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Abstract: Investigating the molecular mechanisms governing developmental axon growth has been
a useful approach for identifying new strategies for boosting axon regeneration after injury, with
the goal of treating debilitating conditions such as spinal cord injury and vision loss. The picture
emerging is that various axonal organelles are important centers for organizing the molecular
mechanisms and machinery required for growth cone development and axon extension, and these
have recently been targeted to stimulate robust regeneration in the injured adult central nervous
system (CNS). This review summarizes recent literature highlighting a central role for organelles such
as recycling endosomes, the endoplasmic reticulum, mitochondria, lysosomes, autophagosomes and
the proteasome in developmental axon growth, and describes how these organelles can be targeted to
promote axon regeneration after injury to the adult CNS. This review also examines the connections
between these organelles in developing and regenerating axons, and finally discusses the molecular
mechanisms within the axon that are required for successful axon growth.

Keywords: axon growth; axon regeneration; inter-organelle membrane contact sites; organelles

1. Introduction

Neurons of the peripheral and central nervous systems (PNS and CNS) represent a
population of highly polarized cells, with axonal terminals usually located long distances
away from the cell bodies. This unique morphology is crucial for proper neuronal func-
tion but also calls for intricate regulation of the processes governing axon growth and
regeneration after injury.

During early development, neuronal processes undergo rapid growth with one process
being specified as the axon [1–4]. The axon grows from its tip, the growth cone, and
extends long distances through the extracellular environment. The growth cone is a
highly dynamic structure which guides axons to their correct target by sensing, integrating
and responding to signals from chemoattractive and chemorepellent cues [5]. In some
human neurons, the axon could extend up to 1m in length. The intricate process of axon
growth requires enormous amounts of lipid synthesis, endosomal trafficking and correct
positioning of materials and machinery at the plasma membrane in order to drive the
axon forwards [6]. Furthermore, tight regulation of cytoskeletal dynamics and integrated
intracellular signaling are key for successful axon growth, target identification and synapse
formation [7].

Unlike PNS and embryonic CNS neurons, adult CNS neurons have very limited regen-
erative capacity and, therefore, re-grow poorly after injury. The mechanisms required for
axonal extension after injury in many aspects mimic the processes that occur during devel-
opmental axon growth; however, the regenerative growth process is further complicated by
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the primary requirement for growth cone redevelopment. Recent studies have shown that
stimulating developmental growth programs in the adult is one way of restoring axonal
growth and function ([8] and summarized in [9,10]); however, there are a number of issues
that need to be addressed in adult CNS neurons. For example, as neurons mature and form
synapses, synaptic maintenance trumps growth and, as a consequence, the cell adjusts the
availability and localization of the axon growth machinery to fit these newly found needs
(reviewed in [11]). In addition, axonal injury can occur at long distances away from the
cell body and, therefore, successful regeneration requires active axonal transport as well as
local regulation of protein and lipids [12]. The extracellular environment after injury also
differs for mature CNS neurons compared to the time of developmental CNS growth and to
injured PNS neurons, with numerous inhibitory factors impeding growth after injury [13].

One requirement for the initiation of successful regrowth programs in the PNS after
injury is the resealing of the plasma membrane and the formation of a new growth cone.
These processes are highly dependent on calcium influx [14,15]. Calcium affects numerous
intracellular signaling processes which communicate to the cell body to mount a regenera-
tive response through the expression of regeneration-associated genes (RAGs), cytoskeletal
remodeling or axonal transport [16,17]. A number of key intracellular signaling pathways
have so far been identified that contribute to the regulation of axon regeneration including
the PTEN/PI3K, the JAK/STAT, the ERK/MAPK and the RhoA/ROCK pathway [18–23].
However, targeting individual signaling pathways is insufficient to elicit optimal regenera-
tion in the adult CNS and highlights the need for further approaches to enable the robust,
long-range regeneration needed for functional recovery after injury.

Recent advances in microscopy and live-imaging techniques have highlighted that
intracellular organelles are important signaling platforms and sources of the materials
required for axon growth and regeneration. This review summarizes the evidence for intra-
cellular organelles as sites of convergence for many growth and regeneration-associated
pathways, discusses the numerous potential roles that inter-organelle connections might
play during axon growth and regeneration, and debates how individual organelles or
multi-organellar complexes could be targeted to stimulate axon growth. We review the
current literature on the involvement of the endoplasmic reticulum (ER), mitochondria, the
endo-lysosomal system and the proteasome during axon growth and regeneration. We also
summarize the intricate interactions between different organelles and their significance in
axon health and disease.

2. Endoplasmic Reticulum
2.1. Structure and Function

The endoplasmic reticulum (ER) is a membranous organelle that spans across the
entire intracellular space and has essential physiological functions such as the synthesis and
recycling of lipids, the maintenance of calcium homeostasis, metabolite processing as well
as the synthesis and redistribution of secretory or membrane-associated proteins. The ER
is composed of two distinct interconnected structures—ER tubules and flattened ER sheets.
The latter could, in some cases represent a densely packaged network of tubules [24–26].
This structure supports a highly dynamic model where the ER can rapidly change its
structure and distribution to meet any changing cellular demands and to modulate its
interactions with various other organelles throughout the cell, making it a perfect candidate
for a role in axon growth and regeneration.

In the cell body, most ER is studded with ribosomes (referred to as rough ER) which
reflects its essential role in protein translation. The ER throughout the axon constitutes a
continuous ribosome-free membranous structure of smooth ER tubules, which run in par-
allel to the axonal plasma membrane [27,28]. In some cases, an individual tubule has been
found to span across the entire length of very thin axonal processes while at the same time
maintaining its connection with ER in the rest of the cell [29–31]. This interconnectedness
between differently shaped ER structures is essential for axon integrity and function [32]
and is achieved by the function of ER-shaping proteins [33,34]. Mutations in ER-shaping
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proteins result in human neurological disease, highlighting their importance for proper ax-
onal function [35]. For example, several mutations in hairpin-loop containing ER-shaping
proteins such as reticulons, REEPs and atlastins have been described as causative of au-
tosomal dominant hereditary spastic paraplegia (HSP), a condition where distal axons
progressively degenerate resulting in severe motor and sensory symptoms [36,37]. Recent
studies utilizing Drosophila models have shown that mutations in the reticulon and REEP
families of ER-shaping proteins do indeed result in ER fragmentation and network disrup-
tion with physiological consequences in the distal axon, demonstrating that ER shaping
and remodeling have direct effects on axon structure, function and maintenance [38–40].

The studies above indicate that a continuous, intact ER is required throughout the
axon, and that disruption of axonal ER leads to degeneration. ER integrity could also have
important implications in axon regeneration—rebuilding the structure and function of
axonal ER after injury might be just as important as rebuilding the structure of the axon
itself, perhaps even being an essential prerequisite before growth cone redevelopment.
Examining the function and anatomy of the ER during developmental axon growth can
help to understand how it might participate in successful axon regeneration.

2.2. ER Shaping and Distribution in Axon Growth and Regeneration

Many interactions are involved in shaping the ER and determining its distribution.
Studies manipulating ER-related proteins have highlighted that the ER is an important
organelle for developmental axon growth. In neurons, the tubular shape of the ER along
the axon has been suggested to be favorable for the trafficking and function of other
organelles and cellular components during rapid growth, therefore ER-shaping proteins
are also desirable in those axon compartments [41]. ER-shaping proteins have indeed been
found to be enriched throughout the axon and in the growth cone of developing [42–45]
and regenerating axons [46,47]. For example, reticulons and atlastins are distributed
throughout axons and dendrites of developing hippocampal neurons in culture [42] and at
the growth cone of cultured cortical neurons where their depletion reduces axon growth in
early development [48,49]. In addition, REEP1 colocalizes with atlastin and spastin in the
growth cone, axonal varicosities and in the axon shaft of cortical neurons in culture [44].
In fact, knockdown of REEP1 or overexpression of an HSP-associated mutant form of
REEP1 leads to impaired neurite outgrowth and results in axon degeneration in mouse
primary cortical neurons [45]. Another study found enrichment of REEP5 and reticulon
4 proteins at the axonal growth cone of neurons overexpressing an active version of an
ER-associated adaptor protein called protrudin, and this was associated with increased
neurite outgrowth [43]. In addition, the reduction of protrudin’s interaction with ER-
associated proteins such as VAP-A has been shown to reduce axon growth in culture [50].
The ER has also been found to accumulate at both the proximal and distal part of newly
growing neuronal-like processes in PC12 cells during a rapid state of growth, initiated
by a directed dragging force with the use of nanoparticles [51]. The distribution and
structural organization of ER tubules along the axon was also shown to be closely linked
to microtubule stability and vice versa; this interaction was found to be critical for the
establishment of neuronal polarity and axon specification during early development of
hippocampal neurons [42].

A recent study in Drosophila suggests that ER, cytoskeletal dynamics and localization
at the growth cone could be essential requirements for successful axon regeneration. In
this study, ER and spastin proteins accumulated at the tips of regenerating axons after
axonal but not dendritic injury [46]. Mutant flies defective for atlastin or spastin did
not show ER enrichment at the growth cone after injury, which was concordant with
impaired axon regeneration [46]. Another study found that exogenous reticulon-1-GFP,
a fluorescent marker of smooth ER, localized to the tips of regenerating axons, but again
not dendrites, in a model of a simultaneous injury to all processes of mature sensory
neurons in Drosophila [47]. Interestingly, both axons and dendrites re-grew after injury and
no growth deficits were observed in comparison to each process regenerating alone. In
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mammalian studies of axon regeneration, overexpression of the ER resident and shaping
protein protrudin resulted in increased amounts of ER tubules in the distal axon and at
the growth cone, and this was accompanied by extensive axon regeneration in rat cortical
neurons after laser axotomy in vitro and in mouse retinal ganglion cells (RGCs) after optic
nerve crush in vivo [43]. The regenerative effect of protrudin overexpression was abolished
when its localization within the ER or its interaction with the ER contact site proteins
VAP-A/B were removed [43].

2.3. ER in Lipid Synthesis and Trafficking during Axon Growth and Regeneration

Lipids are the major building blocks of all membranes. In some developing neurons,
the plasma membrane surface area can expand up to 20% per day, a process which requires
tightly regulated mechanisms for lipid synthesis and trafficking [6]. The ER is a major
site for axonal biosynthesis of lipids such as phosphatidylcholine, sphingomyelin, phos-
phatidylethanolamine as well as fatty acids and phosphoinositides [52,53]. In fact, nearly
half of the axonal phosphatidylcholine is locally synthetized in the distal axon and this
synthesis is required for axon growth [54,55]. In addition, most major lipid synthetizing
enzymes reside within the ER and their activity is regulated by feedback signaling from tar-
get organelles to the ER which is important for proper growth during development [56,57].
The sterol regulatory element-biding proteins which are resident ER-proteins can feedback
on their own synthesis and this is a common mechanism through which pro-growth mTOR
signaling can influence the production of lipids in the ER [58–60]. There are two major
pathways through which lipids are transported from the ER to the plasma membrane
(PM) during rapid axonal growth—vesicle-dependent and vesicle-independent transport.
Vesicular transport of lipids is discussed in more detail in the section below on protein
synthesis and trafficking.

Non-vesicular transfer of lipids from the ER to the PM depends on lipid transfer
proteins acting at contact sites between the ER and the PM [61–63]. This mode of lipid
delivery allows for fast and efficient insertion of locally synthetized lipids into rapidly
expanding membranes during axonal outgrowth in comparison to vesicle transport [64].
Recent studies suggest that one mechanism of bulk lipid transfer during axon growth is
driven by a protein complex consisting of at least ER-localized SNARE protein Sec22b
and a plasma membrane SNARE protein syntaxin1 (Stx1) at the growth cone to create a
non-fusogenic bridge between the ER and the PM [65,66]. This lipid transfer and protein
complex was recently shown to be regulated by extended synaptotagmin (E-Syt) which
is an ER-resident lipid transfer protein. Overexpression of E-Syt in developing neurons
dramatically enhances neurite outgrowth and neurite ramification by stabilizing the Sec22b-
Stx1 interaction and providing contact sites for lipid insertion to drive new membrane
expansion [67]. Importantly, this process depends on E-Syt being localized within the
ER [67].

2.4. ER in Protein Synthesis and Trafficking during Axon Growth and Regeneration

A historical view of axon growth suggests that signaling proteins, growth receptors
and other growth-promoting molecules are exclusively synthetized in the cell body in
the rough ER and transported to the developing or regenerating axon via microtubule-
based transport [68]. Indeed, whilst the majority of membrane proteins are most likely
transported this way, recent studies have identified that proteins can also be synthetized
locally, allowing for more efficient transport to the growth cone or the site of injury in
response to the metabolic demands of the cell changing rapidly upon targeted axon growth
or injury [30,69–76]. Despite the lack of conventional Golgi structures in neuronal processes,
numerous elements of the protein synthesis pathway have been detected throughout axons
and dendrites. Those include mRNAs, scattered ribosomes, polysomes and translational
chaperones [77]. It is possible that many of these elements as well as other translational
platforms such as endosomes and mitochondria associate with the ER in order to regulate
this process [30,72,75]. Further studies are, however, needed in order to determine the exact
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role of axonal ER in local protein translation, particularly as axonal ER appears smooth and
tubular, unlike the ribosome studded rough ER found in cell bodies. One way in which the
ER has been shown to influence local axonal translation is through its regulation of calcium
dynamics. For example, axonal injury can trigger calcium release from ER stores, which in
turn could stimulate translation of axonal proteins aiding the regenerative response in PNS
neurons [78,79].

The trafficking and export of newly synthesized lipids and proteins in vesicular
structures from the ER to the cell surface is a key mechanism that can influence axon growth
and development [55,80]. ER-resident proteins can influence this process. For example,
downregulation of atlastin in motor neurons in Drosophila results in altered secretory
pathways and presynaptic protein distribution as well synaptic vesicle release, which
ultimately resulted in behavioral deficits [81]. In addition, overexpression of reticulon-2
increased the delivery of glutamate transporter (EAAC1) from the endoplasmic reticulum
to the plasma membrane [82]. Furthermore, VAP-A can be internally cleaved in the ER
to initiate interaction with growth cone guidance receptors such as ephrins, Robo and
Lar in order to influence axon guidance and pathfinding in the developing brain [83].
Interestingly, VAP-A was also shown to interact with tethering proteins such as Sec22 and
Stx1 (which are mentioned earlier with regard to the non-vesicular trafficking of lipids)
to stabilize PM-ER contact sites [67]. Another ER-resident protein, IER3IP1 was recently
shown to regulate the ER ubiquitin-proteasome system (UPS) response and the secretory
extracellular matrix molecules, with mutations leading to microcephaly and impaired
developmental growth [84]. The trafficking and distribution to the cell surface of signaling
receptors and ion channels such as NMDA [85], GABA [86] and AMPA receptors [87] were
all shown to be ER-dependent.

2.5. ER Calcium Buffering during Axon Growth and Regeneration

Another major role for the ER during axon growth and regeneration is calcium buffer-
ing and regulated calcium release. The targeted elongation of axons during neuronal
development in response to attraction cues is coupled to calcium release from the endo-
plasmic reticulum, which, in turn, aids the transport and exocytosis of VAMP2-positive
vesicles on the side of the growth cone that has elevated calcium [88,89]. Another study
demonstrated that Myosin Va can act as a sensor of ER-derived calcium to drive the release
of membrane vesicles, which it normally tethers to two major ER channels—the ryan-
odine receptor type 3 (RyR3) and the 1,4,5-triphosphate (IP3) receptor (IP3R) [90]. This
process was shown to be instrumental for attractive growth cone turning and for proper
development of the chick spinal cord.

ER calcium buffering is an important step to allow for developmental growth and
axon regeneration. For example, ER calcium-sensor STIM1 (stromal interaction molecule 1),
localized with MT-plus-end binding proteins EB1/EB3 in growth cones upon BDNF ex-
posure in developing zebrafish motor neurons [91]. STIM1 in turn promoted active ER
remodeling, calcium signaling and growth cone steering during developmental axon guid-
ance [91]. In addition, STIM1 and E-syts are actively involved in the formation of ER-PM
contact sites [67], replenishment of ER calcium and the clustering of diverse proteins at
the PM which has major implications for growth and regeneration [92,93]. In injury, ER-
regulated backpropagating calcium wave is required for the regenerative response in DRG
neurons [94]. In addition, peripheral nerve injury in mouse DRG spot cultures accelerated
ER calcium release, activated the unfolded protein response (UPR) at the injury site and
aided new growth cones formation [95]. UPR activation after a sciatic nerve crush also
promoted axon regeneration in DRG axons [96]. The role of ER-resident stress transducers
such as IRE1 (Inositol-requiring enzyme 1) and CHOP (C/EBP-homologous protein) have
also been implicated in motor neuron response after spinal cord injury [97] and in RGCs
response after optic nerve injury [98]. The role of ER stress and the UPR response after
injury and neurodegenerative disease have been extensively reviewed elsewhere [99,100].
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In addition to ER’s involvement in the regulation of growth, the ER could also act as a
molecular platform for neurotransmission dynamics and proper brain function. Axonal ER
calcium content as detected by STIM1, was previously shown to control neurotransmitter
release at CNS axon terminals [101]. In addition, VAP-A interactions with secernin-1
(SCRN1) at the ER membrane was recently shown to not only be important for ER continuity
but also for proper synaptic vesicle release and calcium homeostasis [102]. Furthermore,
disruption in axonal autophagy was shown to result in increased tubular ER in axons
leading to the dysregulation of calcium stores and aberrant synaptic activity [103].

Taken together, the endoplasmic reticulum appears to be a dynamic structure sup-
porting numerous processes important for axon growth and regeneration such as lipid
and protein synthesis as well as calcium homeostasis while at the same time acting as a
platform for a variety of proteins important for signaling and response to injury.

3. Mitochondria
3.1. Structure and Function

Mitochondria are double-membrane organelles which were termed “the powerhouse
of the cell” due to their role in ATP (adenosine triphosphate) production. However,
mitochondria are also important for calcium buffering, redox homeostasis, apoptosis and
cell death signaling [104–106]. The proper localization and functioning of mitochondria are
important to meet the high energy demands of developing neurons and to support neuronal
processes such as axon growth and neurotransmission. Recent advances in imaging have
allowed for the visualization of mitochondria in vitro and in intact organisms such as mice
and zebrafish [26,31,107–111]. Similar to other organelles, mitochondrial transport into
the axon is mostly microtubule-based and relies on motor proteins such as kinesin and
dynein as well as mitochondria-specific adaptor proteins such as Milton and Miro [112–116].
Importantly, these live-imaging studies showed that axonal transport of mitochondria is
highly dynamic but also developmentally down-regulated in the CNS. In developing
neurons, mitochondria are highly mobile, move bidirectionally and preferentially localize
to the active growth cone [116–118]. In mature neurons, mitochondria move more slowly,
exhibit elongated morphology and the majority of mitochondria are anchored in stationary
positions along the axon [107,110,118–120]. In addition, mitochondria can be regulated by
proteins such as PTEN, BDNF, mTOR, NGF, NOGO, semaphorins and CSPGs, which are
all well-known molecules involved in signaling during neurite growth, axon regeneration
and maintenance of synapses [121,122].

3.2. Mitochondrial Fission and Fusion in Axon Growth and Regeneration

Regulation of mitochondrial size by the processes of mitochondrial fusion and fis-
sion is an important determinant of developmental axon growth. Deletion of key fusion
and fission proteins, such as MFN1, MFN2 and Opa1, leads to developmental deficits
such as impaired axon growth and is lethal [123,124]. Increased mitochondrial fusion
and decreased fission by DRP-1 (dynamin-like protein) downregulation was shown to
suppress neurite outgrowth in RGCs, to decrease growth rate and to prevent growth cone
turning on inhibitory substrates [121]. In the same study, mitochondrial size dynamics
were shown to be developmentally down-regulated in RGCs, an event which coincides
with the reduction in intrinsic axon growth and regeneration capacity [121]. Similarly,
downregulation of mitochondrial fission factor (MFF) results in elongated mitochondria
with altered calcium buffering capacity and this decreased neurotransmission and reduced
terminal axon branching in cortical pyramidal neurons [125]. This study pinpoints the
importance of maintaining small axonal mitochondria during neurotransmitter release and
axon development. In addition, shorter and more mobile mitochondria were observed in
regenerating motor axons after nerve injury and in retinal neurons after an optic nerve
crush suggesting the importance of early mitochondrial fission after axonal injury [126].
Indeed, ablating mitochondrial fission resulted in elongated mitochondria, which also
impaired mitochondrial functions and caused neuronal cell death [126]. Contradictory



Int. J. Mol. Sci. 2021, 22, 1798 7 of 31

to the findings above, knockdown of mitochondrial pro-fission protein MTP18 increased
mitochondrial size but also promoted axonal outgrowth in RGCs cultured on inhibitory
substrates [122]. This approach had however no effect on axon regeneration or RGC
survival after optic nerve crush in vivo [122]. Taken together, these results indicate that
the optimal balance between mitochondrial fusion and fission might be cell type-specific,
injury-dependent and cell compartment-driven but nonetheless, underline the importance
of mitochondrial size and in its involvement in axon growth.

Mitochondrial biogenesis, energy production and transport into the axon are crucial
mechanisms supporting axon growth. A hallmark study found that depletion of mito-
chondria prevented axon specification and polarization [127]. In cultured cortical neurons,
overexpression of PGC-1α, a regulator of mitochondrial biogenesis and energy produc-
tion, resulted in elongated axon and dendrites, while inhibition of glycolysis reduced
oxidative phosphorylation or knockdown of PGC-1α all inhibited neurite outgrowth [128].
Another study found that overexpression of PGC-1 increased mitochondrial density, im-
proved its redox state and delayed Wallerian degeneration in a neurodegenerative model
of zebrafish [111]. Axonal mitochondrial transport has a key role in the process of de-
velopmental axon growth. Deletion of motor adaptor Trak1 resulted in inhibited axon
outgrowth and branching in cultured hippocampal neurons [129]. Deacetylation of adaptor
protein Miro1 by HDAC6, a histone deacetylase, decreased mitochondrial transport and
this was in line with reduced axonal growth of adult DRG neurons on growth-repulsive
substrates [130].

3.3. Mitochondrial Transport in Axon Growth and Regeneration

In addition to their participation in developmental processes, mitochondria have been
implicated as key players in axon regeneration and degeneration. Axonal injury results
in mitochondrial depolarization and oxidative stress, processes which are associated with
neurodegeneration and cell death [111,131]. Therefore, there is a need for functioning
mitochondrial transport not only to remove unhealthy mitochondria but also to supply
functioning ones for repair [118,132]. After axonal injury, key regenerative processes such
as for membrane resealing, growth cone formation and axon extension require energy.
Due to the limited capacity of intracellular ATP for long-range transport across the cell,
efficient mitochondrial trafficking and the local production of ATP near the site of injury are
key to successful regeneration [120]. Previous studies have shown that there is increased
trafficking of mitochondria in injured but regenerating axons in vivo after peripheral nerve
injury [109,110] whereas dramatically reduced anterograde flux of mitochondria after
injury was associated with poor regeneration and degeneration of the distal axon [110].
There is a possibility that the developmental decline in axonal transport of mitochondria in
mature cells of the CNS could partly explain the regenerative failure seen in many adult
models of axonal injury.

Studies into mitochondrial positioning and axon regeneration have identified a num-
ber of key regulatory molecules, including Armcx1 and syntaphilin. Armcx1 was identified
after comparative gene expression profiling of non-regenerative and highly regenerative
RGCs [133]. Overexpression of Armcx1, a mitochondria resident protein, resulted in in-
creased mobility of mitochondria, which in turn promoted neurite outgrowth and survival
not only in cultured embryonic cortical neurons but also in adult RGCs after optic nerve
crush [133]. Interestingly, when Armcx1 is knocked out in a highly regenerative genetic
model, both axon regeneration and cell survival are inhibited [133]. In a different study, mi-
tochondria were found to be less mobile with maturation which was attributed to increased
expression of mitochondrial anchor protein—syntaphilin and correlated with reduced
regenerative capacity [118]. Knockout of syntaphilin in DRG neurons resulted in increased
influx of mitochondria into the axon and increased axon regeneration both in vitro after
axotomy and in vivo after sciatic nerve crush [118]. Interestingly, syntaphilin knockout did
not result in developmental changes in axon growth. Syntaphilin knockouts have been
used since to show increased corticospinal tract axon regeneration through a spinal cord
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lesion, improved regrowth of monoaminergic axons, increased sprouting and functional
recovery in three different models of CNS injury [134]. Administering creatine—an en-
ergy facilitator—further exaggerated this effect, suggesting that improving mitochondrial
transport and restoring cellular energetics is sufficient to promote regrowth and functional
recovery in the injured CNS.

Mitochondrial transport as a regulator of regeneration has also been studied in C. el-
egans. In vivo laser axotomy of single axons showed a two-fold increase in the amount
of mitochondria in the axon after injury where axons with low mitochondria density did
not regenerate and axons with high mitochondria density showed robust regenerative
response [112]. The regenerative response was dependent on mitochondrial transport
in the axon as its blockade by Miro-1 RNAi prevented mitochondrial accumulation and
regeneration whereas overexpression of Miro resulted in mitochondrial delivery to the
axon and improved regeneration [112]. This injury-induced response was regulated by
activation of DLK-1 (dual leucine zipper kinase 1)—a conserved axon regeneration ki-
nase. Additionally, C. elegans in which the respiratory chain was defective also failed to
regenerate implicating the importance of energy production for growth [112]. Indeed,
elements of the electron transport chain were found to be essential for the regrowth of
mechanosensory axons in C. elegans after laser axotomy; although, in this paradigm, mito-
chondria did not increase at the growing tip and defective fusion/fission genes did not
alter regeneration [135]. In addition, C. elegans mutants lacking ric-7—a gene essential for
mitochondrial localization—failed to transport mitochondria into the distal axon, which
resulted in rapid axon degeneration after injury [136]. This effect could be completely
reversed when mitochondria are supplied to the axon.

3.4. Mitochondrial Calcium Dynamics in Axon Growth and Regeneration

As discussed above in relation to the ER, transient influx of calcium after injury is an
important factor for axon regeneration. Axonal mitochondrial calcium levels are regulated
by MCU-1—a mitochondrial calcium transporter. In C. elegans, a deletion of translational
repressor—CAR1 resulted in increased levels of MCU-1 which, in turn, resulted in a
more sustained influx of calcium in axonal mitochondria and enhanced axon growth after
injury [137]. In addition, both Miro and syntaphilin possess calcium-binding domains,
which could result in regulation of axonal transport of mitochondria by surrounding
calcium levels [138,139]. These studies underline the importance of mitochondrial calcium
dynamics after injury for the processes of growth and regeneration.

3.5. Mitochondria as Molecular Platforms for Axon Growth and Regeneration

Additionally, mitochondria can also act as molecular platforms where various proteins
can anchor and signal to influence the processes of growth and regeneration. Several
kinases have been implicated in regulating mitochondrial function and dynamics. For
example, the LKB1-NUAK1 pathway is involved in mitochondrial anchoring and im-
mobilization in axons, which is a process essential for terminal axonal branching [140].
Activation of AMPK—a master regulator of cellular dynamics and ATP production during
growth results in increased influx of mitochondria into the axon and induces axon branch-
ing in regions of high mitochondrial availability [141]. STAT3 is a transcription factor
previously described as a promoter of axon growth and regeneration in the CNS [142]. In
addition to its transcriptional activity, its localization within mitochondria was recently
shown to improve their ATP production properties and support axon growth after optic
nerve crush and spinal cord injury [143]. This effect was regulated by MEK kinase and
further potentiated by PTEN deletion. NMNAT, an NAD+ synthetizing enzyme is another
molecule functioning within mitochondria that support proper axonal function. For exam-
ple, upregulation of NMNAT suppresses degeneration in adult Drosophila by alleviating
injury-induced mitochondrial loss [144]. In fact, targeting NMNAT to mitochondria is
fully sufficient to mimic the effects of Wlds mutation which was found to drastically delay
Wallerian degeneration in both mice [145,146] and Drosophila models after injury [146].
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These effects were attributed to improved calcium buffering properties of mitochondria
after injury and increased mitochondrial motility into axons.

In summary, mitochondria are organelles with diverse cellular functions that are
essential for developmental axon growth and regeneration after injury and that could act
as molecular platforms for intracellular signaling governing these processes.

4. Endosomes
4.1. Structure and Function

The endocytic pathway regulates the internalization of membrane and membrane-
associated proteins into endosomes and their trafficking to and from the plasma membrane.
These components are either recycled, transported to their target location within the cell,
or sorted towards degeneration via late endosomes and the lysosome. Hence, endosomes
can be targeted to different parts of the cell and the endocytic pathway can, therefore, exert
a strong control over the localization of specific cellular machinery. The endocytic pathway
also influences axon growth and regeneration by controlling cellular events such as intracel-
lular signaling, membrane recycling, protein sorting and degradation [12,63,147–150]. The
transport and function of endosomes is controlled by small GTPases such as the Rab, ARF
and ARL families [151], which cycle between GDP- and GTP-bound states as a result of
being regulated by a variety of activating or inhibiting factors. Specific GTPases mark and
regulate specific endosomal populations. For example, early endosomes can be marked
by Rab5, late endosomes by Rab7 and recycling endosomes by Rab4 or Rab11 [152–154].
Here, we summarize the role of key Rabs in axon growth and regeneration and some of the
mechanisms through which they can govern these processes.

4.2. Endosomal Regulation by Rab11 in Axon Growth and Regeneration

Perhaps the most well-studied Rab during axon growth and regeneration is Rab11.
Optogenetic targeting of different cytoskeletal motors to Rab11-positive recycling endo-
somes revealed that the addition of dynein motors resulted in removal of endosomes
from the growth cone and reduced axon growth. In contrast, loading of kinesin onto
these endosomes stimulated their transport towards growth cones and this dramatically
improved axon growth in primary hippocampal neurons [155]. Overexpression of Rab11
or its effector—Rab-coupling protein—resulted in increased anterograde trafficking of
growth-related integrin receptors to the cell-surface of adult DRG neurons [156] and in
differentiated PC12 cells [157]. Rab11-positive endosomes colocalize with TC10, another
GTPase involved in endosome recycling and vesicular fusion, in growth cones and undergo
plasma membrane insertion via the exocyst complex [158]. The anterograde transport of
Rab11-positive endosomes and the plasma membrane insertion potentiated axon growth
in vitro [156–158]. Rab11-dependent endosomal transport was shown to be inhibited by the
kinase LMTK1 in mouse cortical neurons where downregulation of LMTK1 had dramatic
effects in aiding Rab11 trafficking to the growth cone and stimulated both axonal and
dendritic growth and branching [159–161]. Rab11-positive endosome are preferentially
localized in the somatodendritic compartment of mature CNS neurons in culture [162],
and overexpression of Rab11 in vitro leads to increased anterograde transport of recycling
endosomes in the axon and improved regeneration after laser axotomy in vitro [162].

Rab11 regulates recycling endosomes through a close interaction with one member
of the ARF family of small GTPases, ARF6. Rab11 and ARF6 form a complex with the
transport adaptor JIP3/4, the activation state of ARF6 determining whether the complex
will associate with kinesin for anterograde transport or dynein for retrograde travel [163].
ARF6 has also been identified as a regulator or axon regeneration. Inactivation of ARF6
resulted in increased integrin-containing endosomal trafficking to the plasma membrane
and aided integrin-mediated neurite outgrowth in DRG neurons [164]. In matured CNS
neurons, integrin and Rab11 trafficking into the axon is prevented by EFA6, an ARF6
activator which localizes to the axon initial segment [165]. Knockdown of EFA6 in cortical
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neurons permits the transport of Rab11 endosomes containing growth receptors to the
growth cone and enhances not only initial axon growth but axon regeneration as well [166].

Rab11 has also been targeted to enhance regeneration in vivo. Viral delivery of
either protrudin (an ER adaptor protein) or p110 delta (a natively hyper-active catalytic
subunit of phosphoinositide 3-kinase) enhanced regeneration in the optic nerve, and were
accompanied by enhanced transport of Rab11 into the distal part of the axon [20,43].
Protrudin has previously been shown to assist the movement Rab11-positive endosomes to
the tips of PC12 cell neurites and can also stimulate the formation of cellular protrusions
in non-neuronal cells [157]. It was recently demonstrated that overexpression of wildtype
or activated protrudin leads to increased axonal transport of Rab11 in cortical neurons
in vitro, as well as robust, long-range regeneration after an optic nerve crush injury [43]. In
addition, overexpression of p110 delta in cortical neurons leads to increased anterograde
transport of Rab11, partly through a down-regulation of ARF6 activity, but also by signaling
via mTOR and CRMP2. This approach enabled regeneration after an optic nerve crush
injury, identifying p110 delta overexpression as an alternative approach to boosting axon
regeneration through the PI3K/PTEN pathway and manipulation of regenerative transport
of Rab11-positive endosomes [20].

4.3. Endosome Regulation by Other Rabs in Axon Growth and Regeneration

A number of other Rab family GTPases have been shown to influence endosome
function in plasma membrane expansion and receptor insertion during developmental
axon growth [150,167–169]. Rab5 and Rab4 were both shown to co-localize with endo-
somes at Xenopus RGC growth cones where they are locally recruited to assist membrane
recycling [170]. Mutations that disrupt Rab4 or Rab5 function resulted in decreased axon
growth both in vitro and in vivo, but did not alter pathfinding, indicating a role for early en-
dosomes in developmental axon extension [170]. These results were recently confirmed by
another study which found that expression of mutant forms of Rab5 impaired axon growth
in cultured Xenopus RGCs [30]. Mutations in Rab7, which are also associated with human
neuropathy, were shown to cause developmental defects in axon growth, branching and
pathfinding of sensory neurons in zebrafish [171]. Rab33a colocalizes with and regulates
the transport of synaptophysin-positive vesicles destined for membrane insertion during
neurite outgrowth [172]. Downregulation of Rab33a resulted in a decreased number of vesi-
cles at the growth cone and reduced axon growth in rat hippocampal neurons [172]. Rab35,
another GTPase involved with cargo loading onto recycling endosomes was also shown
to play an important role in axon outgrowth in rat primary neurons [173]. Rab35 is de-
graded by a p53-related protein kinase (PRPK) through the UPS which negatively impacts
axon growth. This degradative process is regulated by MAP1B—a microtubule-associated
protein which blocks PRPK action and allows for Rab35-assisted axon extension [173].
This study highlighted the interplay between endosomal trafficking, the cytoskeleton and
protein degradation in the process of axon growth. Furthermore, the anterograde transport
and vesicle fusion of post-Golgi Rab10-positive vesicles carrying various growth recep-
tors were shown to be essential for neurite outgrowth during development in vitro and
in vivo [174–176].

In regeneration, macrophage-derived NOX2 complexes were shown to be incorpo-
rated into Rab7-positive endosomes of DRG neurons after injury, where they influence
PI3K signaling to stimulate neurite outgrowth and axon regeneration after sciatic nerve
lesion [177]. A genome-wide screen of factors limiting axon regeneration in mouse cortical
neurons in vitro, identified that Rab27 negatively impacted axon growth and regeneration.
Rab27 is involved in synaptic vesicle regulation and its silencing resulted in increased axon
regeneration in C. elegans and increased axon regeneration after optic nerve crush and
spinal cord injury in mice [178].
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In summary, endosomes are key sites for the localization, recycling and targeting-
for-degradation of growth-associated cargo. Regulation of endosome localization and
transport in neurons can have key implications for axon growth and regeneration.

5. Lysosomes and Autophagosomes
5.1. Structure and Function

The lysosome is a dynamic organelle that supports multiple cellular functions. The
classical view of lysosomes is that they function for the degradation and recycling of
biological macromolecules that are delivered to the lysosome by autophagic, endocytic,
and phagocytic routes. However, more recently, lysosomes and late endosomes have
emerged as important compartments with roles as platforms for local protein synthesis, in
the regulation of gene expression, cell growth, plasma membrane repair, synaptic plasticity,
and other functions. Lysosomes are also involved in calcium signaling, lipid signaling,
response to injury signaling, and importantly interaction with other organelles (reviewed
in [179–182]). Furthermore, lysosomal/late endosomal trafficking is dynamically regulated,
and the position of these organelles influences their function in neuronal compartments
(reviewed in [180,183]). Autophagosomes participate in degradation through gathering
cellular material and mitochondria then fusing with lysosomes, but are also an important
part of the recycling machinery (reviewed in [184,185]).

5.2. Lysosomal Regulation of Autophagy in Axon Growth and Regeneration

The process of autophagy has been implicated in both neuronal survival and growth.
The entry of molecules into autophagosomes can be non-selective, but the autophagic
turnover of cell surface molecules involved in axon growth is selective, being regu-
lated by ubiquitination, which is recognized by adaptors on autophagosomes (reviewed
in [184,185]). In axons, autophagosomes have been observed to mature as they are retro-
gradely transported towards the cell body where they fuse with lysosomes [186–188]. The
majority of autophagosomes are formed at the distal part of the axon near synapses [186–189].
Autophagosomes bud from two sources: Rab11-recycling endosomes [190] and the endo-
plasmic reticulum [188]. Importantly, the rate of autophagosome generation declines with
neuronal maturation [191–195], coinciding with loss of regenerative ability. The fusion of
autophagosomes with lysosomes was recently shown to play an important role in axon
regeneration [196]. Failure of regeneration in inhibitory scar tissue is associated with the for-
mation of dystrophic endbulbs on cut axons. These are induced by blockade of autophagic
flux as autophagosomes fuse with lysosomes [196,197]. There are, however, contradicting
reports on whether the manipulation of autophagy itself is beneficial or detrimental to the
intrinsic growth potential of neurons. These studies are summarized in Table 1. The contro-
versy is further complicated when considering that autophagy-related genes can influence
growth via noncanonical pathways [198]. For instance, autophagy influences axon growth
by the regulation of microtubule dynamics [199,200] whilst the autophagy-inducing kinases
ULK1 and ULK2 have been confirmed to regulate axon growth by autophagy-independent
mechanisms [201]. In addition, the function of autophagy differs among developmental
maturation ages and in neuron types with different regeneration capacities ([189,199,202];
see also Table 1). Taken together, autophagy has been associated with axon growth and
regeneration, functioning through the regulation of various mechanisms and molecules
including adhesion complexes, the cytoskeleton, and general metabolism. Whether au-
tophagosome function promotes or inhibits axonal regeneration after injury appears to
depend on the status of the neuron, but further studies are needed to determine how
autophagic mechanisms can be best targeted for regenerative gain.
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Table 1. Summary of studies that assessed the effect of autophagy on neuronal growth.

Method for
Manipulation of

Autophagy
Neuronal Type Examined Species and Age

Main Findings
Regarding Neuronal

Growth
Reference

Knockdown of ATG7
Application of

3-methyladenine
Primary cortical neurons Embryonic rats and

cultured for 1 till 3 days

Inhibition of autophagy
resulted in:

- elongation of neurites
in vitro

- reduction of RhoA
signalling

Ban et al., 2013 [203]

Knockout of: ATG-2,
ATG9, ATG13, EPG-8,

IGG-1, UNC104

PVD nociceptive sensory
neuron Larval and adult C. elegans

Inhibition of autophagy
resulted in:

- elongation of the axon
in vivo

Stavoe et al., 2016 [189]

Knockout of: WDR47

- Primary cortical and
hippocampal neurons

- Callosal and corticofugal
neurons

- Embryonic mice and
cultured for 4 days

- Adult mice (16 weeks
old)

Activation of autophagy
resulted in:

- Impaired formation and
dynamics of growth cones

in vitro
-Defective and reduction

of axonal projections in the
corpus calossum in vivo

- Destabilisation of
microtubules

Kannan et al., 2017
[200]

Knockout of: ATG-2,
ATG9, ATG13, EPG-8,

IGG-1, UNC104

- HSN serotonergic motor
neuron

- DA9 cholinergic motor
neuron

- RIA interneuron
- RIB interneuron - NSM

pharyngeal
neurosecretory-motor

neuron

Larval and adult C. elegans
Inhibition of autophagy

resulted in:
- no phenotype in vivo

Stavoe et al., 2016 [189]

Application of
Tat-beclin1

- Primary cortical neurons
- Neuron types with axon

fibres in the spinal cord

- Embryonic rats and
cultured for 1 till 3 days

- Adult mice (8 till 10
weeks old) subjected to
spinal cord hemisection

injury

Activation of autophagy
resulted in:

- enhanced neurite
outgrowth on inhibitory

substrates in vitro
- Inhibition of axonal

retraction after injury in
cortical neurons in vitro

and corticospinal neurons
in vivo

- Stimulation of axonal
regeneration of

monoaminergic neurons
after injury in vivo
- Stabilisation of

microtubules

He et al., 2016 [199]

Application of
3-methyladenine

Dorsal root ganglion
neurons

Adult rat (4 till 5 weeks
old) and cultured for 1 day

Inhibition of autophagy
resulted in:

- Reduction of neuronal
survival

- Inhibition of neurite
growth and branching

Clarke and Mearow, 2016
[204]

This table highlights that autophagosomes control axon growth and regeneration in neurons. The function of autophagy differs among
neuron types and developmental maturation ages. However, the contradictory findings between the studies could also be the result of
targeting different components of the autophagy machinery. It also cannot be excluded that the manipulated molecules influence axon
growth via noncanonical pathways. The main results for each study are summarized and the colors indicate whether autophagy was
considered negative (orange), had no effect (white), or positive (green) for axon growth and regeneration in the mentioned neuron type
and age.
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5.3. Lysosome/Endosome Regulation of Intracellular Pathways in Axon Growth and Regeneration

Recent work has identified various ways in which lysosomes and late endosomes can
affect axon growth and regeneration by acting as molecular platforms for key signaling
pathways. One of the most well-studied pathways in this regard is the PI3K to mTOR
pathway. mTOR (mammalian target of rapamycin) is a serine/threonine protein kinase
that is localized on the outer surface of the lysosome. Acting through mTOR complexes 1
and 2, mTOR influences fundamental cell processes, leading to the regulation of protein
synthesis, metabolism, and autophagosome generation (reviewed in [205–207]). There are
many molecular mechanisms that influence the activation state of mTOR and are known
to influence axon regeneration after injury in vivo. For instance, PTEN (phosphatase and
tensin homolog), TSC1 (tuberous sclerosis complex 1), TSC2 (tuberous sclerosis complex
2) and GSK3 (glycogen synthase kinase) are negative regulators of mTOR activity and
their genetic deletion in transgenic mice promoted axon regeneration in various models
of traumatic nervous system injuries [18,19,208–212]. Axon regeneration in the CNS can
also be achieved by delivering positive regulators of mTOR activity such as AKT [213],
wnt10b (Wnt family member10b) [214], a specific mutant of HDAC (Class II histone
deacetylase 5) [215], or PI3K delta [20] among others. Ageing is another important factor
influencing mTOR. It was shown in RGCs and cortical neurons that mTOR signaling
declines during maturation in line with their regeneration capacity [18–20]. Taken together,
it is well established that mTOR activation in neurons is an important driver for axon
regeneration. However, mTOR-activation and signaling occurs on the surface of late
endosomes and lysosomes, so these organelles must be present in the tips of axons in order
for local signaling to occur. In addition, mTOR was found to specifically localized at the
growth cones of developing callosal projection neurons where it was necessary for axon
extension [216].

5.4. Lysosome/Late Endosome Regulation of Exocytosis for Axon Growth and Regeneration

Exocytosis from lysosomes is another important mechanism that contributes to mem-
brane repair and axon growth. As discussed already, intracellular free calcium is an
important secondary messenger and one of its functions is to initiate exocytosis from
lysosomes to other intracellular organelles and the extracellular space [217–224]. Exo-
cytosis from lysosomes has been shown to contribute to neurite outgrowth in primary
neuronal cultures derived from superior cervical ganglion [220], hippocampus [222], and
cortex [224]. The Ca2-dependent exocytosis of lysosomes participates, together with ER,
multivesicular bodies and other endosomes, in the addition of new membrane for axon
growth and resealing of plasma membrane in case of an injury. Importantly, lysosomal
exocytosis may also contribute to axon elongation by making the extracellular matrix more
growth permissive by the secretion of lysosome-associated proteins. For instance, it was
shown that lysosomal exocytosis results in the release of ATP [225] (which could act as an
extracellular signaling molecule), the lysosomal enzyme acid sphingomyelinase [226] and
various lysosomal cysteine proteases [223,227], which can modify the extracellular matrix.

In summary, autophagosomes and lysosomes/late endosomes contribute to axon
growth and regeneration by the regulation of multiple processes including autophagy,
intracellular signaling and exocytosis.

6. Proteasome
6.1. Structure and Function

The proteasome is a membrane-bound organelle which has an essential role in the
clearance of excessive or damaged proteins [228]. It consists of several catalytic units which
form a large cytoplasmic complex. Proteasomes recognize polyubiquitinated proteins and
degrade them for clearance. Proteasomal distribution along the axon is key to proper
neuronal development and maturation [229]. Mice lacking the adaptor protein PI31,
which is essential for proteasome translocation to the distal axon, show disrupted synaptic
structures and reduced survival highlighting the importance of the proteasome in protein
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degradation in axonal development [230]. In the axon, proteasomes are transported in
anterograde and retrograde direction along microtubule tracts with the help of motor
proteins with dynamics that resemble membrane vesicle movement and association with
intracellular membranes [231]. At dendritic spines, fast activity-dependent recruitment of
proteasomes has been implicated as an essential mechanism of protein degradation and
this is important for the formation and maintenance of synapses (reviewed in [232–234]).

6.2. Protein Degradation by the Proteasome in Developmental Axon Growth

Proteasomes have an important role in neurite outgrowth. This was first described in
the early 1990s, when application of the proteasome inhibitor lactacystin induced neurite
outgrowth in PC12 cells and in neuroblastoma cell-lines [235–237]. Treatment of NGF in
PC12s cells induces neurite outgrowth and was shown to reduce proteasomal activity by
changing its catalytic unit composition. In primary neurons though, pre-treatment with pro-
teasome inhibitors completely ablates axon formation and low concentrations of inhibitors
reduced axon elongation and branching [238]. In addition, treatment of sympathetic and
sensory neuronal explants with lactacystin, applied at the same concentrations as used
for neurite outgrowth induction in PC12 cells, resulted in neurite extension block, which
subsequently results in neurodegeneration [239]. These studies suggest that in neurons,
basal level proteasome function is required for developmental axon growth. The role of the
proteasome in neurodegeneration is extensive and is summarized elsewhere [240–242].

One mechanism through which proteasomal manipulation can influence neurite
outgrowth is through the regulation of protein degradation at the growth cone. For exam-
ple, Akt signaling phosphorylates radixin, a protein which tethers F-actin to the plasma
membrane during growth, at a specific residue that protects it from proteasomal degra-
dation. This resulted in stabilized interaction with F-actin and proper neurite outgrowth
and growth cone formation [243]. In addition, the ubiquitin ligase Rnf6, which is ex-
pressed in both sensory and motor axons, specifically targets LIMK1 for degradation by
the proteasome. LIMK1 plays an important role in regulation of the actin cytoskeleton
during growth suggesting a role for the ubiquitin/proteasome system in regulating local
cytoskeleton growth cone dynamics [244]. The proteasome also contributes to the estab-
lishment of neuronal polarity as inhibition of the proteasome results in a uniform rather
than axon-confined distribution of Akt, which, in turn, results in the formation of multi-
ple axons [245]. The ubiquitin-proteasome system was also recently implicated in axon
guidance as Sema-3A, a secreted growth-repulsive guidance cue, was shown to promote
FMRP (an RNA-binding protein involved in axon growth) proteasomal degradation in
growth cones [246]. FMRP degradation in turn, led to growth cone collapse and turning
away from repulsive cues [246].

6.3. Protein Degradation by the Proteasome in Axon Regeneration

The ability of axons to form a new growth cone and to regenerate after injury is depen-
dent on local protein synthesis and degradation [74,247]. Application of protein synthesis
and proteasome inhibitors to either whole or axon-only preparations of injured DRG or
retinal axons in vitro prevented them from forming a new growth cone suggesting a role
for protein turnover near the injury site for successful regeneration [74]. In ligated sciatic
nerve, proteasomes accumulated proximally to the ligation but not distally, suggesting that
the ligation obstructed anterograde axonal transport of the proteasome [231]. Interestingly,
protein synthesis machinery was found at higher levels in PNS neurons compared to CNS
neurons, whereas proteasome components showed the opposite distribution with higher
levels in the CNS [74]. In fact, in conditioned DRGs which mount a robust regenerative
response, the proteasome machinery load was reduced [74], indicating that protein balance
is essential for axon regeneration. A similar decrease in axonal proteasome levels due to
increased retrograde transport was observed early on in axon development of hippocampal
neurons in vitro and in the cortex in vivo [248], further suggesting the localization of pro-
teasomes in the axon could be inhibitory for growth. The removal of proteasomes from the
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newly growing axon can be triggered by pro-growth influences such as BDNF and cAMP
suggesting the need for protein degradation downregulation in order to achieve protein
stability during axon development [248]. Blockade of retrograde proteasomal transport
resulted in proteasome accumulation at the axon tip and this reduced axonal growth [248].
Another growth factor—TGF-beta—was shown to inhibit proteasomal function, which
increased neurite regeneration after scratch lesion in primary midbrain cultures [249].
Peripheral nerve injury was shown to evoke calcium influx into axons, which, in turn, acti-
vated the proteasome to degrade ubiquitinated proteins [250]. In particular, this activation
of the proteasome at the site of injury resulted in neurofilament degradation and triggered
Wallerian degeneration [250]. In a different injury paradigm, proteasomal activation due to
transient axonal stretch injury primary cortical neurons prevented secondary injury, likely
through effects on stabilizing the cytoskeleton. In this case, proteasomal activation was
protective [251].

The studies above suggest that proteasomal activity in the axon requires a critical
level of regulation and plays an essential role in protein balance in newly growing and
regenerating axons. Further studies are needed to uncover how the proteasome can be
targeted to promote growth and axon regeneration after injury.

7. Organellar Interconnections

Membrane-bound organelles allow the cell to perform multiple, incompatible bio-
chemical processes in separated compartments, but at the same time require intricate
levels of synchronicity and regulation. Inter-organellar interactions have been historically
difficult to study due to their dynamic nature and due to their low temporal and spatial
resolution. Only recently, with the advancement of high-resolution microscopy, could the
complexity of this interconnectivity be studied [25,26]. In fibroblasts, multi-level interac-
tions between six different organelles were recently observed by confocal and lattice light
sheet microscopy [252]. These studies revealed that each organelle has a unique distribu-
tion pattern in the cell but at different points in time, some organelles come into contact
with each other to perform a specific joint function [252]. Focused ion beam-scanning elec-
tron microscopy allowed for the 3D reconstruction of organelles in neurons and showed
complex interactions between the continuous endoplasmic reticulum and an array of
other organelles [31]. Membrane contact sites (MCS) are described as close membrane
appositions (10–30 nm) between the outer lipid layers of two membrane-bound organelles
and these are essential for inter-organellar signaling and function. MCSs have recently
been investigated in the context of axon growth and regeneration [253,254]. MCS are not
merely physical interactions between organellar membranes—they can often be enriched
in various proteins and tightly regulated depending on the physiological conditions of
the cell [255]. In fact, mutations in many proteins stabilizing MCSs have been described
as causative in human axonal disease (Table 2) suggesting a role for organelle-organelle
interactions in the processes of neuronal development, growth and regeneration.

Table 2. Table summarizing human conditions caused by genetic deficits in genes important for MCSs between organelles.

Membrane Contact Site Disease Genes Involved Gene Function References

ER- Endosomes/
ER-PM/ER-Lysosome

Hereditary Spastic
Paraplegia Zfyve27

Vesicular membrane
trafficking, ER-

endosome/lysosome
tethering

Mannan et al., 2006
[256]

ER-Endosome Hereditary Spastic
Paraplegia Spastin Microtubule-severing

protein Evans et al., 2006 [257]

ER-Mitochondria Hereditary Spastic
Paraplegia REEP1 Microtubule-

mitochondria

Zuchner et al., 2006;
Beetz et al., 2008

[258,259]
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Table 2. Cont.

Membrane Contact Site Disease Genes Involved Gene Function References

ER-Endosome/ER-PM Amyotrophic Lateral
Sclerosis VAP-A, VAP-B

ER-organelle tethering,
facilitate protein

interaction, vesicular
trafficking

Nishimura et al., 2004
[260]

ER-Mitochondria Early onset autosomal
Parkinson’s disease PARKIN, PINK1 Mitochondrial quality

control and turnover

Kitada et al., 1998;
Valente et al., 2004a;
Valente et al., 2004b

[261–263]

ER-Mitochondria Charcot Marie Tooth
Disease MFN-2

Mitochondrial fusion,
interaction with

endoplasmic reticulum

Zuchner et al., 2004
[264]

ER-Mitochondria Charcot Marie Tooth
Disease DNM-2

Vesicle trafficking,
cytoskeleton dynamics,
endosomal pathways

Sidiropoulos et al., 2012
[265]

ER-PM Tubular Aggregate
Myopathy STIM-1 Calcium sensor Bohm et al., 2017 [266]

This table highlights that mutations in genes which are important at MCSs between organelles could lead to human axonal disease.
Additional gene functions are also listed.

7.1. ER-Mitochondria Interactions

The ER and mitochondria form contacts at mitochondrial-associated membranes
(MAMs) and are essential for a number of cellular functions such as calcium homeostasis,
regulation of apoptosis, lipid synthesis and trafficking and energy production (reviewed
in [267–274]). Defective ER-mitochondria linkage has recently been implicated in several
neurodegenerative conditions underlying its importance for axon maintenance [275–279].
Grp75 is a protein linker found at MAMs that initiates contact between IP3R in the ER and
VDAC1 in the mitochondria. These contacts regulate calcium transfer between the two
organelles [280]. Grp75 mRNA is upregulated upon axonal injury in the PNS [72] and local
axonal synthesis of Grp75 is initiated as a response in primary hippocampal neurons after
injury [253]. Grp75 deletion leads to abnormal axon development, while its overexpression
prompts increased association between ER and mitochondria in injured hippocampal neu-
rons in vitro and in sciatic nerves after sciatic nerve injury in vivo [253]. Both experiments
showed that increased interconnection between ER and mitochondria improved calcium
buffering and potentiated ATP production, which ultimately led to increased levels of
axon regeneration and functional recovery after injury [253]. Interestingly, mitochondrial
tethering to Grp75 at the growing tip of neurites improves axon outgrowth in cultured
cortical neurons [281]. Another protein present at the ER-mitochondria interface is REEP1.
REEP1, an ER-shaping protein responsible for axon growth and maintenance, but it also
contains mitochondria-linking subdomains that may aid growth as well. Overexpression
of disease-associated mutant REEP1 in mouse cortical neurons reduced dendritic tree
complexity as a result of decreased ER-mitochondria tethering [45].

7.2. ER-Lysosomes/Late Endosomes Interactions

MCSs between endoplasmic reticulum and the endocytic pathways have emerged
as regulators of endosomal function and localization, and their association is normally
microtubule-associated and increases as endosomes mature [282,283]. Interestingly, ER
tubule positioning along the axon and its morphology were recently shown to depend
on motile lysosomes in response to chemical, light or metabolic stimuli [284]. Ablation
of ER-lysosome MCS protein, VAP-A, resulted in ER fragmentation and reduced axonal
length in growing RGC axons [284]. The molecular composition of MCSs between ER
and lysosomes/late endosomes is still not very well studied. One protein shown to
modulate the interaction between the ER and late endosomes (LE) is ER-resident protein
Protrudin. Protrudin recognizes specific phosphoinositides and Rab7 on late endosomes
and tethers them to the ER [285]. Protrudin then acts as an adaptor to facilitate the loading
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of kinesin-1 from the ER onto the motor adaptor—FYCO1—which is located on Rab7-
positive LEs [285]. This process of repeated ER–LE contacts results in the anterograde
transport of late endosomes along microtubules towards the cell periphery and is essential
for protrusion formation and neurite outgrowth [285]. Overexpression of protrudin in
RPE1 or PC12 cells induced long protrusions in a Rab7 and kinesin-dependent manner.
Synaptotagmin-1 assisted this process by allowing the fusion of late endosomes and the
plasma membrane. Over expression or activation of Protrudin in mature CNS axons also
facilitates robust long-range regeneration, but whether this process relies on increased
lysosomal transport has not been reported. The interaction between Protrudin and the
ER MCS VAP proteins (VAP-A and-B) is required, because genetic interference with this
interaction hinders the protrudin’s regenerative actions [43].

In addition, the endosomal protein IST1 and ER-localized isoform of spastin, a
microtubule-severing protein, act at ER-endosome MCSs to promote endosomal
fission [286,287]. Defects in this system lead to abnormal protein sorting and lysoso-
mal dysfunction in primary cortical neurons and iPSC-derived neurons from HSP patients
with spastin mutations [287]. As a result, the link between ER-regulated endosomal fission
at MCSs and lysosomal function was proposed as a major mechanism of axon degeneration
in HSP. In addition, ER-endosomal interaction has been shown to play an important role in
receptor signaling. For example, once activated on the cell surface, the EGFR receptor is
internalized in endosomes and continues signaling until dephosphorylated by PTP1B at ER-
endosome contact sites [288,289]. ER-endosome contact sites were shown to be regulated
by TPC1—an endo-lysosomal ion channel controlled by calcium signaling. Reduced MCS
formation resulted in decreased endosome to ER contact and prolonged EGFR signaling,
suggesting the role of MCSs as calcium-dependent hubs for signaling [290]. Receptor
signaling timing and calcium influx play critical roles in axon growth and regeneration,
but it is yet to be studied whether the mechanisms of ER-endosomes play a role in neu-
rons. In addition, a novel regulator of ER-endosome contact sites was recently described.
TMEM16K on the ER interacts with Rab7 on late endosomes to initiate MCS formation [291].
Loss of TMEM16K leads to impaired endo-lysosomal transport and function as well as
neuromuscular and motor deficits in mice [291].

Recent studies implicated PDZD8, an ER-associated protein, and Protrudin together
with the late endosomal protein Rab7 as main components of ER-endosome contact
sites [292]. PDZD8 is also a component of the ER-mitochondria MCSs [293] and enables
the recruitment of mitochondria to ER-endosomal MCS in order to regulate lipid transport
and endosomal function [292]. Studying the significance of such complex inter-organellar
interactions facilitated by multiple proteins in the context of axon growth and regeneration
will be an interesting future area of research.

7.3. Endosome/Lysosome-Mitochondria Interactions

Endosome-mitochondria tethering also plays an important role in axon growth and
integrity. One way through which this could occur is by regulation of protein translation.
For example, RNA granules have previously been reported to tether to lysosomes which
provide a platform for mRNA long-range transport along the axon [294]. In addition,
Rab7-positive endosomes in contact with ribonucleoprotein particles often dock onto
mitochondria in order to secure energy for local protein translation [30]. A mutation in
Rab7, which is associated with Charcot-Marie-Tooth disease, results in defective binding of
Rab7-endosomes to mitochondria, resulting in reduced protein synthesis in the axon and
compromised axon integrity after initial axon outgrowth in RGCs [30]. Interestingly, ER is
also found to be in close proximity to mRNA granules and late endosomes [30]. They form
MCSs near processing bodies that carry mRNAs around the cells regulating their dynamics
and translocation [295]. This all suggests a possible involvement of mitochondria and ER
in endosomal trafficking or regulation of mRNA translation during growth which may
have implications for regeneration in the CNS.
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Mitochondrial interaction with the autophagosome-lysosome system is crucial for
the process of mitophagy where depolarized mitochondria are actively degraded. Some
studies point towards retrograde transport of damaged mitochondria to be coupled with
mature lysosomes in the soma for degradation [296,297]. In fact, damaged mitochondria
were shown to bulk release mitochondria-anchoring protein syntaphilin and these are
transported to the cell body for degradation via interaction with late endosomes [298]. This
process was found to be essential for survival in neurons upon ischemic injury and during
neurodegeneration [298,299]. In addition, others have documented that dysfunctional
mitochondria stalled in the distal axon, which suggests that local clearance might also
occur independently of retrograde transport [300]. Indeed, in rat hippocampal neurons,
triggering mitochondrial damage at physiological levels in the distal axon results in the
recruitment of LC3-positive autophagosomes, LAMP1-positive lysosomes and Parkin, an
E3 ubiquitin ligase for local degradation of damaged mitochondria [301]. As mentioned in
Section 3, mitochondria depolarize after axonal injury, so their removal plays an essential
role in axon regeneration. Further studies are needed to characterize the exact role of
mitochondria-autophagosome-lysosome connection in axon growth and regeneration.

7.4. Proteasome-Other Organelles

A proportion of proteasomes in cultured neurons was also shown to form connections
with lysosomes, which might play a role for the retrograde transport from dendritic
spines to the cell body. In addition, the proteasome was shown to make contacts with
synaptic vesicles, Golgi-derived vesicles and with mitochondria [231]. Recently, live-cell
imaging in hippocampal neurons revealed that proteasomal inhibition impairs the axonal
transport of APP by stimulating its trafficking to the endo-lysosomal system for cleavage.
This study underlines the importance of proteasome-lysosome crosstalk and implicated
proteasomal dysfunction in the abnormal APP metabolism causing axonal degeneration in
some neurodegenerative diseases [302].

8. Conclusions

Axon growth and regeneration are cellular processes that involve signaling from the
growth cone, or the site of injury back to the cell body via signaling endosomes. They, in
turn, instruct changes in gene expression and axonal transport via the endosomal system
as well as in protein synthesis, distribution and turnover through the ER, lysosome and
autophagosome. This results in growth-related cargo translocation to the growth cone,
the generation of energy supply through the mitochondria and intracellular signaling for
membrane expansion and targeted growth. All these processes need to exist in concert
to elicit successful growth and regeneration programs. Our understanding of cellular
organelles has dramatically changed over the past decade from individual, isolated com-
partments, carrying out specific functions to highly interconnected and dynamic networks
that regulate cascades of molecular events in three dimensions within the cell. Individually,
organelles have been extensively studied in the context of axon growth and regenera-
tion where they play key roles in the growth process by acting as molecular platforms
to housing, distributing and regulating numerous intracellular molecules, materials and
signaling components. Only recently with the advancement of high-resolution microscopy,
the intricate interactions between different organelles or networks of organelles were made
possible to study. We propose a model in which organelle contact sites orchestrate highly
dynamic and interconnected series of molecular and cellular events that influence, and are
needed, for axon growth and regeneration (Figure 1). Future efforts should be centered to
studying these connections between organelles in the context of axon regeneration, where
they could potentially serve as therapeutic targets to improve the intrinsic regenerative
capacity of adult CNS neurons.
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Figure 1. Proposed model for inter-organellar interactions within the axon shaft. Within the cell, various organelles form
transient or permanent interactions with each other. Many of these organellar inter-connections have previously been
documented in the axon (such as ER-mitochondria, ER-lysosome, ER-endosome, mitochondria-lysosome) but some are yet
to be studied. This model proposes that membrane-contact sites between pairs of organelles or multiple organelles could
occur in the axon shaft near the growth cone of developing or regenerating axons. These interactions play an essential role
in numerous processes involved in axon growth and regeneration such as lipid signaling and trafficking, protein turnover,
intracellular signaling, calcium buffering, receptor trafficking and energy homeostasis. Future studies on the developmental
regulation of the quantity and dynamics of inter-organelle membrane contact sites could provide clues on how they can be
targeted to boost axon growth and regeneration. Figure created with BioRender.com (www.biorender.com [last accesses 18
January 2021]).
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