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Abstract

Lifelong latent infections of the trigeminal ganglion by the neurotropic herpes simplex virus type 1 (HSV-1) are characterized
by periodic reactivation. During these episodes, newly produced virions may also reach the central nervous system (CNS),
causing productive but generally asymptomatic infections. Epidemiological and experimental findings suggest that HSV-1
might contribute to the pathogenesis of Alzheimer’s disease (AD). This multifactorial neurodegenerative disorder is related to
an overproduction of amyloid beta (Ab) and other neurotoxic peptides, which occurs during amyloidogenic endoproteolytic
processing of the transmembrane amyloid precursor protein (APP). The aim of our study was to identify the effects of
productive HSV-1 infection on APP processing in neuronal cells. We found that infection of SH-SY5Y human neuroblastoma
cells and rat cortical neurons is followed by multiple cleavages of APP, which result in the intra- and/or extra-cellular
accumulation of various neurotoxic species. These include: i) APP fragments (APP-Fs) of 35 and 45 kDa (APP-F35 and APP-F45)
that comprise portions of Ab; ii) N-terminal APP-Fs that are secreted; iii) intracellular C-terminal APP-Fs; and iv) Ab1-40 and Ab1-42.
Western blot analysis of infected-cell lysates treated with formic acid suggests that APP-F35 may be an Ab oligomer. The
multiple cleavages of APP that occur in infected cells are produced in part by known components of the amyloidogenic APP
processing pathway, i.e., host-cell b-secretase, c-secretase, and caspase-3-like enzymes. These findings demonstrate that HSV-1
infection of neuronal cells can generate multiple APP fragments with well-documented neurotoxic potentials. It is tempting to
speculate that intra- and extracellular accumulation of these species in the CNS resulting from repeated HSV-1 reactivation
could, in the presence of other risk factors, play a co-factorial role in the development of AD.
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Introduction

Herpes simplex virus type 1 (HSV-1) is a ubiquitous neurotropic

DNA virus that typically causes recurrent blister-like lesions on

and around the lips in humans. However, it can also cause

keratitis, as well as a rare form of encephalitis [1]. HSV-1 has been

found in a latent form in the brains of a high proportion of elderly

individuals [2,3]. Primary HSV-1 infection is often followed by the

establishment of latent infection in the peripheral nervous system

(PNS), usually in the trigeminal ganglia. Reactivation, which may

occur periodically, is followed by axonal transport of newly

produced HSV-1 virions back to the site of the primary infection,

where they cause new skin vesicles or mucosal ulcers. The

reactivated virus can also move upward to the central nervous

system (CNS), where it can cause a productive, but usually mild

infection, that can later becomes latent [4–7].

Ball et al. [8] pointed out that the brain regions most frequently

involved in herpes encephalitis are also the earliest and most

severely involved targets of the neurodegenerative alterations of

Alzheimer’s disease (AD), a multifactorial disorder characterized

by severe memory impairment and cognitive decline [9]. Possible

links between AD and HSV-1 infection have also emerged from

epidemiologic studies. The HSV-1 genome has reportedly been

found in post-mortem brain specimens from many AD patients

[4,10–13], particularly those that carry the type 4 allele of the gene

that encodes apolipoprotein E [14]. More recently, a large

prospective population-based study also showed that the risk of

AD is increased in elderly subjects with positive titers of anti-HSV-

1 IgM antibodies, which are markers of primary or reactivated

HSV-1 infection [15]. This observation supports the view that

repeated reactivation of this virus may contribute to the

development of AD.
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One of the most widely accepted hypotheses on the molecular

pathogenesis of AD focuses on the overproduction of amyloid beta

(Ab) peptides by neurons. The accumulation of these peptides in

the extracellular spaces gives rise to the amyloid plaques that are

one of the main neuropathological features of AD. Amyloid b is

produced by endoproteolysis of a transmembrane glycoprotein

known as the amyloid precursor protein (APP). APP can be

processed along two different pathways. The first (which is

physiologic) involves sequential proteolytic cleavages by the a- and

c-secretases, and it yields fragments that are generally recognized

to be nontoxic (e.g., the soluble N-terminal fragment, a short

peptide known as p3). Amyloid b is generated by an alternative

form of APP processing, which begins when the parental protein

undergoes cleavage by the b-secretase (also known as b-site APP

cleaving enzyme 1 or BACE1) [16,17]. This cut yields two species,

the large N-terminal ectodomain of the precursor and the 99-

amino-acid C-terminus stub. Subsequent cleavage of the latter

fragment (between residues 38 and 43) by the c-secretase complex

results in the formation of Ab species, which contain 40–42 amino

acids, and the APP intracellular domain (AICD), whose ability to

modulate gene expression, apoptosis, and cytoskeletal dynamics

has also been linked to AD [18]. Amyloidogenic cleavage of APP is

not confined to the cell membrane: it can also take place in the

intermediate compartment of the endoplasmic reticulum [19–21],

the trans-Golgi network [22], and the endosomal/lysosomal

system [23]. In these cases, the Ab species produced may be

secreted into the extracellular space, where their build-up can

promote senile plaque formation, or they may remain within the

cell, where their aggregation can trigger neurotoxic processes and

contribute to the progression of AD [24]. The APP can also be

cleaved by other proteases. Cuts produced by caspases 3, 6, 7, and

8, for example, yield a C31 fragment of the protein that has also

been implicated in the pathogenesis of AD [25,26].

Several lines of experimental evidence point to possible links

between HSV-1 and Ab. Amyloid b is characterized by some

degree of sequence homology with the HSV-1 glycoprotein B, and

the viral protein has been suggested by some to act as a seed for

Ab deposition in amyloid plaques [27]. Other investigators [28]

have hypothesized that new HSV-1 particles produced in the PNS

recruit cell membranes containing APP, possibly during packaging

in the Golgi apparatus. Transport of infective virus to the brain

might then be followed by the release and hydrolysis of APP,

which might contribute in some way to the formation of amyloid

deposits. These researchers have also suggested that the APP itself

plays a role in the transport of HSV-1 into neurons [28–30].

Wozniack et al. [31] reported the accumulation of Ab peptides in

neurons and mouse brains infected with HSV-1, and they also

demonstrated the presence of the viral genome within amyloid

plaques in AD brains. Other studies suggest that HSV-1 infection

can interfere with APP processing. Shipley et al. [32] found that

HSV-1 infection of neuroblastoma cells led to the appearance of a

55-kDa C-terminal fragment of APP, and Wozniack et al. [33]

found that BACE1 (b-secretase) and nicastrin (an essential

component of c-secretase complex) immunolabeling is increased

in the brains of HSV-1-infected mice. We recently reported that

HSV-1 produces marked changes in neuronal excitability and

intracellular Ca2+ signalling that cause APP phosphorylation and

intracellular Ab accumulation in rat cortical neurons [34].

Taken together, these findings prompted us to investigate the

role of HSV-1 in promoting the formation in neurons of multiple

neurotoxic APP fragments that can contribute to the development

of AD. To address this issue, we used a multi-pronged approach to

characterize the effects of this virus on APP processing in neuronal

cells. We demonstrate here that HSV-1 triggers amyloidogenic

cleavages of the APP that are mediated in part by the action of b-

secretase, c-secretase, and caspase-3-like enzymes, and that result

in the formation and intracellular accumulation of different APP

fragments with established potential for neurotoxicity.

Materials and Methods

Ethics Statement
All animal procedures were approved by the Ethics Committee

of the Catholic University and complied with Italian Ministry of

Health guidelines and with national laws (Legislative decree 116/

1992) and European Union guidelines on animal research

(No. 86/609/EEC).

Unless otherwise stated, all commercial products and devices

mentioned below were used in accordance with manufacturers’

instructions.

Cell cultures
Human SH-SY5Y neuroblastoma and HeLa cells were grown

in Dulbecco’s modified Eagle’s medium (Euroclone) containing

15% heat-inactivated fetal bovine serum (FBS, Gibco), glutamine

(0.3 mg/ml), penicillin (100 units/ml), and streptomycin (100 mg/

ml). VERO cells were maintained in RPMI 1640 medium (Gibco)

supplemented with 10% FBS and antibiotics.

Primary cultures of cortical neurons were prepared from E17-

E18 rat embryos according to standard protocols [35] with some

modifications. Briefly, the brain cortex was dissected in sodium

phosphate buffer solution (PBS) and digested with trypsin (0.025%)

for 10 min at 37uC. The digestion was stopped by the addition of

5% FBS. Cells were triturated through a fire-polished Pasteur

pipette to obtain a single-cell suspension and plated onto poly-L-

lysine-treated dishes at a density of 16106 cells per dish. Cultured

neurons were used for viral infection 8 days after plating.

Virus production, infection, and titration
Monolayers of VERO cells in 75-cm2 tissue culture flasks were

infected with HSV-1 strain F at a multiplicity of infection (m.o.i.)

of 0.01. After 48 hours at 37uC, infected cells were harvested with

3 freeze-and-thaw cycles. Cells were removed with low-speed

centrifugation, and virus titers were measured by standard plaque

assay [36]. The titer of the virus preparation was 46109 plaque-

forming units (pfu) per ml.

Twenty-four hours after SH-SY5Y plating (or 8 days after

cortical neuron preparation), cells were challenged with wild-type

or mutant HSV-1 (m.o.i 1) for 1 h at 37uC, washed with PBS, and

then incubated with medium supplemented with 2% FBS. Mock-

infection was performed with conditioned medium from uninfect-

ed VERO cells at the same dilution as that used for the virus.

Virus production was assessed by standard plaque assay of cell

supernatants collected at different times post infection (p.i.).

R3616 and R2621 mutant viruses were a kind gift from Dr. B.

Roizman of the University of Chicago’s Marjorie B. Kovler Viral

Oncology Laboratories. They are HSV-1 strain F-based viruses

deleted in both copies of the UL34.5 and vhs genes, respectively.

For the experiments with inactivated viruses, HSV-1 was

maintained at 70uC for 30 min (heat inactivated HSV-1) or

exposed on ice for 5 min to a 30 W, 254 nm, germicidal UV light

placed at a distance of 15 cm (UV-inactivated HSV-1). No viral

particles were detected by plaque assay in the supernatants of cell

cultures infected with UV- or heat-inactivated HSV-1. Heat-

inactivated HSV-1 is incapable of binding to the plasma

membrane and infect cells, whereas UV-inactivated HSV-1

retains the capacity for plasma membrane binding and cell entry

although it is incapable of replication.

HSV-1 Induces APP Processing
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Reagents
DAPI (4’,6-diamidino-2-phenylindole dihydrochloride; Invitro-

gen) was diluted to 0.5 mg/ml in PBS. Stock solutions of c-

secretase inhibitor X and caspase inhibitor I (or Z-VAD;

Calbiochem), both dissolved in DMSO, were diluted in DMEM

to final concentrations of 1 mM and 50 mM, respectively. A stock

solution of b-secretase inhibitor (Calbiochem) dissolved in PBS was

diluted in DMEM to a final concentration of 1 mM. The highest

DMSO concentration present in the culture medium was 0.2%.

Control cells were treated with DMSO alone at the same

concentration present in the test substance being evaluated.

Cycloheximide (CHX, Sigma) was used at a final concentration of

50 mg/ml; phosphonacetic acid (PAA, Sigma) was used at a final

concentration of 500 mg/ml. Mouse monoclonal antibodies raised

against Ab residues 17-24 (4G8), rabbit polyclonal antibodies

against Ab1-42, and mouse monoclonal antibodies against Ab1-40

(11A50-B10) were purchased from Covance. Goat polyclonal anti-

HSV-1, mouse monoclonal anti-APP A4 (MAB348, clone 22C11),

and mouse monoclonal anti-APP 643-695 (MAB343, clone

2.F2.19B4) antibodies were purchased from Chemicon. Mouse

monoclonal anti-actin and anti-tubulin were purchased from

Sigma.

Antibodies to Ab1-10 (M2u) were produced in-house by

immunizing New Zealand White rabbits with a synthetic peptide

containing residues 1-10 of the human Ab peptide. The animals

were bled 10 days after the last injection. The antiserum’s

recognition of Ab was confirmed by western blot analyses.

Aliquots were stored at 220uC.

Luciferase assay
The pRC-CMV vector expressing the APP695-Gal4 fusion

protein, the G5B-luc vector containing 5 five consecutive Gal4

binding sites upstream luciferase cDNA, and the phRL-CMV

vector containing cDNA encoding Renilla luciferase were kind

gifts of Prof. Tommaso Russo (CEINGE, Federico II University of

Naples, Naples, Italy). Luciferase activity was measured as a

readout of APP cleavage, as described elsewhere [37]. Briefly,

HeLa cells were stably transfected with the pRC-CMV vector

encoding APP695-Gal4 (HeLaAG cells) and transiently co-

transfected with the G5B-luciferase vector, which expresses

luciferase under the control of 5 Gal4-responsive elements.

Twenty-four hours after transfection, these cells were infected

with HSV-1 at an m.o.i. of 1. Luciferase activity was then

measured at different times p.i. with the Dual Reporter Luciferase

Assay System (Promega).

Western blot analysis
Cells were washed with PBS, resuspended in cold lysis buffer

(10 mM Tris-HCl, 150 mM NaCl, 1 mM phenylmethylsulfonyl

fluoride (PMSF), phosphatase inhibitor mixture [Sigma], and 1%

Triton X-100, pH 7.4), and incubated for 30 min on ice. After

centrifugation (130006g for 30 min) the supernatants were

collected and assayed to determine their protein concentration

(Bradford method, Bio-Rad). Equivalent amounts of proteins were

resuspended in SDS sample buffer containing 10% b-mercapto-

ethanol, separated with SDS-PAGE, and blotted onto nitrocellu-

lose membranes for western blot analysis. The membranes were

blocked with 10% nonfat dry milk in PBS for 1 h at room

temperature. Primary antibodies were used at a final concentra-

tion of 1 mg/ml. Secondary antibodies were horseradish peroxi-

dase-conjugated (Jackson ImmunoResearch). Blots were developed

with the ECL-Plus Detection System (GE Healthcare) and

subjected to densitometric scanning. When necessary, membranes

were stripped by heating at 56uC in 62.5 mM Tris-HCl, pH 6.7,

with 100 mM 2-mercaptoethanol and 2% SDS.

Immunoprecipitation studies
Nuclear and cytoplasmic extracts from mock- and HSV-1-

infected SH-SY5Y cells were prepared with the NE-PER Nuclear

and Cytoplasmic extraction kit (Pierce), and their protein

concentrations were determined with the BCA Protein Assay kit

(Pierce). Equal amounts of nuclear and cytoplasmic protein

extracts were incubated with anti-APP MAB343 antibody (1 mg/

ml) overnight at 4uC to immunoprecipitate APP C-terminal

fragments. Immunoprecipitates were separated by 15% SDS-

PAGE gel, blotted onto 0.22 mm nitrocellulose membrane and

stained with anti-APP MAB343 antibody. Blots were developed as

described above.

Trichloroacetic acid protein precipitation
To investigate the production of soluble APP fragments that

were secreted from infected cells, we collected equivalent amounts

of medium conditioned by mock- and HSV-1-infected cells and

incubated them overnight with 10% trichloroacetic acid (TCA) at

4uC. The mixture was centrifuged at 130006g for 30 min. The

protein pellet was washed twice with 1 ml of 80% ice-cold acetone

and dissolved in basic solution containing 1 M Trizma base. The

latter was accomplished by repeated up-and-down pipetting and

vortexing every 10 min for 1 hour.

Formic acid
Cells (26106 per sample) were washed with PBS and

centrifuged at 7006g for 5 min. The pellet was lysed in 70%

formic acid, in 10% SDS, or in standard lysis buffer containing 1%

Triton-X, PMSF, and a protease-inhibitor cocktail (Sigma). After

30 min on ice, lysates were placed in an ice box and sonicated with

a probe sonicator for 8 sec (4 times). Formic acid was evaporated

under vacuum with a Centrivac (Heraeus Instruments), and 1 M

Trizma base (FA fraction) was added to neutralize the sample.

Lysates (Triton- and SDS-soluble fractions) were centrifuged at

130006g for 30 min, and the supernatants were collected.

Preparation of Ab1–42 oligomers
Lyophilized Ab1–42 peptide (Bachem) was dissolved in 100%

1,1,1,3,3,3-hexafluoro-2-propanol (HFIP, Sigma) (final concentra-

tion, 1 mM) to eliminate any aggregates that might be present.

The HFIP was then removed by vacuum evaporation in a

Centrivac (Heraeus Instruments). The dried film that remained

was dissolved in dimethyl-sulfoxide (DMSO, final concentration

1 mM) and stored at -20uC. Immediately before use, the Ab1–42-

DMSO solution was diluted to a concentration of 100 mM in ice-

cold cell culture medium (phenol red-free) and incubated at 4uC
for 48 h to allow the formation of Ab1-42 oligomers.

Real-time PCR
Total RNA was isolated from mock- and HSV-1-infected SH-

SY5Y cells harvested at the indicated times p.i. with the RNeasy

Kit (Qiagen) and quantified by ultraviolet spectrometry at

260 nm. The iScriptTM cDNA Synthesis Kit (Biorad) was used

to reverse-transcribe 1 mg of RNA into cDNA in a final volume of

20 ml. Relative quantitative real-time PCR was performed in an

iCycler IQ5 (Biorad) with the IQTM SYBR Green Supermix

(Biorad) reagent. Fluorescein was included in each reaction for

well-factor collection. All PCR reactions were coupled to melting-

curve analysis to confirm the amplification specificity. Primer

sequences are shown in Table 1. After an initial denaturation step

HSV-1 Induces APP Processing
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at 95uC for 3 min, PCR involved 40 cycles at 95uC for 10 sec and

at 58uC for 30 sec. Quantification of each PCR product was

expressed relative to rRNA 18S. The relative quantification was

calculated with the analysis software provided with the iCycler

IQ5 (Biorad).

Confocal immunofluorescence microscopy
SH-SY5Y cells were processed for confocal immunofluores-

cence microscopy according to a standard protocol [38]. Briefly,

cells were fixed with 4% paraformaldehyde (Sigma) in PBS for

10 min at room temperature, rinsed twice in PBS, and

permeabilized by 15 min incubation with PBS/Triton X-100

(0.3%, Sigma). Cells were then blocked for 20 min in 0.3% bovine

serum albumin (in PBS) and incubated overnight at 4uC with

different pairs of the following antibodies: MAB343 (1:200), goat

anti-HSV-1 (1:500), rabbit anti-Ab1-42 (1:200), and mouse anti-

Ab1-40 (1:200). The following day, cells were washed twice in PBS

and then incubated for 90 min at room temperature with a

mixture of the following secondary antibodies: goat anti-rabbit

Alexa Fluor 488 (1:1000; Invitrogen), donkey anti-goat Alexa

Fluor 633 (1:1000, Invitrogen), and rhodamine-conjugated goat

anti-mouse (1:300, Millipore). Nuclei were then counterstained for

10 min with DAPI, and the cells were coverslipped with ProLong

Gold Antifade Reagent (Invitrogen). Images from at least 10

random 636 fields were acquired with a confocal laser scanning

system (TCS-SP2, Leica Microsystem, GmbH) equipped with an

Ar/ArKr laser for 488-nm excitation and two NeHe lasers for

543- and 633-nm excitation. DAPI staining was imaged by two-

photon excitation (740 nm, ,140 fs, 90 MHz) with an ultrafast,

tunable, mode-locked titanium sapphire laser (Chamaleon,

Coherent Inc.). All experiments were repeated at least 3 times.

Nuclear C-terminus APP immunoreactivity was quantified as

mean of fluorescence intensities measured in regions of interest

(ROI) traced around every cell nucleus.

ELISA
For quantification of HSV-1-induced Ab1-42, we used APP695

transiently transfected SH-SY5Y. To this aim, cells were

transfected by Lipofectamine 2000 (Life Technologies, Inc.) with

4 mg of APP695 plasmid (kindly provided by Tommaso Russo,

CEINGE, Federico II University of Naples, Naples, Italy),

according to the manufacturer’s instructions. After 24 h, cells

were infected with HSV-1 at 1 m.o.i for 18 h. Briefly, for

intracellular Ab1-42 quantification, SH-SY5Y cell pellets were

dissolved in 70% formic acid and sonicated as previously

described. Formic acid was evaporated under vacuum with a

Centrivac (Heraeus Instruments), and 2 M Trizma base was

added to neutralize the sample. Then sample were diluited 1:3 in

H2O before protein quantification with BCA Protein Assay Kit

(Pierce) and quantification of Ab1-42 by ELISA assay. For

extracellular Ab1-42 quantification, cell supernatants were centri-

fuged first at 100006g for 309 at 4uC, and then at 1000006g for

4 h to precipitate a pellet containing Ab oligomers and fibrils. The

pellet was solubilized in 70% formic acid for 1 h at room

temperature, concentrated under vacuum and diluited 1:10 in

2 M Trizma and then 1:3 in H2O before assessing protein

concentration by BCA Protein Assay Kit (Pierce) and performing

the Ab1-42 quantification by ELISA assay.

Ab1-42 levels were measured in duplicates using a well

established sandwich ELISA kit (b-Amyloid-42 ELISA kit High-

Sensitive, Wako) containing two highly specific antibodies for

detection of the Ab1-42 peptide, according to manufacturer’s

instructions.

Statistical Analyses
Unpaired data were analyzed with Student’s t test, and p values

of ,0.05 and ,0.01 were considered significant. Data are

presented as means 6 S.D.

Results

APP processing in HSV-1-infected neurons yields multiple
APP fragments

To investigate the effects of HSV-1 infection on APP processing,

we first used a luciferase reporting system, based on a recombinant

protein (APP-Gal4) obtained by fusing the yeast transcription

factor Gal4 to the C terminus of APP695, the main APP isoform in

the human brain. HeLa cells were stably transfected with a vector

encoding APP-Gal4 (HeLaAG cells) and then transiently co-

transfected with a G5B-luciferase vector, in which luciferase

expression is under the control of 5 Gal4-responsive elements.

Luciferase activity was measured as a readout of APP cleavage

[37]. Twenty-four hours after transfection, the HeLaAG cells were

infected with HSV-1 at an m.o.i. of 1. Measurement of luciferase

activity in cells harvested at different times post-infection (p.i.)

revealed time-dependent increases in APP-Gal4 cleavage

(Figure 1A).

To characterize this postinfection APP processing in neuronal

cells, we infected human neuroblastoma cells (SH-SY5Y) and

primary rat cortical neurons and monitored APP cleavage by

western blot analysis of cell lysates with a panel of antibodies

directed against different epitopes of the Ab domain. The first

antibody we used, 4G8, recognizes residues 17–24 of Ab. As

expected, blots from mock-infected cells contained various bands

corresponding to the 3 main isoforms of full-length APP in

multiple glycosylation states [32] (Figure 1B). Some of these bands

were markedly less intense in cells infected with HSV-1. In

particular, the band presumably representing the mature form of

APP695 was almost undetectable in blots from all infected cells,

including those challenged with an m.o.i. of 1. The diminished

presence of APP following HSV-1 infection is likely due to virus-

induced suppression of cellular protein synthesis [39], but it could

also reflect viral stimulation of APP processing. The latter

possibility is consistent with the results of our luciferase assays,

and it was confirmed by the fact that, in addition to several 4G8-

immunoreactive APP fragments (APP-Fs) that were detected in

both mock-infected cells and HSV-1 infected cells, a fragment of

approximately 35 kDa (APP-F35) was found exclusively in cells

that had been infected with HSV-1 (Figure 1B).

The kinetics of the APP-F35 production were investigated by

western blot analysis of lysates of infected SH-SY5Y cells or

cortical neurons that had been harvested at different times p.i.

(Figures 1C and 1D). In these experiments, we also stained these

blots with the M2u antibody produced by our group, which

recognizes residues 1–10 of the Ab domain. 4G8 labeling detected

APP-F35 starting from 8 h p.i. in SH-SY5Y (Figure 1C), and from

Table 1. Nucleotide sequences of the primers used for real-
time PCR.

APP Forward: 59-AGACTATGCTGATGGCGGTGAAG-39

Reverse: 59-CAATGCTGGTTGTTCTCTCTGTGG-39

rRNA 18S Forward: 59-GTAACCCGTTGAACCCCATT-39

Reverse: 59-CCATCCAATCGGTAGTAGCG-39

doi:10.1371/journal.pone.0013989.t001

HSV-1 Induces APP Processing
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12 h p.i. in cortical neurons (Figure 1D), and its accumulation in

both cell types increased with time. This same band was also

labeled by the M2u antibody in blots of infected SH-SY5Y cells.

M2u labeling also revealed a 45-kDa APP fragment (APP-F45) that

was not recognized by the 4G8 antibody, and its presence was

evident in both types of cells following HSV-1 infection (Figures 1C

and 1D). Neither of these APP-Fs was recognized by the MAB348

(clone 22C11) and MAB343 antibodies, which target the N- and

C-terminals of APP respectively, so they do not appear to be APP-

cleavage end-products (Figure S1, panel A). No cross-reactivity

was found between the anti-HSV-1 antibodies and APP-F35 or

APP-F45 or between the anti-Ab antibodies and viral proteins

from our HSV-1 preparations, which suggests that the 35-kDa and

45-kDa fragments are indeed generated by APP processing (Figure

S1, panel B). Similar results were obtained when retinoic acid-

differentiated SH-SY5Y cells were infected with HSV-1 and when

Figure 1. HSV-1 alters APP processing in neuronal cells promoting the formation of 35- and 45-kDa fragments. (A) Luciferase assay in
HeLa cells that had been stably transfected with an APP-Gal4 fusion protein, transiently co-transfected with the G5B-luciferase vector, and infected
with HSV-1 (m.o.i. 1). Luciferase activity was measured as an index of APP cleavage at different times p.i.. Data are shown as ratios of values measured
in infected cell lysates (INF) to those in control cell lysates (CTR). Each bar represents the mean ratio 6 S.D. (n = 6) of 3 individual experiments, each
performed in duplicate. *p,0.05 and **p,0.01 vs. 0 h p.i.. (B) Western blot analysis of APP processing in SH-SY5Y cells infected with HSV-1 at
different m.o.i. (1, 5, and 10) and harvested 18 h p.i. Blots were probed with 4G8 antibody. The membrane was then stripped and reprobed with anti-
actin antibody. Bands representing full-length APPs and APP-F35 are indicated. (C) Western blot analysis of the time course of APP processing in SH-
SY5Y cells after HSV-1 infection (m.o.i. 1). The membrane was probed with M2u and then stripped and reprobed with 4G8. Tubulin was used as a
loading control. Arrows show bands representing APP-F35 and another APP fragment weighing 45 kDa (APP-F45). (D) Rat cortical neurons were
infected and subjected to the same analysis described in C. (E) TCA-precipitated proteins from the supernatants of HSV-1-infected SH-SY5Y cells
(showed in figure 1C, 18 h p.i.) were analyzed by western blot with an anti-N-terminal APP antibody (22C11, MAB348) (left panel) and with M2u and
4G8 antibodies (right panels). Released soluble a- and b-APPs (sAPPs), APP-F35 and APP-F45 are indicated. The star in the left panel shows an
unidentified 30-kDa N-terminal APP fragment. Results are shown for one representative experiment of three performed.
doi:10.1371/journal.pone.0013989.g001
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cells were infected with different HSV-1 strains (F, KOS, and a

clinical HSV-1 isolate) (data not shown). Therefore, subsequent

experiments were performed only on undifferentiated SH-SY5Y

cells infected with HSV-1 at an m.o.i. of 1, and the results were

assessed 18 h p.i. unless otherwise specified. It is noteworthy that

at this time point, cell viability was not significantly affected by

viral infection (Figure S1, Panel C).

To determine whether post-infection APP processing yielded

fragments that were secreted into the extracellular space, we

subjected TCA-precipitated proteins from cell-conditioned culture

medium to western blot analysis. APP fragments were found in the

supernatants of both control and infected cells when blots were

probed with antibody against the N-terminus of APP (clone

22C11, which recognizes APP residues 66–81) (Figure 1E, left

panel). They had a molecular mass of approximately 100 kDa and

may represent the secreted APP species produced by a- or b-

secretase cleavage of APP at the level of the plasma membrane.

Interestingly, secreted APP levels in medium from HSV-1-infected

cell cultures appeared lower than those from control cultures,

suggesting that their production diminishes after infection. This

could be the result of virus-induced reductions in the expression of

full-length APP or a shift to an alternative APP processing pathway

triggered specifically by HSV-1 infection (see Figure 1). The

supernatant of infected cells also contained a peptide of

approximately 30 kDa that was recognized by the anti-N-terminal

antibody. It may represent an additional N-terminal fragment

generated by virally altered APP cleavage. Interestingly, both the

4G8 and M2u antibodies recognized APP-F35 and APP-F45 in the

supernatants from infected cells (Figure 1E, right panels),

suggesting that these APP-Fs are in part secreted. A similar

pattern of APP-F secretion was also found at earlier time-points

(12 h p.i.) (Figure S1, Panel C), thus indicating that the HSV-1-

induced APP processing we observed is not simply an artifact due

to the late infection time. Collectively, these results demonstrate

that HSV-1 infection alters APP processing in neuronal cells and

that this effect favors the formation of at least 2 APP-Fs that

include portions of the Ab sequence. Our subsequent experiments

focused mainly on the intracellular APP-Fs produced after HSV-1

infection because a growing body of evidence is highlighting the

pathological effects of intraneuronal accumulations of Ab peptides

(reviewed in [24]).

Host-cell protein synthesis spared by the virus-induced
shut-down is necessary for the production of APP-F35
and APP-F45

As shown in Figure 1B, HSV-1 infection diminished the amount

of full-length APP. Virus-induced shut-down of host cell protein

synthesis, which is mediated primarily by the degradation of host

protein mRNA [39], mainly by the virion host shut-off (vhs)

protein [40], seemed to be at least partly responsible for this

decrease. Indeed, real-time PCR assays revealed that in infected

SH-SY5Y cells APP transcript levels progressively decreased

starting from 4 h p.i. up to 18 h p.i. (Figure 2A). Comparable

reductions were observed in infected cortical neurons assayed at

18 h p.i. (Figure S2A). The suppression of host protein synthesis

can affect the expression of various genes [41], but efficient

translation of certain viral and cellular proteins is essential to allow

the virus to complete its life-cycle. For this reason, HSV-1 has

evolved mechanisms for partial reversal of the shut-off. One of

these involves reactivation of cellular translation by ICP34.5, the

protein encoded by the UL34.5 gene [42].

Consistently, when cells were infected with the HSV-1 R2621

mutant (hereafter referred to as DUL41), which is deleted in the vhs

gene, APP mRNA levels were significantly increased over that

observed in cells infected with wild-type HSV-1, although it was

still lower than that of control cells 18 h p.i., since vhs is not the

only viral gene involved in the degradation of host-cell mRNA

(Figure 2A). On the other hand, when cells were infected with an

HSV-1 mutant (R3616, referred to hereafter as Dc34.5) that is

deleted in both copies of the UL34.5 gene, APP mRNA

accumulated in the early phases of infection (4 h p.i.) probably

as a consequence of the impaired translation. Later, APP mRNA

levels were progressively decreased likely because of degradation of

untraslated mRNAs (Figure 2A). Both mutants were able to infect

SH-SY5Y cells efficiently, as shown by viral titers in the

supernatant (see Table in Figure 2B).

Western blotting was then used to investigate APP-F formation

in cells infected with the HSV-1 mutants. We reasoned that if the

presence of the APP-F35 and APP-F45 in infected cells reflected

viral downregulation of the expression of one or more catabolic

enzymes involved in the degradation of APP fragments, higher

levels of APP-F35 and APP-F45 would be found in Dc34.5-

infected cells, where the shut-off of protein synthesis is almost

complete. In contrast, if the formation of these fragments required

the synthesis of specific enzyme(s), they would not be found at all

in Dc34.5-infected cells. As shown in Figure 2B, the latter

hypothesis was confirmed: APP-F35 and APP-F45 were clearly

present in cells infected with wild-type HSV-1 or the DUL41

mutant, but they were almost undetectable in Dc34.5-infected

cells. Stronger inhibition of protein synthesis thus appears to

impede rather than promote the formation of these fragments.

Accordingly, when cells were infected for 18 h in the presence

of cycloheximide (CHX), a potent inhibitor of protein synthesis,

APP-F formation was totally prevented (Figure S2B). The same

effect was obtained when cells were infected with heat- or UV-

inactivated viruses, unable to penetrate into host cells or to

replicate, respectively (Figure S2C). Finally, APP-F formation was

strongly inhibited when cells were infected in the presence of

phosphonacetic acid (PAA) that blocks viral DNA synthesis and, as

a consequence, late viral protein (c) production (Figure S2B).

Overall these findings support the statement that both viral

replication and active cellular protein synthesis are required for

APP-F formation.

b- and c-secretases and caspases are involved in the
formation of APP-F35 but not that of APP-F45

The results of the previous experiments prompted us to

investigate the involvement of cellular enzymes that normally

cleave the APP in the altered APP processing observed in HSV-1

infected cells. SH-SY5Y cells were challenged with the virus in the

presence of b-secretase inhibitor, c-secretase inhibitor X, or Z-

VAD, which specifically inhibits caspase-3-like enzymes. Control

cells were HSV-1- or mock-infected in the presence of DMSO

alone. Cells were harvested 18 h p.i. and subjected to western blot

analysis with 4G8 and M2u antibodies. As shown in Figure 3,

formation of APP-F35 decreased markedly in the presence of each

of the secretase inhibitors (Figure 3A) and to a lesser extent when

caspase-3-like activity was suppressed (Figure 3B). APP-F45 levels

were not affected by any of the 3 inhibitors (Figure 3A and 3B).

None of the inhibitors significantly altered the viral titers in the

supernatant (also shown in Figure 3), so the effects of the secretase

inhibition on APP-F35 cannot be attributed to interference with

viral replication. We also found that expression levels of both

BACE1 and nicastrin (an essential component of the c-secretase

complex) increased after HSV-1 infection (Figure S3, Panel A),

suggesting that the virus upregulates their expression to drive

amyloidogenic APP processing. Taken together, these findings

point to major roles for b- and c-secretases in APP-F35 formation,
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but neither of these enzymes is involved in the generation of

APP-F45.

To explore the possibility that virus-induced oxidative stress

plays a role in APP processing, we infected SH-SY5Y cells in the

presence of two different antioxidant compounds (6-hydroxy-

2,5,7,8-tetramethylchroman-2-carboxylic acid [TROLOX] and

N-acetyl-L-cysteine [NAC]). As shown in Figure S3, Panel B, the

results demonstrate that oxidative stress is mainly involved in APP-

F35 formation. As expected, antioxidants did not significantly alter

supernatant viral titers (Figure S3, Panel B), so their inhibitory

effects on APP-F formation cannot be attributed to interference

with viral replication.

However, APP-F35 and APP-F45 might not be the only APP

fragments generated by APP processing in HSV-1-infected cells.

Therefore, we used the luciferase system described above to detect all

C-terminal APP-Gal4 fragments produced following HSV-1 infec-

tion. Twenty-four hours after transfection with the G5B-Luciferase

vector, HeLaAG cells were infected with HSV-1 (m.o.i. 1) in the

presence of b-secretase inhibitor, c-secretase inhibitor X, Z-VAD, or

(in controls) DMSO, and luciferase activity was measured 18 h p.i..

As shown in Figure 3C, APP cleavage in infected cells was slightly

but significantly reduced by b- or c-secretase inhibition. This result,

which is in line with the findings shown in Figure 3A, confirms that

these cellular enzymes are responsible for some, but not all, the APP

cuts induced by the infection. Z-VAD appeared to be the most

efficient suppressor of post infection APP cleavage in the luciferase

assay (Figure 3C). This was not surprising since caspase-3-like

enzymes cleave APP at its C-terminus, and C-terminal APP-Gal4

fragments are the ones detected by our luciferase assay.

Collectively, these data suggest that in the presence of HSV-1

APP undergoes cleavage at multiple sites. Some of the cuts seem to

be produced by caspase-3-like enzymes; others (in particular those

that generate APP-F45) seem to be produced by other cellular or

viral enzymes that have yet to be identified. Other cleavages -like

those that generate APP-F35- are produced by the same enzymes

responsible for the formation of Ab. These were the focus of the

remaining experiments.

APP processing in HSV-1-infected neurons yields a
soluble Ab oligomer (APP-F35) and Ab1-40 and Ab1-42

peptides
The results of experiments shown in Figure 3A indicate that the

formation of APP-F35 requires the activity of the same enzymes

(b- and c-secretases) that are responsible for the generation of Ab.

Since the molecular weight of APP-F35 is approximately 9-fold

higher than that of Ab (4 kDa), we wondered whether APP-F35

might be one of the SDS-stable Ab oligomers whose formation has

been associated with memory deficits in an experimental model of

AD [43]. This hypothesis was compatible with the electrophoretic

mobility of APP-F35, which was similar to that of the nonameric

Figure 2. Host-cell protein synthesis spared by the virus-induced shut-down is necessary for APP-F35 and APP-F45 production. (A)
Real-time PCR assay of APP mRNA levels in SH-SY5Y cells 4, 8 and 18 h after infection with wild-type or mutant (Dc34.5 and DUL41) HSV-1 (m.o.i. 1).
APP mRNA levels are expressed as fold changes versus mock-infected cells. At each indicated time point, data are shown as means 6 S.D. of 4
independent experiments. For each time *p,0.05 and **p,0.01 vs HSV-1. (B) SH-SY5Y cells were infected with wild-type or mutant (Dc34.5 and
DUL41) HSV-1 for 18 h. Extracted proteins were subjected to SDS-PAGE, blotted and probed with M2u, 4G8, and anti-actin antibodies (left). Results are
shown for one representative experiment of four performed. Conditioned medium samples were subjected to standard plaque assay to evaluate viral
production (right). Data represent the mean 6 S.D. of 8 independent experiments, each performed in duplicate.
doi:10.1371/journal.pone.0013989.g002
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component of a mixture of oligomers of synthetic Ab1-42 peptides

(Figure 4A, left panel). To test this hypothesis, we subjected

infected SH-SY5Y cells to lysis with three different protocols: 1%

triton X-100 (the usual protocol), 10% SDS (which causes partial

solubilization of aggregates), and 70% formic acid (which is

generally employed to dissolve Ab aggregates) [44]. As shown in

Figure 4A (right panel), the 4G8-immunoreactive 35-kDa band

was present in western blots from 1% triton-X-100-lysed cells and

from those solubilized in 10% SDS, but it was much less intense in

blots from formic-acid-treated cells.

Figure 3. b- and c-secretase are involved in APP-F35 formation. (A) HSV-1-infected (m.o.i. 1) and mock-infected SH-SY5Y cells were treated
continuously (1 hour before infection through p.i. hour 18) with 1 mM of a b- or c-secretase inhibitors (ib and ic, respectively). Control cultures
(infected and mock-infected) were treated for the same period with equal volumes of solvent (DMSO). Cell lysates were analyzed by western blot with
M2u and 4G8 antibodies. Actin was used as loading control. Results are shown for one representative experiment of three performed. Viral production
estimated by standard plaque assay is shown next to the western blot. Data are means 6 S.D. of 4 independent experiments. (B) Similar experiments
were performed independently (as described in A) with 50 mM Z-VAD, which inhibits caspase 3-like enzymes. Densitometric analysis of APP-F35 levels
is shown in the graph next to the representative western blot (Z-VAD-treated vs DMSO-treated HSV-1-infected cells) and data are the means 6 S.D. of
3 independent experiments performed. Viral production estimated by standard plaque assay is shown. (C) HeLaAG cells were transfected with G5B-
Luciferase vector and 24 h later infected with HSV-1 (m.o.i. 1) in the presence of an inhibitor of b-secretase, c- secretase (1 mM each), or caspase 3-like
enzymes (50 mM). Cells were harvested 18 h later and assayed for luciferase activity as a readout of APP cleavage. Data are the means 6 S.D. of 3
independent experiments, each performed in duplicate. *p,0.05 and **p,0.01 vs. HSV-1.
doi:10.1371/journal.pone.0013989.g003
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Figure 4. APP-F35 is a soluble oligomer of Ab peptides. (A) A pool synthetic Ab1-42 oligomers and lysates of mock-infected and HSV-1 infected
cells were subjected to SDS-PAGE and western blot analysis with 4G8 antibody. A better visualization of the Ab1-42 oligomeric mixture is provided in
the western blot on the right (few seconds of exposure time). The stars indicate the Ab nonamer whose electrophoretic mobility is similar to that of
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In order to quantify Ab1-42 produced during HSV-1 infection,

we performed an ELISA assay on solubilized Ab oligomers

isolated from cell lysates or supernatants of SH-SY5Y cells

transiently transfected with a vector codyfing APP695. The graph

in Figure 4B shows that both intra- and extra-cellular Ab1-42 levels

are significantly increased in infected cells as compared with

controls. These findings and those reported in Figure 1E suggest

that HSV-1 infection may induce the secretion of highly

neurotoxic APP-Fs, including Ab peptides. To document the

neurotoxic potential of these fragments, we challenged primary rat

cortical neurons with the supernatants of SH-SY5Y cells infected

with HSV-1 (1 m.o.i., 18 h) in the presence or absence of b- and c-

secretase inhibitors and assessed the number of apoptotic neurons

24 h later. Rat cortical neurons appeared to be a suitable model

for these tests. Indeed, exposure to the supernatants from infected

cells triggered apoptosis in these neurons even when the

supernatants were exposed to UV light to inactivate the virus

they contained (Figure S4). Interestingly, the supernatants from

SH-SY5Y cells infected in the presence of b- and c-secretase

inhibitors were much less neurotoxic. Collectively, these data

suggest that supernatants from HSV-1-infected cells are highly

neurotoxic for primary neurons, and that this effect is related to

the presence in the extracellular medium of APP-Fs rather than of

‘‘active’’ viral particles.

Direct evidence of HSV-1-induced Ab formation in native non-

trasfected cells was obtained though immunofluorescence studies

with antibodies that specifically recognize the Ab1-40 and Ab1-42

peptides that showed that both forms were clearly present in HSV-

1 infected cells, but they were almost undetectable in mock-

infected cells. Interestingly, the Ab1-40 staining was mainly nuclear,

while Ab1-42 was predominantly perinuclear, which is consistent

with previous observations under other experimental conditions

[45].

The possibility of cross-reactivity between the anti-Ab antibod-

ies and the HSV-1 glycoprotein B was excluded by the results of

double-staining with anti-HSV-1 and anti-Ab1-42 antibodies

(Figure 4B). The immunofluorescence was not colocalized with

anti-Ab1-42 antibody staining, confirming that this labeling actually

reflected the virus-induced production of the amyloid peptides. We

also labeled infected cells with MAB343, an anti-C-terminal-APP

antibody that targets residues 640–695 of APP695. It recognizes

full-length APP, the APP C-terminal fragments produced by a-

and b-secretase cuts (CTFs), and the APP intracellular C-terminus

domain (AICD) generated by c-secretase cleavage of APP. The

latter peptide is rapidly transported into the nuclear compartment,

where it promotes the transcription of genes involved in

neurodegeneration [18]. As expected, nuclear MAB343 immuno-

labeling was very faint in mock-infected cells but quite intense in

cells infected with HSV-1 (Figure 5). This finding indicates that the

virus enhances the nuclear translocation of the AICD, and it is

consistent with the results of our luciferase assays, which

demonstrated increased formation and nuclear localization of C-

terminal APP fragments in infected HeLaAG cells (see Figure 1A).

Interestingly, western blot analysis of CTFs immunoprecipitated

from cytoplasm and nuclei of mock- infected or HSV-1-infected

SH-SY5Y cells 18 h p.i. indicates that they increased in the

cytoplasm and in the nuclei of infected cells, supporting data

described so far. Taken together, these data clearly demonstrate

that HSV-1 infection alters APP processing and that this effect

results in the formation of a soluble oligomer of Ab, Ab1-40 and

Ab1-42, and the increased presence of AICD and CTFs in the

nucleus.

Discussion

In this paper, we demonstrate that HSV-1 interferes with APP

processing in SH-SY5Y human neuroblastoma cells and rat

cortical neurons. Following HSV-1 infection, these cells were

found to contain several APP-Fs that were not present in mock-

infected control cells. These included 2 species containing at least

parts of the Ab domain of the protein (APP-F35 and APP-F45), N-

terminal APP-Fs that were secreted, intracellular C-terminal

fragments, and finally the Ab1-40 and Ab1-42 peptides. The

HSV-1-triggered APP processing involved multiple cleavages that

were mediated by different molecular mechanisms. Some (but not

all) of the cuts were found to be produced by cellular enzymes that

are known components of the amyloidogenic APP processing

pathway (b- and c-secretases, caspase-3-like enzymes).

Previous studies have revealed increased Ab immunoreactivity

in infected neuroblastoma and glioma cells and in the brains of

HSV-1-infected mice [33], and accumulation of a 55-kDa C-

terminal APP-F has been reported in HSV-1-infected SH-SY5Y

cells [32]. This protein was clearly distinct from the APP-F35 and

APP-F45 found in the western blots from our infected neuronal

cells. Neither of these fragments was recognized by the anti-C

terminal APP antibody used by the Shipley group or by antibody

raised against the N-terminus of APP. However, C-terminal APP

fragments were present in our infected cells, as shown by the

results of our luciferase assays and immunofluorescence studies,

and one of these may indeed be the protein observed by Shipley et

al. The APP-F35 and APP-F45 found in our model both include at

least parts of the Ab sequence. The former fragment was

recognized by M2u and 4G8 antibodies (which target Ab residues

1–10 and 17–24, respectively), so it appears to include at least the

first 24 residues of the Ab peptide. The APP-F45 was recognized

only by the M2u antibodies, suggesting that it contains only the

first 10 Ab residues.

Two species of approximately 35 kDa and 45 kDa were also

recognized by both the M2u and 4G8 antibodies among the

proteins precipitated from supernatants of infected cells. In all

probability, these are the APP-F35 and APP-F45 that we detected

in infected cell lysates. However, the intracellular APP-F45 was

not recognized by the 4G8 antibody, whereas the 45 kDa species

found in the supernatant was. This discrepancy might be

explained by the presence of hidden epitopes in APP-F45 that

were unmasked in the supernatant protein by the TCA

precipitation step. On the other hand, it is also possible that the

bands recognized in supernatant blots by 4G8 and M2u antibodies

APP-F35, indicated with the arrow (left panel). HSV-1-infected cells were lysed with 1% triton-X 100, 70% formic acid, or 10% SDS. The samples were
resolved by SDS-PAGE, blotted, and immunostained with 4G8 antibody. The membrane was stripped and restained with anti-tubulin antibody
(loading control). Western blot is shown for 1 representative experiment of 3 performed (upper right panel). Immunoblots were analyzed
densitometrically, and the values were expressed as ratios of APP-F35 to actin (lower right panel). (B) Confocal microscopic images of SH-SY5Y cells
18 h after infection with HSV-1 (m.o.i. 1). Cells were double-labeled with anti-Ab1-40 and anti-Ab1-42 antibodies (middle panels) or with anti-Ab1-42 and
anti-HSV-1 antibodies (lower panels). The color of the fluorescence representing each primary antibody is indicated. Results are shown for one
representative experiment of three performed. Quantitation of Ab1-42 from mock- and HSV-1-infected APP695-transfected SH-SY5Y cells by ELISA is
shown (upper right). Bar graphs represent the levels (fentomol/mg) of intracellular (pellet) and secreted (medium) Ab1-42. Data are the means 6 S.D.
of 3 independent experiments, each performed in duplicate. * p,0.05 vs. HSV-1.
doi:10.1371/journal.pone.0013989.g004

HSV-1 Induces APP Processing

PLoS ONE | www.plosone.org 10 November 2010 | Volume 5 | Issue 11 | e13989



are distinct APP-Fs that were not found in the cell lysates because

they are totally eliminated from the intracellular compartment by

secretion. Additional confirmation of the ability of HSV-1 to alter

APP processing was provided by the finding of a 30-kDa N-

terminal APP-F in the supernatants from infected but not control

cells.

Like others [32], we found that HSV-1 infection is followed by

the disappearance of full-length APP in neuronal cell lysates. This

phenomenon probably reflects the abnormal APP processing

induced by the virus, but it is also related to the shut-down of host-

protein synthesis. Involvement of the latter mechanism is

supported by the markedly reduced levels of APP mRNA found

in infected cells 18 h p.i. and by the increased transcript levels

observed when cells were infected with the vhs-deficient HSV-1

mutant instead of wild-type HSV-1. However, when more

complete suppression of protein synthesis was produced by

infecting the cells with the Dc34.5 mutant, which is incapable of

reversing the host-induced shut-off of protein synthesis, APP-F35

and APP-F45 formation was almost completely abolished. The

protein synthesis that continues after this shut-down thus appears

to be essential to the APP cleavages induced by the virus. This

finding, together with previous reports of increased BACE1 and

nicastrin expression in HSV-1-infected SH-SY5Y cells [33], which

was confirmed in our experimental model, suggests that the altered

APP processing induced by the virus is carried out at least in part

by cellular enzymes that are synthesized during infection. This

conclusion is strongly supported by the marked reduction in APP-

F35 formation during inhibition of b- or c-secretase. The

expression and activity of both these enzymes are known to be

increased by oxidative stress conditions, like those detected by the

presence of high levels of ROS and lipid peroxidation products

[46–48]. Interestingly, results from in vitro and in vivo studies

indicate that HSV-1 infection shifts the redox balance in host cells

toward a pro-oxidant state [49–50]. Furthermore, in murine

neuronal cells HSV-1 infection has been shown to increase the

formation of ROS and products of lipid peroxidation [51], and

high levels of lipid-peroxidation and protein-nitrosylation products

have been detected in brain areas affected by acute or latent HSV-

1 after infection at primary sites [52–53]. Together with our

demonstration that antioxidant compounds prevent the virus-

Figure 5. HSV-1 infection promotes nuclear localization of AICD. Confocal microscopic images of SH-SY5Y cells 18 h after mock or HSV-1
(m.o.i. 1) infection. Cells were labeled with anti-C-terminus-APP antibody (MAB343) and subjected to nuclear DAPI staining. Results are shown for one
representative experiment of three performed. Bar graphs showing mean nuclear C-terminus APP labeling intensities in mock- and HSV-1-infected
cells. **p,0.01 vs HSV-1 (n = 60). Nuclear and cytoplasmic extracts from mock- and HSV-1-infected cells were immunoprecipitated with anti-APP C-
terminus antibody (MAB343) and the samples were resolved by SDS-PAGE. Western blot is one representative experiment of three performed.
doi:10.1371/journal.pone.0013989.g005
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induced formation of APP-F35, these findings strongly suggest that

HSV-1-induced oxidative stress in neuronal cells may activate b-

and c-secretases, thereby triggering APP processing and APP-F35.

b- and c-secretases are the enzymes responsible for the

production of Ab peptides, but the APP-F35 is clearly a larger

protein than either Ab1-40 or Ab1-42, (4 kDa). It might be an

aggregate of Ab peptides with other cellular or viral proteins,

whose formation is induced by the viral infection. However, it

might also represent an oligomeric form of Ab. The latter

conclusion is consistent with the infection-related overproduction

of Ab1-40 and Ab1-42 documented by our immunocytochemistry

experiments and with the electrophoretic mobility characteristics

of APP-F35 itself. As shown in Figure 4A, this APP-F behaved like

a soluble amyloid nonamer. The small difference between the

apparent molecular weights of APP-F35 and the nonamer in the

Figure probably reflects the origins of the two peptides, i.e., cell

lysates vs. pooled synthetic peptides. These data were confirmed

also by ELISA assay showing increased levels of Ab1-42 in acid

formic-solubilized cell lysates of infected cells.

Although cell enzymes clearly participate in the post-infection

APP processing, the fact that the APP-F45 was unaffected by the

b- and c-secretase inhibitors strongly suggests that other

mechanisms are also involved. Mapping studies indicate that

APP-F45 contains only the first 10 residues of the Ab domain, and

it was not recognized by anti-APP N-terminal antibody (mapping

sites 66–81). Species with such features might be seen during the

degradation (i.e., elimination of the N-terminus) of a normal APP-

F produced by a-secretase cleavage of APP at the level of an

intracellular membrane (e.g., endoplasmic reticulum, Golgi

apparatus). However, they would also be compatible with the

presence of a novel APP fragment generated by the synergic

actions of an a-secretase-like enzyme and another viral or cellular

enzyme. Furthermore, experiments performed in the presence of

the protein synthesis inhibitor CHX or PAA, a compound able to

inhibit viral DNA synthesis, strongly confirm that APP-F45

formation is dependent on the occurrence of a correct protein

synthesis and the production of late viral proteins. Among these,

according to the data obtained in the experiments with Dc34.5

mutant, ICP34.5 may be a potential candidate. Additional

research is needed to clarify this point.

Other findings also support the hypothesis that HSV-1 induces

multiple cleavages of APP, including some that are produced by

caspase 3-like enzymes. Several studies have demonstrated

caspase-mediated cleavage of APP between the Asp664 and

Ala665 residues in its cytoplasmic domain although it is unclear

whether caspases 3, 6, or 8 are primarily responsible for this cut. In

any case, the result is a C-terminal fragment (C31) that promotes

neurodegeneration by activating various cell-death pathways [54].

Some investigators have suggested that caspase cleavage may also

promote subsequent cuts by c-secretase, thereby shifting APP

processing toward the amyloidogenic pathway. Our data support

this view: APP-F35 formation was also partially suppressed by the

caspase-3-like enzyme inhibitor Z-VAD, suggesting that in our

experimental system b- and c-secretase cleavages of APP are

indeed increased by the protein’s interaction with caspases. The

presence of anti-C terminal-reactive APP fragments in the nucleus

of infected cells might reflect nuclear transport of C31 and the

AICD. AICD is also produced by c-secretase cleavage of APP, and

its role in triggering the transcription of genes involved in

neurotoxicity, APP metabolism, and cytoskeletal dynamics has

been well characterized [55–57]. In our experimental conditions,

AICD was undetectable by western blot assay, whereas CTFs,

probably derived from b-secretase cuts, are increased in the

cytoplasm and in the nucleus of infected cells. Their presence in

the nuclei suggests that they may play an additional role in

triggering neurodegeneration with a still undisclosed mechanism.

In conclusion, our findings demonstrate that HSV-1 is capable

of altering APP processing in neuronal cells and that this effect

results in the formation of various species that are known to be

neurotoxic. Indeed, we have clearly demonstrated that the APP

fragments secreted by HSV-1-infected cells, especially those

generated by b- and c-secretase cleavages of the protein, can

provoke apoptotic cell death in rat cortical neurons.

It is important to note that the cells used in our study had not

been transfected to overexpress the APP. Therefore, the effects of

infection we observed are probably a more faithful reflection of

events that occur in vivo.

HSV-1 replication in the CNS can occur as a result of the

reactivation of latent virus already present in the brain or of virus

that has been reactivated in the trigeminal ganglia and reaches the

brain by retrograde axonal transport. So far, the pathophysiolog-

ical impact of APP fragments resulting from recurrent HSV-1

infection both in PNS and in CNS have not be described.

However, a recent paper published by our group [34] clearly

documented the functional alterations induced by HSV-1 infection

in neurons, and data from Wozniak [33] evidenced the in vivo

accumulation of Ab plaques in brain of HSV-1-infected mice. It is

possible to speculate that, while repeated cycles of replication

would cause only mild and self-limiting infections, their repeated

triggering of APP processing could cause intra- and extracellular

accumulation of Ab and the intranuclear transport of other

neurotoxic APP fragments. Over long periods of time and in the

presence of other genetic or environmental risk factors, these

effects could play an important co-factorial role in the pathogen-

esis of AD.

Supporting Information

Figure S1 APP-Fs do not contain APP-terminus domains and

are not artifacts due to viral infection. (A) Lysates of mock- or

HSV-1-infected SH-SY5Y cells were analyzed by western blot

with 4G8, M2u, MAB343, and MAB348 (clone 22C11) antibodies.

Bands corresponding to full-length APPs, APP-F35, and APP-F45

are indicated. (B) HSV-1 (F) was lysed in sample buffer and run on

SDS-PAGE with HSV-1 (F)-infected neuroblastoma cell lysate

(CL). The gel was blotted and the membrane probed with M2u
and 4G8 antibodies. Bands corresponding to APP-F35 and APP-

F45 are indicated by arrows in the HSV-1 lane. (C) TCA-

precipitated proteins from the supernatants of HSV-1-infected

SH-SY5Y cells (1 m.o.i., 12 h) were analyzed by western blot (left

panel). APP-F35 and APP-F45 are indicated. Results are shown

for one representative experiment of three performed. Cytotoxicity

of HSV-1-infected SH-SY5Y cells (1 moi, 24 and 48 h) was

determined by Trypan blue exclusion assay (right panel). Values

are expressed as percentages of viable cells with respect to controls.

All data represent the means 6 S.D.

Found at: doi:10.1371/journal.pone.0013989.s001 (0.82 MB TIF)

Figure S2 APP-F formation requires an active protein synthesis

and the presence of late viral proteins (A) Real-time PCR assay of

APP mRNA levels in rat cortical neurons harvested 18 h after

infection with HSV-1 (m.o.i. 1). Data are shown as means 6 S.D.

of 3 independent experiments, **p,0.01 vs. mock-infected cells.

(B) HSV-1-infected (m.o.i. 1) and mock-infected SH-SY5Y cells

were treated continuously (1 hour before infection through p.i.

hour 18) with 50 mg/ml of cycloheximide (an inhibitor of protein

synthesis, CHX) and 500 mg/ml of phosphonoacetic acid (an

inhibitor of the viral replication, PAA). Cell lysates were analyzed

by western blot with M2u and 4G8 antibodies. Results are shown
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for one representative experiment of three performed. (C) SH-

SY5Y cells were infected with HSV-1 or with heat- and UV-

inactivated HSV-1 for 18 h. Extracted proteins were subjected to

SDS-PAGE, blotted and probed with M2u, 4G8, and anti-actin

antibodies. Results are shown for one representative experiment of

four performed.

Found at: doi:10.1371/journal.pone.0013989.s002 (0.68 MB TIF)

Figure S3 APP-F formation is partially inhibited by antioxidants

(A) Lysates of mock- or HSV-1-infected SH-SY5Y cells were

analyzed by western blot with anti-BACE1 (Chemicon) and anti-

nicastrin (Millipore) antibodies. (B) Mock- and HSV-1-infected

SH-SY5Y cells were treated after infection through p.i. hour 18

with 200 mM TROLOX or 5 mM N-Acetyl-L-Cysteine (NAC).

Cell lysates were analyzed by western blot with M2u and 4G8

antibodies. Results are shown for one representative experiment of

three performed. Densitometric analysis of APP-F35 and APP-F45

levels is shown in the graph next to the representative western blot

(TROLOX- or NAC-treated HSV-1-infected cells with respect to

HSV-1-infected cells). Viral production estimated by standard

plaque assay is shown. Data are means 6 S.D. of 3 independent

experiments.

Found at: doi:10.1371/journal.pone.0013989.s003 (0.33 MB TIF)

Figure S4 APP-F-containing supernatants from HSV-1-infected

SH-SY5Y cells induce apoptosis in rat cortical neurons Apoptotic

cell death was evaluated in rat cortical neurons by VybrantH
DyeCycle Violet Kit (Invitrogen) by using confocal laser scanning

system (Leica TCS SP2). This assay is based upon a fluorescent

dye (VybrantH DyeCycle) able to stain chromatin. The condensed

chromatin of apoptotic cells is stained more brightly than the

chromatin of normal cells. Rat cortical neurons were challenged

for 24 h with supernatants collected (18 h p.i.) from: (A) mock-

infected cells (sup mock); (B) HSV-1-infected cells (sup HSV-1); (C)

HSV-1-infected cells and then exposed to UV-light (5 min on ice)

(sup HSV-1+ UV); (D) HSV-1-infected SH-SY5Y cells treated

continuously (1 hour before infection through p.i. hour 18) with b-

or c-secretase inhibitors (sup HSV-1+ib+ic). Conditional medium

derived from rat cortical neurons (cultured for 7 days) was used to

culture SH-SY5Y cells for 18 h after HSV-1 challenge. Red

arrows indicate representative apoptotic cells. The percentage of

apoptotic cell death, shown in the graph, was evaluated on at least

10 microscopic fields randomly chosen for each conditions

analyzed. Data are expressed as fold increase of apoptotic cells

found in different experimental conditions versus controls

(supernatants of mock-infected cells). ** P,0.01 vs sup HSV-1.

Found at: doi:10.1371/journal.pone.0013989.s004 (2.11 MB TIF)
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