems, when a component fails the transportation flow is redistributed on the remaining network, which can 
cause subsequent congestion and failures. This phenomenon can be observed in various flow-driven systems such 
as infrastructure networks2,3, urban microgrids4, commuter transportation and mobility networks5–7, financial 
systems8, and biological networks9. Among infrastructure networks a great interest is focused on the study of 
cascading failures occurring in electrical power grids10–17,18. Due to the latest technological advances, our modern 
society permanently relies on continuous and stable electricity provided by power grid systems. Any localized dis-
ruption can induce a cascading failure in the power grid, resulting in blackouts often over extended geographical 
regions, which can create life-threatening situations, and also cause substantial financial losses. Cascading failures 
propagate at very high speeds, rendering real-time mitigations impractical in the event of a disruption.

Prior studies on cascading failures in power grids suggest that power grid blackouts follow a first-order phase 
transition19,20,21. Similarly, a recent study conducted on the US Western Interconnect power grid has revealed 
that the probability of cascading failures occurring, with respect to the value of the tolerance parameter, exhibits 
a bimodal nature, characteristic to first-order transitions22. These results indicate that a disruption in the system 
can either cause insignificant damage or trigger severe cascading failures. Another study conducted on scale-free 
networks has shown that within this phase transition region the number of failed nodes exhibits a power-law tail 
distribution23. Other studies have also reported a power-law behavior in the distribution of blackouts in power 
grids, phenomenon related to self-organized criticality24. Similarly, the size distribution of cascading failures in 
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the North American power grid13, as well as the size distribution of power blackouts for the Norwegian and North 
American power grids25 also follow a power-law. Moreover, the power-law behavior has been detected in neu-
ronal networks processing information, such as in the size distribution of neuronal avalanches26.

In a more generalized context, power grid systems are spatially-constrained networks, characterized by 
short-range links. Asztalos, et al.27 have shown that an extensively studied standard cascade mitigation strategy 
of preemptively disabling a fraction of underperforming nodes28 is largely ineffective in spatially constrained 
networks. In addition, their study on the European power grid network27 has revealed a lack of self-averaging in 
cascade processes, and showed that increasing the excess capacity does not reduce the severity of the cascade in 
a monotonic fashion. Further analysis suggested that conventional mitigation strategies are largely ineffective. 
Therefore, preventive measures, such as designing a stable system against failures or identifying and increasing 
protection in more vulnerable regions, are crucial to minimize the probability of system disruption.

Motivated by these prior results, we study a model of load-based cascading failures on spatial networks. In 
particular, we use the European power transmission network maintained and operated by the Union for the 
Co-ordination of Transmission of Electricity (UCTE), and study it as a random resistor network carrying dis-
tributed flow29,30. We also employ Random Geometric Graphs (RGGs)31,32 for finite-size scaling analysis. Prior 
studies focused on resistor networks studied flow optimization, transport efficiency, and vulnerability in complex 
networks22,30,33,34. We analyze the behavior of cascading failures in the UCTE network, and propose mitigation 
strategies to reduce the vulnerability of the system against random failures or targeted attacks. We find that miti-
gation against single-node failure can be effectively achieved, however as the complexity of disruption (number of 
failed nodes) increases, the predictability of the resulting damage becomes increasingly curtailed.

Results
Our current work is centered on the study of spatial networks, namely the Union for the Co-ordination of 
Transmission of Electricity (UCTE) data set35 representing the power grid system of continental Europe in year 
2002. The network comprises N = 1254 transmission stations and E = 1812 edges spanning 18 European coun-
tries. The network is disassortative with an assortativity coefficient of 0.1, with average degree 〈k〉 = 2.889 and 
clustering coefficient of C = 0.127. We model the system as a random resistor network carrying distributed flow 
and employ a capacity-limited overload model36 to simulate cascading failures in the network (see Methods). 
Note that despite the simplicity of this fundamental model for conserved flows (i.e. Kirchhoff ’s and Ohm’s law in 
the resistor network), the underlying system of equations have identical structure to those of the DC power-flow 
approximation (the current and voltage corresponding to the power and phase, respectively)4,10,37.

We find that the load is positively correlated with the degree, while the degree and load distributions span a 
relatively narrow range (see Suppl. Info. Section S2), yet a significant variance of loads can be observed even for 
small degree values. This characteristic suggests that the load bearing responsibility of a node cannot be assessed 
exclusively from its degree. Using the spatial information of the nodes and edges, we plot the link length distri-
bution (Suppl. Info. Section S2), and find that the majority of links span short distances with very few long range 
links constructed as part of the overall power grid designs. For the remainder of this article we use the terms 
removal of a node and attack on a node interchangeably to denote a node whose failure is used to initiate the 
cascade.

Random Capacity Allocation from Heterogeneous Distribution.  We start studying the behavior of 
cascading failures in the UCTE network by assigning to each node a uniform capacity proportional to its load 

α= +C l(1 )i i
0, where Ci is the total capacity of node i, α is a tolerance parameter36, and li

0 is the initial state load 
of node i, when the network is intact. Further we will refer to α∆ =C li i

0 as the excess capacity of node i. We study 
the cascading failure induced by the removal of a single (highest load) node from the network, and investigate the 
severity of the resulting damage, by calculating G, the size of the surviving giant component of the system. In 
Fig. 1(a) we present the size of the surviving giant component with respect to the tolerance parameter α, and show 
that increasing α results in non-monotonic behavior of cascading failures. Higher capacity allocation (for exam-
ple, an increase of α = 0.4 to α = 0.45) does not always reduce the severity of cascades, on the contrary, it may 
induce larger damage in the system27.

In real-world scenarios, allocating additional protection against failures in interconnected systems comes at a 
cost, and assigning higher capacity to each node in order to mitigate cascading failures in the power grid can be a 
costly procedure. Therefore, we introduce a different approach for allocating the resources (capacities) in the 
power grid by using a stochastic random capacity allocation method, while preserving the same total cost in the 
system as for the previous uniform capacity allocation case. The mean excess capacities assigned to the node i are 
proportional to its normal equilibrium operational load α∆ =C li i

o. The particular values of the excess capacities, 
however, are drawn from a uniform distribution α σ σ∆ ∈ − +C l [1 , 1 ]i i

0 , with width σ relative to the mean, 
such that 0 ≤ σ ≤ 1, and subject to a fixed overall cost, α∑ ∆ = ∑C li i i i

o. In Fig. 1(b) we show that our fixed-cost 
random node-capacity assignment results in a significant and emergent broadening of the distribution of the size 
of surviving giant component G, by varying σ, the width of the search space. Hence, we can stochastically search 
for optimal excess capacity allocations resulting in maximum resilience (largest G). We also find that by choosing 
higher σ values, we can further improve the protection against damage with no additional cost (albeit with a sat-
urating effect). For baseline comparison we also plot the initial case when identical relative excess capacity is 
assigned to each node (black filled symbols). The results clearly demonstrate that the fixed-cost stochastic distri-
bution of resources (capacities) allows for identifying particular realizations which provide superior protection 
against cascading failures in the power grid.

In Fig. 1(c) we illustrate for comparison the damage caused by the removal of the highest load node in case 
of uniform capacity allocation, the best-case scenario (the highest protection obtained from stochastic capacity 
allocation) and worst-case scenario (the lowest protection obtained from stochastic capacity allocation) when 
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the tolerance is α = 0.45 and the width of the stochastic search space is σ = 1/2. Aiming to better understand the 
properties of the capacity allocations resulting in the highest protection vs. the lowest protection for a given α 
tolerance parameter, we study in Fig. 1(d) the correlation of the excess capacity with node degree and initial state 
load, but find little insight (based on traditional single-node structural or load-based characteristics) as to why 
a certain stochastic allocation of resources performs better than the others with respect to these node properties 
(see Suppl. Info. Section S3).

Sensitivity to Target Selection in Spatially-Localized Multi-Node Attacks.  Previously, we trig-
gered cascades by removing a single (highest load) node. In order to capture more realistic scenarios, we con-
sider a geometrically concentrated region containing several nodes, and analyze how the selection of multiple 
spatially-clustered initiators influences the size of the induced damage. Specifically, we investigate the sensitiv-
ity of the cascades to small variations in the target set. We arbitrarily choose the center of our attacks to be in 
South Western Europe. A circular region of radius 1r, 2r, and 3r contains 9, 12, and 20 nodes, respectively, where 
r ≈ 60 km. We consider various attack realizations (i.e., selections of target set) in the 2r and 3r regions while 
keeping the total number of attacked nodes fixed to be 9.

We have seen in the single-node removal case a lack of correlation between the damage caused by a node, its 
degree, and its initial state load, respectively. Next, we analyze whether we can observe a correlation among these 
parameters in case of cascading failures triggered by multi-node attacks. In Fig. 2(a) we plot the size of the surviv-
ing giant component as a function of the sum of the initial state loads  of the 9 initiator nodes removed from the 
2r region. Once again, we find that there is little or no correlation between traditional node characteristics 
(degree, load) and inflicted damage. Intuitively, one might expect to see a positive correlation between the load 
and damage, indicating that the failure of nodes with higher load would cause more severe damage. However, our 
results show that nodes with smaller load can cause severe damages, and nodes of similar load can induce mini-
mal or no damage at all. Similarly, in Fig. 2(b) we see no correlation between the damage induced by the nodes 
and the sum of their degrees k. Despite the lack of correlations between these quantities, it is interesting to observe 

Figure 1.  Cascades on the UCTE network triggered by the removal of a single (highest load) node. (a) The 
cascade size as a function of tolerance parameter for (a) uniform capacity allocation; (b) stochastic capacity 
allocation of varying σ values: σ = 0.25 (green), σ = 0.50 (blue), and σ = 1.00 (red), with 100 simulations for 
each case. For comparison, the black connected data points show the performance of the uniform capacity 
allocation presented in (a). (c) Visualization of the damage caused in the UCTE power grid by the removal of 
the highest load node using the identical (uniform) capacity allocation vs. the best-case and worst-case scenario 
of the stochastic capacity allocations. (d) Correlation analysis of load/node degree vs. excess capacity for the 
best-case and worst-case scenario stochastic capacity allocations.
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a clear bimodal behavior in Fig. 2(a,b), with data points condensed around two regions: either causing severe 
damage of G ∈ [0.3; 0.6] or inducing no cascading failure. Similar bimodal behavior has been reported for cascad-
ing failures in the US Western Interconnect (USWI) power grid22.

Expanding our analysis of multi-node failures to larger attack regions (2r and 3r), we randomly select 9 nodes 
to be the initiators for one simulation, and perform 100 realizations for each region, and record the total degree 
and load of the initiators. In Fig. 2(c,d) we demonstrate how the cascading process varies among different node 
degrees and loads. The two-level distribution of G implies that for the safety of the entire system, it is better to 
lower the degree and load in a potentially targeted region. In the smaller 2r region, the low damage and high 

Figure 2.  Node sensitivity in the UCTE network. (a) G vs. ∑ i i
initiator. (b) G vs. ∑ ki i

initiator. (c) Contour plot of 2r 
region. (d) Contour plot of 3r region. (e) Visualization of variability for small changes in the target set for 
spatially-clustered attacks on the UCTE network. Case 1 and Case 2 visualize the avalanche of failed nodes 
(blue) triggered by the removal of two distinct sets of nine-spatially-localized-nodes (red) from the same 2r 
region, with α = 0.1.
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damage separates clearly and seems to be of the same size. It is easier to mitigate the damage of cascades in a 
smaller region if the targeted region has a smaller total degree and load. However, the area of high damage is 
much larger than that of small damage in the case of 3r, meaning most realizations suffer high damage. The 
border of these two areas is not smooth, indicating that it is more complicated to reduce the damage than in the 
previous case. The results suggest that a larger region has a more complex topological structure, and that more 
variations of the initiators also increases the complexity of the resulting cascades.

For illustration, the nine nodes attacked and the resulting cascades for two different cases are shown in 
Fig. 2(e)). The visualizations clearly imply that there is a very large variability in cascade size for small changes in 
a spatially-confined target set, depending on which 9 nodes (indicated by red) are selected out of 12 within the 
2r region. For Case 1, the resulting cascade (indicated by blue) is relatively closely confined to the attack region, 
while for Case 2, the cascade impacts a major portion of the network, including regions far away from the attack 
center.

The progression of the cascade initiated by the removal of different node sets chosen randomly from a 
spatially-concentrated region, as well as the progression of the cascade initiated by the removal of different node 
sets chosen randomly when enlarging the spatially-concentrated region (increasing radius r) can be viewed in the 
movies supplied as supplementary material (Movie S3–S11).

N-Stable and (N-1)-Stable Capacity Allocation for the UCTE network.  Next, we propose to study 
the UCTE network under two distinct system architectures based on power grid engineering methodology, 
namely the N-stable and (N-1)-stable configurations. The N-stable UCTE system represents the power grid net-
work in its intact form with capacity allocation α= +C l(1 )i i

036. Similarly, the (N-1)-stable system is designed 
such that it is stable against any single-node failure, when (N-1) nodes are left in the network1,14. In order to attain 
this, we assign each node a capacity −Ci

N( 1), representing the minimum load capacity of node i which guarantees 
that no subsequent overload failure occurs following any single-node failure in the system. Based on this we 
express the capacity of node i as ε= + −C C(1 )i i

N( 1), where ε is the relative tolerance. This method is used as an 
industry standard, and engineers commonly assign the relative tolerance values in the range of ε ∈ [0.1; 0.2]. In 
our work we will further study the (N-1)-stable using ε = 0.10. In order to effectively compare the efficacy of the 
two network construction methods, we calculate the α value of the N-stable scenario that provides the same cost 
of protection as the (N-1)-stable scenario with ε = 0.10. We find that α = 0.5927 is the value for which the two 
systems use the same amount of resources, thus in the following analyses we will use α = 0.5927 tolerance param-
eter for the N-stable case, and ε = 0.10 relative tolerance for the (N-1)-stable case, unless otherwise stated.

Of great interest when studying attacks on networks is the role that spatial correlations, as well as the initial 
capacities on the nodes or edges of the intact network play in determining the severity of a cascade. Figure 3(a,b) 
show the damage delivered by attacks on N-stable and (N-1)-stable networks, respectively. To initiate the cascade, 
nodes were either randomly chosen (with 5 realizations for each value of n), or removed in succession of distance 
from the center of the network (spatially correlated). The horizontal and vertical axes represent the number of 
removed nodes (n) triggering the cascade and the size of the surviving giant component (G) after the cascade, 
respectively. In both figures, the sum of the allocated capacities are equivalent, giving a fixed-cost comparison of 
the two system designs. It is immediately apparent that for small n (n < 100) the N-stable and (N-1)-stable con-
figurations are more stable against random failures, but are more vulnerable to spatially-localized attacks. As the 
number of targeted nodes becomes larger (n ≥ 100), both systems become more vulnerable against random fail-
ures and more robust against localized attacks. What may be the most striking are the discontinuities in G for the 
spatially-correlated scenario. As the radius of the attack increases, the severity of the damage slowly changes until 
certain critical radii are reached. There we witness abrupt changes in G, making the network more, or less robust 
depending on the location. This suggests that the severity of an attack on a network varies non-monotonically with 
the size of the attack. Smaller attacks may yield more damage and vice versa, similar to our previous findings. Also 
of importance is the fact that for smaller attacks, the spatially correlated attack is much more effective than the 
random attack. Possible reasoning for this observation is that a small random attack is unlikely to strike pivotal 
nodes, while a spatially correlated attack has a much larger impact on one local region, disrupting the network 
more severely. The opposite is observed when the attack is large, and along similar lines of thought, it is unlikely 
that pivotal nodes in the network are clustered in one region. By dispersing the attack, the probability of hitting a 
higher number of such nodes increases.

Figure 3(c) highlights the 1r (red circle) and 2r (blue circle) regions calculated from the geographic center of 
the UCTE network. In further spatially-localized attacks we will use these regions to analyze cascades induced by 
clustered node failures.

Next, we study the performance of the N-stable and (N-1)-stable UCTE network against various multi-node 
attacks. We remove 9 nodes from a 2r region, from the entire network, from the center, and finally, the 
nine-highest-load-nodes, and record the size of the surviving giant component G for each scenario. For clarity, 
we sort the simulations in non-decreasing order of damage G and present our results in Fig. 4. In Fig. 4(a), we 
again see the bimodal nature of spatially-localized attacks, either causing severe damage or not triggering cas-
cading failures. Using the averaged values of the 500 simulations (solid lines), we can compare the performance 
of the two UCTE system designs, to conclude that for spatially-localized attacks in a 2r region the N-stable con-
figuration outperforms the (N-1)-stable network. For the removal of nine-spatially-localized nodes we see that 
the N-stable scenario triggers cascading failures in less than 25% of simulations, whereas in the (N-1)-stable 
network, cascading failures are induced in approximately 50% of cases. Similarly, in the case of removing the 
nine-highest-load-nodes, we find that the N-stable configuration is almost 30% more robust than the (N-1)-stable 
network (see Fig. 4(d), dotted lines). In Fig. 4(b) we can see that for nine-random-node removals (from the 
entire network) the robustness of both systems is improved, however in this case the (N-1)-stable configuration 
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performs better, by inducing cascading failures in less than 20% of the simulations. Likewise, in the case of remov-
ing nine-center-nodes from the network, the (N-1)-stable configuration is more robust than its N-stable counter-
part (see Fig. 4(c), dotted lines).

Using the stochastic capacity allocation method employed in the case of single-node removal, we study the 
damage caused by multi-node attacks when the N-stable and (N-1)-stable networks are assigned heterogeneous 
excess capacities. In the case of the (N-1)-stable configuration, the excess capacities are assigned from 

ε σ σ∆ ∈ − +−C C [1 , 1 ]i i
N( 1) , mean relative tolerance ε = 0.10, search width σ = 1. We find that in the case of 

nine-center-node removal (Fig. 4(c)), using stochastic capacity allocations, we can improve the performance of 
the N-stable configuration, while maintaining the same fixed-cost. It is important to notice that we can find opti-
mal stochastic capacity allocations such that the nine-center-node removal does not induce cascading failures, 
maintaining the N-stable network intact. Also, as we have seen in the case of single-node failure, with stochastic 
capacity allocation we can also obtain allocation scenarios that offer higher protection than the uniform capacity 
allocation case. For the (N-1)-stable network, however, we cannot find stochastic allocation of resources that can 
outperform the uniform one. Moreover, we can see that each stochastic capacity allocation sample makes the 
system more vulnerable to failures. Since the (N-1)-stable configuration is already optimized for any single-node 
failure, the stochastic capacity allocation perturbs this optimization, thus resulting in a more vulnerable system. 
In contrast, for the case of nine-highest-load-node removal, Fig. 4(d) shows that we can find random capacity 
allocations that improve the robustness of the (N-1)-stable system by almost 30%. In addition, we can see that, on 
average, the (N-1)-stable configuration with random capacity assignment only slightly improves robustness of the 
(N-1)-stable system with uniform capacity allocation, however, it outperforms the N-stable network with random 
capacity assignment. Finally, overall, we can see that the N-stable network with uniform capacity allocation still 
remains significantly more robust than stochastic capacity allocations on both network constructs.

Lastly, we study the performance of stochastic capacity allocations optimized for a specific node removal in 
the event of a different attack scheme. Using the N-stable network configuration, we perform a stochastic search 
to obtain the optimal stochastic capacity allocation scenario for the nine-center-node attack, and present the 

Figure 3.  Spatially-concentrated and distributed (random) attacks in N-stable and (N-1)-stable UCTE 
networks. For each n there are 5 realizations of random attacks. The tolerance parameter of the N-stable system 
is α = 0.5927, and for the (N-1)-stable ε = 0.1. (c) Visualization of 1r (red circle) and 2r (blue circle) regions used 
for spatially localized attacks in the UCTE network, where the distance is calculated from the geographic center 
of the network (red dot).
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results in Fig. 4(e). Next, using this optimal allocation, we test the robustness of the network against various 
tightly-clustered nine-node attacks. In Fig. 4(e,f) we show that similarly to the single-node removal case, we 
can successfully mitigate failures or attacks against “known” targets with the stochastic capacity allocation tech-
nique. While the optimized stochastic capacity allocation significantly outperforms the uniform one against the 
“known” nine-center-node attack, on average, both allocation schemes perform essentially the same against an 
arbitrary “unknown” nine-clustered-node attack [Fig. 4(f)]. These results are also in agreement with our findings 
from the stochastic optimization analysis for single node attacks.

Multi-node Attack Strategies.  Aiming to capture the consequences of various targeted attack strategies or 
random failures in power grids, we further expand our analysis, and study five different damage scenarios in the 
UCTE network that can truthfully reproduce possible attack schemes or breakdowns encountered in real-world 
situations. In the first method (random) we randomly select 4 nodes from the network and remove them simul-
taneously, thus depicting the outcomes of multi-node random failures or random attacks on the network. In the 
second method (clustered) we remove four-spatially-concentrated nodes, simulating cascading failure in case of 

Figure 4.  Multi-node attacks on N-stable and (N-1)-stable UCTE networks. (a) Nine-random-node removal 
from the 2r region; (b) nine-random-node removal from the entire network; (c) nine-center-node removal 
with stochastic capacity allocation; (d) nine-highest-load-node removal with stochastic capacity allocation. 
Each removal scenario contains 500 repetitions on N-stable (α = 0.5927) and on (N-1)-stable (ε = 0.1) UCTE 
networks. For clarity purposes the sizes of the surviving giant component recorded at each trial are sorted 
in non-decreasing order. (e) Comparison of stochastic search for optimal capacity allocation (red circle) 
with uniform capacity allocation (black line) for nine-center-node attacks on N-stable UCTE network with 
α = 0.5927 and 500 trials. (f) Comparison of stochastically optimized (red circle) and non-optimized uniform 
(black circle) capacity allocation against various tightly-clustered nine-node attacks with 1230 repetitions. The 
lines illustrate the average performance of each allocation.
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an attack on a single large region. In the third method (4 max. individual damage) we select four nodes from the 
network that individually generate the most severe cascades, and remove them simultaneously. Next, the 4 max. 
individual load method reflects the scenario of simultaneously attacking the highest load nodes in the network. 
We can observe a fundamental non-monotonic feature of the cascading overload failure process: attacking only 
the (single) largest-damage inducing node in the network results in a smaller surviving giant component G (and 
a larger overall damage) than the simultaneous attack of the 4 max. individual load nodes [Fig. 5(a)].

Lastly, in the fifth method (greedy) we select the 4 nodes that trigger the largest cascading failures when 
removed simultaneously. In order to find these nodes, first we identify the single most damaging node by scan-
ning all N single-node failures. Then we determine the second node that causes the highest damage by scanning 
all remaining N−1 nodes on top of the failure caused by the first identified node, and continue in this manner 
until we have identified a set of the 4 most damaging nodes. The comparison of the effects of these five cascade 
triggering methods is captured in Fig. 5(a). The data points comprise 300 runs for each scenario on the N-stable 
UCTE network, with tolerance parameter α = 0.5927. We find that the random and clustered attacks cause similar 
damage in the network, and in most cases the system remains intact, without triggering a cascading failure. In 
Fig. 5(b) we rank the size of the damage (G) in non-decreasing order to create a more visually compelling com-
parison of the impact of the damages induced by the different attack scenarios. This figure shows that among 300 
simulated random and spatially clustered attacks, only about 50 (approx. 15%) cases induce damage in the system. 
However, attacks by the three other selection strategies trigger more severe cascading failures in the power grid. 
Moreover, the greedy method, where we choose the 4 most damaging nodes, triggers the strongest cascading fail-
ure, under which the surviving giant component is nearly 10% of the initial network. This means that removing 
only 4 nodes can induce an almost complete system failure, a magnitude of damage that no other method can 

Figure 5.  Severe attack patterns in the N-stable UCTE network. (a) Size of the surviving giant component G 
as a function of the total load of targeted nodes. The data points on the continuous lines represent the sizes 
of the total load of the targeted nodes; the lines show the sizes of G when targeting those nodes. Their color 
codes identify the used attack pattern: the four-highest-load-node removal (purple), the 4 nodes that removed 
together cause the highest damage, nodes selected by our greedy algorithm (green), the 4 nodes causing the 
highest damage when individually removed (blue). (b) Comparison of the size of damage caused by various 
attack patterns by ranking G in nondecreasing order. The figures contain 300 simulations for each attack 
scenario on the N-stable UCTE network with α = 0.5927. (c) Visualization on the UCTE network of the nodes 
used in the different attack patterns for triggering the cascading failures.
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achieve. On the other hand, the random node failures or spatially-clustered attacks have minor effects on the 
network, causing the smallest damage in the system compared to the other attack strategies.

Phase Transition in Cascading Failures.  Asztalos et al.27 have reported that by increasing the tolerance 
parameter in the system, one can observe a non-monotonic behavior in the size of the surviving giant component. 
Likewise, as seen in Fig. 6(a–d), we show that in the N-stable and (N-1)-stable UCTE network configurations, by 
varying the value of α and ε tolerance, respectively, we can also notice a similar, non-monotonic trend for various 
spatially localized attacks. The encircled highlighted regions depict the tolerance values for which the system 
becomes vulnerable to large-scale cascading failures. By increasing the protection beyond these values, in both 
N-stable and (N-1)-stable cases, we can determine a certain tolerance value, where the system undergoes a phase 
transition, after which point the network almost completely survives the attack. The (N-1)-stable network reaches 
full protection at a much smaller tolerance value, due to the fact that it is already designed to be protected against 
any single-node failure, thus it is also more robust against multi-node failures.

In addition, aiming to provide a generalized behavior in spatial networks of the observed transition prop-
erty, we study the phase transition of cascading failures in RGGs, and find that despite using a different removal 

Figure 6.  Phase transitions with increasing protection in UCTE and RGG networks. (a) Four-center-node 
removal in N-stable UCTE network. (b) Nine-center-node removal in (N-1)-stable UCTE network. (c) Four-
center-node removal in N-stable UCTE network. (d) Four-center-node removal in (N-1)-stable UCTE network. 
The pink highlighted areas depict the region before the transition, after which the network becomes fully 
protected against failures. Phase transition in RGGs when cascades are triggered by the removal of the highest 
load node (e) with 3 different RGG network samples of identical size N = 1000 and average degree 〈k〉 = 10; 
(f) with 4 realizations of RGG of same average degree 〈k〉 = 10, but different system sizes. The inset shows the 
second largest component (G2) sizes for the corresponding networks.
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strategy, single (highest load) node removal, we obtain similar bimodal behavior in the size of induced damages. 
However, as Fig. 6(e) indicates, we cannot assess the tolerance value where the phase transition occurs, because 
different spatial network instances, despite having identical network properties (system size, average degree), 
present a very different non-monotonic increase with critical points at different tolerance values. Moreover, we 
show in Fig. 6(f) that by increasing the system size, we can see the same non-monotonic behavior in the sever-
ity of cascades, with a phase transition occurring at different critical α values. In addition, the inset of Fig. 6(f) 
illustrates the size of the second largest component G2 for the corresponding networks, revealing a similar 
non-monotonic behavior. Tracing the behavior of the second largest component can be useful to identify changes 
in the network’s stability and robustness and the onset of a possible phase transition38,39. Once again these results 
indicate the complex nature of spatial networks, and the difficulty in predicting the behavior of cascading failures 
in such systems.

Cascade-size Distribution Analysis.  Next, we study the cascade size distributions in the phase transition 
regimes, where, according to prior studies, such distributions are characterized by power-law tails. We quantify 
the cascade size S as the number of nodes that fail during a cascading process. For comparison, in Fig. 7 we plot 
the cascade distributions both as G and S. Since S is the number of failed nodes, and G is the size of the surviving 
giant component, S ≠ N − G. However, in Suppl. Info. Section S9 we demonstrate that there is a clear linear corre-
lation between these two quantities, and plotting data as a function of G or S provides similar results. The cumu-
lative cascade size distributions exhibit a power-law tail > ∼ γP S( )

S
1  with exponent γ, and cascade size 

Figure 7.  Power-law tail of cascade size distributions in the phase transition regime. (a) Power-law fit (red line) 
of four-clustered-node removals (black dots) with α = 0.6. (b) Power-law fit (red line) of four-random-node 
removals (black dots) with α = 0.6. (c) Power-law fit of four-clustered-node removals (black dots) with α = 0.8. 
(d) Power-law fit (red line) of four-random-node removals (black dots) with α = 0.8. Small event regime 
1 ≤ S ≤ 200, large event regime: 201 ≤ S ≤ 300. (e) Power-law trend of cascade size distributions for random 
single-node removal in RGGs of different systems sizes and 〈k〉 = 10 for α = 0.45 and (f) α = 0.50.
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distributions can be found as ∼ γ+p S( )
S

1
1 . We focus on cascading failures on the N-stable configuration triggered 

by spatially-clustered sets of 4 nodes or random sets of 4 nodes distributed throughout the network for an α value 
fixed within the phase transition region, and record the distribution of cascade sizes as the fraction of blackouts 
of size S or larger. In Fig. 7(a) and (b) we show that both triggering methods generate power-law tail distributions. 
We also find that increasing the α tolerance parameter from α = 0.60 to α = 0.80 the cascade size distribution 
becomes more abrupt, producing a higher power-law exponent. This observation can be explained intuitively; by 
increasing the tolerance parameter, we increase the protection in the system, and reduce the number of large 
cascades, thus increasing the number of small failures. As seen in these figures, for α = 0.60 both cascade size 
distributions triggered by clustered sets of 4 nodes and random sets of 4 nodes exhibit a dual plateau. Thus, in 
Fig. 7(a,b) we analyzed these as two separate event regimes: the small event regime, where the size of the cascad-
ing failures is small (1 ≤ S ≤ 200), and the large event regime, where the resulted failures are large (201 ≤ S). We 
can see that both triggering methods produce similar cascade size distributions, with power-law exponents of 
γ ≈ 0.3 in the small event regime, and γ ≈ 2.7 in the large event regime. Our results are in agreement with previous 
work25, where the probability density of conductance changes also follow a power-law, with two different regimes, 
reported both for synthetic networks and the Norway power grid system. Moreover, the values of the reported 
power-law exponents in the two distinct regimes are close to the values observed in our work on the UCTE net-
work. We employ statistical testing methods to assess the validity of power-law fitting, and describe the used 
methodology briefly in the Methods section and in detail in Suppl. Info. Section S9.

Our results also indicate (see Suppl. Info. Section S9) that a power-law tail of the cascade-size distribution 
only emerges when the values of α and ε tolerance parameters are within the “critical region” (close enough to 
an underlying phase transition), in agreement with the observation reported in ref.23. Further, in Fig. 7(e,f), we 
test our finding on random geometric graphs (RGGs), and observe a similar power-law trend in the cascade-size 
distribution when we trigger the cascade by the removal of a single (highest load) node. For RGGs, however, we 
also have the ability to carry out a detailed finite-size analysis for increasing network sizes. Our results show that 
within the critical region, but below αc, the power laws exhibit a system-size-independent cut-off [Fig. 7(e)]. On 
the other hand, at around the critical value of α, there appears to be no cut-off, and range of power-law scaling is 
progressively pushed out for larger and larger system sizes [Fig. 7(f)]. Also in RGGs, as we move away from the 
phase transition region, the power-law characteristic vanishes (see Suppl. Info. Section S). At (α = 0.45) and near 
(α = 0.50) critical values we find similar power-law trend in RGGs of various system sizes (N = 1000, N = 4000, 
N = 10000). The fitted power-laws for each system size are presented in Suppl. Info. Section S9.

Predicting the Severity of Cascading Failures.  So far we have analyzed mitigation strategies and the 
behavior of cascading failures triggered by various strategies of node removals. Here, we study the predictability 
of damage caused by the failure of a set of nodes GAllinitiators, given the sum of damages caused by each individual 
node failure, ∑Gi

initiator which are the sums of the surviving giant components (in Suppl. Info. Section S10 we also 
present this analysis for S avalanche sizes). Using various numbers of initiator nodes and different removal strat-
egies, we show in Fig. 8(e,f) that there is a strong linear correlation between the variables. This indicates that given 
a set of node failures, and knowing the damage induced solely by the failure of each individual node, we can 
effectively predict the damage induced in the event of a multi-node failure. The insets show results for 300 sam-
ples, however, based on the confidence intervals of the data, we have removed a small fraction of outlier nodes. A 
detailed description of the strategy used to identify these outliers is presented in the Methods section and Suppl. 
Info. Section S10. Additionally, in Suppl. Info. Section S10 we present these correlations for different number of 
node removals from 2 up to 9, and show that as we increase the number of removed nodes, the correlation signif-
icantly drops. This finding once again suggests that accurate estimation of damage is harder to attain as the com-
plexity of the cascade (number of triggering nodes) increases.

To understand the mechanism responsible for the correlation between single-node and multiple node attacks, 
we investigate various characteristics of the cascading failures in question. We find in Fig. 8(g,h) that the sum of 
individual node failures ∑Gi

initiator  and the failure of the individual node that triggers the largest damage min 
Gi

initiator  (lower G represents higher damage) correlate equally with a multi-node failure GAllinitiators (Suppl. Info. 
Section S10). This suggests that for multi-node failure scenarios, the node which individually inflicts the highest 
level of damage on the network is responsible for the progression of the multi-node cascade, which implies the 
existence of dominating nodes of cascading failures. For most scenarios, the remaining nodes have little to no 
effect on the progression of the cascade. However, when multiple nodes, that individually inflict the highest dam-
age, are triggered simultaneously; we find a poor correlation between individual and multi-node failures.

Finally, in order to study whether there is a correlation between initial network characteristics and cascade 
severity, we run extensive numerical simulations of individual node removals for varying α values. The corre-
lation over all attacks for various alpha values are shown in Suppl. Info. 10. We find that as the tolerance of the 
network is increased, the system remains unaffected by a higher percentage of the attacks. A correlation over 
various alpha values would indicate that the network topology is responsible for the cascade progression. We find 
a weak, but existent correlation suggesting that while topology is important, the cascade progression is also highly 
dependent on tolerance value. This finding is intuitive, since the network topology is continually disintegrated 
throughout the cascading failure process.

Discussion
We have studied how cascading failures induced by load redistribution caused by single- and multi-node failures 
on spatial networks carrying distributed flow propagate through the network. We conducted our research on a 
real-world power transmission network and in spatially-constrained synthetic network model, RGGs. We found 
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that one cannot assess the severity of a damage induced by single- or multi-node attacks based on the degree or 
initial state load of the initiator nodes.

Furthermore, we have demonstrated that small (n < 100) spatially-localized attacks or failures cause a higher 
damage than spatially distributed, random failures. Our results indicate that intentional attacks on the network 
cause a more severe damage, however, providing protection to the system against particular attack scenar-
ios results in a more vulnerable system against other unexpected failures. On the other hand, when the sys-
tem experiences a massive node failure (n ≥ 100), the distributed attacks prove to be more damaging than the 
spatially-localized ones, suggesting that an extended random attack is more likely to find critical nodes that can 
induce severe damages.

We have proposed a fixed-cost stochastic capacity allocation strategy for mitigating single-node failures. In 
addition, we designed the (N-1)-stable UCTE network that remains stable in the event of any single-node failure. 
We demonstrated that while these methods can efficiently mitigate against single-node damage, they offer little 
protection in case of cascading failures induced by multi-node attacks. Specifically, for typical values of node-level 

(a)                                                                       (b)

(c)                                                                      (d)

 (e)                                                                       (f)

 (g)                                                                       (h)

max.

four-clustered-node removal

four-clustered-node removal

four-clustered-node removal

four-random-node removal

four-random-node removal

four-random-node removal

four-clustered-node removal four-random-node removal

Figure 8.  Correlation analysis of failures triggered by the removal of 4 nodes. α = 0.5927 (relative tolerance); 
300 repetitions of four-random-node removals from the entire network.
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tolerances (ε ≈ 10–20%), (N-1)-stable networks can still develop large cascades for both spatially-concentrated 
and distributed multi-node attacks. In addition, we have shown that single-node characteristics (load, degree) 
offer little insight on the severity of induced cascades, and it is not apparent on which nodes one should increase 
protection to successfully mitigate cascading failures.

In Fig. 2(e) and Movie S3–S11 we have exposed the non-local nature of the spread of cascades. We have seen 
that triggering a failure in a localized region does not necessarily induce failures in the surrounding area. In 
contrast, cascading failures can propagate throughout the entire network and cause failures in regions found at 
large spatial distances from the targeted area. Moreover, we have shown that any small change in the target set can 
cause a large variability in the size of induced damage.

Analyzing the survivability of the system by increasing the excess capacity, we have revealed the 
non-monotonic behavior in both N- and (N-1)-stable UCTE networks, and also in RGGs.

Additionally, we have shown that even for large system size RGG networks, non-self averaging prevails; for 
large (104) network size the system still exhibits a non-monotonic fluctuating behavior in G vs α. We have also 
found non-monotonic behavior when analyzing the size of the surviving giant component by increasing the 
number of targeted nodes. We have seen that cascade sizes exhibit bimodal nature characterized by a first-order 
phase transition; in the critical regime, cascade-size distributions follow power-law trends, behavior that vanishes 
as we move away from the critical regions. Lastly, we have demonstrated that one can predict with high accuracy 
the damage triggered by multi-node attacks, if the damage size that each node can trigger individually is known. 
However, we have also shown that as the complexity of the induced damage (number of failed nodes) increases, 
the predictability becomes ineffective. We have also shown that even if we maintain the same number of initiator 
nodes, by enlarging the geographic area on which the attack is triggered, we obtain high variation in the size of 
induced damage. This indicates that the size of the region in which the failure can occur also adds to the complex-
ity of the cascading failures, and hardens mitigation strategies in case of a fixed number of node attacks or random 
failures in expanded regions.

In summary, we have found that traditional single-node measures, frequently employed in network science 
(such as degree or load), are largely ineffective for predicting sensitivity and severity of cascades or for mitigating 
against them. The cascade behavior also exhibits fundamental non-monotonic features, very different1,24 from 
cascades in epidemic spreading or social contagion: (i) a larger number of nodes initially attacked may lead to 
smaller cascades; (ii) increasing the node (or edge-level) tolerance uniformly across the network may lead to 
larger cascades, i.e., indiscriminately investing resources in the protection of nodes or links can actually make the 
network more vulnerable against cascading failures (“paying more can result in less”, in terms of robustness). Both 
of these issues are implicitly (but inherently) related to existence of “fuse” lines and nodes in the network, whose 
identification is a computationally hard problem. We also observed that cascading failures are non-self-averaging 
in spatial graphs, hence predictability is poor and conventional mitigation strategies are ineffective. Further, in 
part related to the above, we have shown that cascade sizes exhibit large variability for small changes in the target 
set. It is also important to note that while the spatial propagation of the cascading failures resembles wave-like 
propagation features (overloads farther away from the original attack occur later)27,40, some non-local features are 
apparent of our cascade visualizations. The overload failure process is not a nearest-neighbor spreading process in 
the grid (by virtue of the current flow equations and the possible non-local redistribution of overloads); regions 
along the path of the cascade can be spared or “bypassed”, while possibly giving rise to large-area outages far away 
from the location of the original attack.

In conclusion, we have used extensive real-world targeted node attack and random node failure scenarios to 
induce cascading failures on spatial networks, and analyzed their characteristics and propagation. We have intro-
duced effective mitigation strategies to reduce the severity of damages, and presented the limits of predictability 
of assessing the severity of disruptions in the system, due to the complex nature of cascading failures occurring 
in spatially-embedded networks.

Methods
Below we describe the distributed flow model and cascade model that we use in our study.

Distributed flow.  We assume that the flow is distributed, directed and of unit size, associated with a source 
and sink, and flow through all possible paths between source and sink. We model the network as a simple random 
resistor network with unit conductances along the edges33,34. In this model each node and edge is involved in 
transporting current from source to sink, therefore each link experiences a load which is the current along that 
edge. For a link connecting nodes i and j the load is calculated as = Iij ij

st, and the load on an arbitrary node i is 
the net current flowing through that node = Ii i

st. The two loads can be expressed as

∑= | |I I1
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i
st

j
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Next, we assume that all nodes are simultaneously sources and for each source we randomly choose a target 
from the remaining N − 1 nodes. Thus, we assume that unit current flows simultaneously between N source/
target pairs, and the load is defined as the superposition of all currents flowing through an arbitrary node. This is 
identical to the node current-flow betweenness34,41–43.
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In order to obtain the Iij
st currents along the edges from one source/target pair, we use Kirchhoff ’s law for each 

node i in the network and solve the system of linear equations:

∑ δ δ− = − ∀ = … .
=

( )A V V I i N( ), 1, ,
(3)j

N

ij i j is it
1

Here, we assume that I units of current flow through the network from source s to target t, and Aij denotes the 
adjacency matrix of the network. This equation can be rewritten in terms of the weighted network Laplacian 

δ= −k Aij i ij , where ki = ∑jAij is the degree of node i. Thus, we can write Eq. 3 as =VL I , where V is the 
unknown column voltage vector, and i is the net current flowing into the network at node i, and takes nonzero 
values only for the source and target nodes. Since the  network Laplacian is singular, we find the pseudo-inverse 
Laplacian = −G 1  using spectral decomposition30,34,44. Thus, by choosing as reference potential the mean volt-
age30, = −V̂ V Vi i , where = ∑ =V N V(1/ ) j

N
j1  for each node i we obtain:

∑ δ δ= = − = −
=

ˆ ( )V GI G I I G G( ) ( )
(4)

i
j

N

ij js jt is it
1

Therefore, for I units of current and for a given source/target pair, the current flowing through edge (i, j) can be 
written as

= − = − − + .( ) ( )I A V V A I G G G G (5)ij
st

ij i j ij is it js jt
( )

The above equation shows that current along an arbitrary edge is uniquely determined by network topology.
In modeling of the the electrical flows in the power grid a commonly used approach is the use of the DC power 

flow model1,15,17,19,45 where links, in addition to resistance, also possess reactance. However, it has been shown in 
ref.1 that the equations for this DC model of power flow bear a close resemblance to that of an analogous electrical 
circuit. In prior studies it has also been demonstrated that, despite neglecting the true AC nature of the power 
grid, inferences made by employing the DC power flow model can still be useful19.

It is important to point out that our goal is to study the fundamental aspects of cascades on spatial networks 
carrying distributed flow, not designing strategies specifically tailored for electrical power transmission systems.

Cascade model.  We simulate (including some parallelization using GNU Parallel46) the cascading failures in 
our networks using the model of Motter and Lai36. We assign each node a load-bearing capacity proportional to 
its initial state load in the form of α= + C (1 )i i

0, where Ci is the capacity of node i, i
0 is its initial state load when 

the network is intact, and α is a tolerance parameter. When a node fails, its load is redistributed among the sur-
viving nodes. Nodes that after this redistribution are assigned a higher load than their capacity > Ci i also fail, 
resulting in further redistribution of load, and possible overload of other nodes. Such an avalanche of subsequent 
failures is called a cascading failure.

Empirical network.  Our work is centered on the study of the UCTE European power transmission net-
work from year 200235,47,48. The network comprises 18 European countries, contains N = 1254 nodes (buses) and 
E = 1812 edges (transmission lines). The average degree of the network is 〈k〉 = 2.89.

Network models.  In addition to our study on the empirical UCTE power transmission network, we also test 
our methods on various types of artificial networks. Below, we briefly describe our approach in generating these 
synthetic network ensembles.

Random geometric graphs (RGG).  We construct RGG graphs of size N in 2D by placing N nodes randomly in the 
unit square with open boundary conditions, and connecting any pair of nodes if the Euclidean distance between 
them is less than the connection radius R31,32. Based on 〈k〉 = πR2N formula, we control the average degree 〈k〉 of 
the graph by varying R.

Scale-free (SF) networks.  We construct scale-free networks49 of size N by first generating a degree sequence from 
a prescribed power-law degree distribution ∼ γ−P k k( )  that yields a desired average degree 〈k〉. Next, we pass this 
degree sequence to the configuration model50 in order to obtain the scale-free network. Here, we consider the 
degree sequence as a list of the number of edge stubs (half-links) each node has, and in the configuration model 
we randomly choose two nodes with available edge stubs and connects them to form an edge. The process is 
repeated until all edge stubs are connected.

Erdös-Rényi (ER) graphs.  We construct ER graphs38 of size N by connecting every pair of nodes with probability 
p, parameter used to control the average degree of the network using 〈k〉 = p(N − 1) formula.

Power-law statistical testing.  For statistical testing of the power-law fits, we use Kolmogorov-Smirnoff 
(KS) test51 for goodness of fit. As the authors point out, the least-squares method can give inaccurate estimates of 
parameters for power-law distribution, and in addition, they give no indication of whether the data does indeed 
follow a power law52. Therefore, based on this seminal work, we employ statistical testing using the 
maximum-likelihood fitting (MLE) to estimate the accuracy of the fitted power-law, and KS test for validating the 
goodness of fitting a power-law. Our empirical results are obtained as probability density function (PDF), denoted 
as p(X) (see Suppl. Info. Section S9), however the KS-statistic requires the cumulative distribution function 
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(CDF), which we obtain as > = ∑ =P S p X( ) ( )X S
S

min
. Finally, we extract the slope by performing a least-squares 

linear regression on the logarithm of the cumulative distribution function. For a more detailed description, see 
Suppl. Info. Section S9.

Outlier removal.  We calculate the prediction bands and confidence intervals using statistical methods (see 
Suppl. Info. Section S10), and mark as outlier every data point that falls outside the prediction bands. After we 
remove them, we fit a linear slope to analyze the correlation between the two variables.
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