
RESEARCH ARTICLE

Experimental Shifts in Intraclutch Egg Color
Variation Do Not Affect Egg Rejection in a
Host of a Non-Egg-Mimetic Avian Brood
Parasite
Rebecca Croston1¤*, Mark E. Hauber1,2

1 Ecology, Evolutionary Biology, and Behavior Subprogram in Biology, The Graduate Center of the City
University of New York, New York, New York, United States of America, 2 Department of Psychology, Hunter
College and The Graduate Center of the City University of New York, New York, New York, United States of
America

¤ Current address: Ecology, Evolution, and Conservation Biology Program in Biology, University of Nevada -
Reno, Reno, Nevada, United States of America
* RebeccaLCroston@gmail.com

Abstract
Avian brood parasites lay their eggs in the nests of other birds, and impose the costs associ-

ated with rearing parasitic young onto these hosts. Many hosts of brood parasites defend

against parasitism by removing foreign eggs from the nest. In systems where parasitic eggs

mimic host eggs in coloration and patterning, extensive intraclutch variation in egg appear-

ances may impair the host’s ability to recognize and reject parasitic eggs, but experimental

investigation of this effect has produced conflicting results. The cognitive mechanism by

which hosts recognize parasitic eggs may vary across brood parasite hosts, and this may

explain variation in experimental outcome across studies investigating egg rejection in

hosts of egg-mimicking brood parasites. In contrast, for hosts of non-egg-mimetic parasites,

intraclutch egg color variation is not predicted to co-vary with foreign egg rejection, irrespec-

tive of cognitive mechanism. Here we tested for effects of intraclutch egg color variation in a

host of nonmimetic brood parasite by manipulating egg color in American robins (Turdus
migratorius), hosts of brown-headed cowbirds (Molothrus ater). We recorded robins’ behav-

ioral responses to simulated cowbird parasitism in nests where color variation was artificially

enhanced or reduced. We also quantified egg color variation within and between unmanipu-

lated robin clutches as perceived by robins themselves using spectrophotometric measures

and avian visual modeling. In unmanipulated nests, egg color varied more between than

within robin clutches. As predicted, however, manipulation of color variation did not affect

rejection rates. Overall, our results best support the scenario wherein egg rejection is the

outcome of selective pressure by a nonmimetic brood parasite, because robins are efficient

rejecters of foreign eggs, irrespective of the color variation within their own clutch.
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Introduction
Hosts of brood parasitic birds face fitness costs associated with the rearing of genetically unre-
lated parasitic offspring [1]. Many hosts, across widely divergent brood parasite-host systems,
have evolved defenses which either decrease the chances of being parasitized, or reduce the
costs incurred as a result of parasitism [2, 3]. These defenses range from aggressive responses
to adult brood parasites near the nests [4, 5] through foreign egg rejection [6, 7] to the rejection
of brood parasitic chicks and fledglings (reviewed in [8]).

Recognition and removal of parasitic eggs from the nest is the most common host defense
against parasitism [8,9]. Egg ejection, however, is an imperfect defense, and can itself lead to fit-
ness losses for hosts through misrecognition and–rejection (i.e., recognition errors), or acci-
dental damage to the hosts own eggs (i.e., rejection costs) [10,11]. Because of these costs,
evolutionary theory predicts that hosts involved in an arms race with brood parasites will be
under selective pressure to avoid recognition and rejection errors [12]. For some brood para-
sites, this results in laying of eggs mimicking host eggs in appearance (mimetic eggs [13]),
while others lay eggs that do not appear to mimic those of their hosts (non-mimetic eggs [14],
but see [15]). Egg mimicry is unlikely to evolve in systems where hosts do not reject parasitic
eggs (i.e. no selective pressure toward mimicry), where parasites exploit a wide range of hosts
with divergent egg phenotypes, or where there is evolutionary lag between parasites and hosts
[9].

For hosts of mimetic-egg laying brood parasites, there are at least two strategies toward re-
ducing the likelihood of recognition errors. A parasitized species can evolve towards 1) reduced
within-clutch (intraclutch) variation in egg appearance (color and maculation), and/or 2) egg
appearance unlike the parasitic eggs (e.g. [16,17]), effectively increasing between-clutch (inter-
clutch) variability [17–22]. One or both of these patterns in clutch variation has been observed
in many host species of the common cuckoo (Cuculus canorus, [20,21,23–25] but see [26]) and
Diederik cuckoo (Chrysococcyx caprius, [22]), as well as in rejecters of intraspecific (functional-
ly mimetic) parasitic eggs [27]. Many other observational, and a handful of experimental stud-
ies have, however, found inconsistent support for these patterns [21,28–32], and thus the
literature as a whole is equivocal as to what extent brood parasitism and egg recognition fuel or
limit the evolutionary trajectories of variation in both intra- and intraclutch egg color variabili-
ty (Tables 1, 2).

For hosts of non-mimetic parasites, however, predictions about the effect of intra- and inter-
clutch color variation are not yet well defined, and the effect of brood parasitism on intraclutch
color variation is rarely addressed (but see [35]) for hosts of these types of brood parasites
(Table 1, 2). We maintain and formalize (Table 3), that in the absence of egg mimicry, intra-
clutch color variation, and therefore also interclutch color variation, is relatively unconstrained
by hosts’ need to recognize and reject foreign eggs, and is therefore free to vary in response to
alternative selective pressures, physiological factors, and ecological factors including maternal
condition, diet, and/or local predation pressures [40–43]. Alternatively, patterns of egg color
variation may result from selective pressure from past inter- [44] or intraspecific [45] parasit-
ism. While identifying the exact mechanism is beyond the scope of our study, we note that in-
creased between-clutch egg color variation cannot be a definitive signature of selective pressure
to reject eggs of a non-mimetic parasite, despite that the opposite trend more robustly indicates
selective pressure to reject mimetic parasitic eggs. Similarly, experimentally increasing intra-
clutch color variation in these hosts is not predicted to affect rates of parasitic egg rejection
(Table 3). Overall, hypotheses pertaining to the effects of parasitism on intraclutch color, and
effects of intraclutch color on rejection rates, have gone largely untested in hosts of non-mimet-
ic parasites, as there is little intraspecific variation in response to parasitism for these hosts
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[36]. Two studies to date have addressed the relationship between rejection rate and degree of
intraclutch variation in a host of brown-headed cowbirds (Molothrus ater, a generalist brood
parasite) host. Peer et al. [36] found that cowbird egg rejection was more likely when intra-
clutch variation was lower for common grackles (Quiscalus quiscula). However, in a subse-
quent comparison between acceptor versus rejector hosts laying blue and maculate beige eggs,
respectively, intraclutch color variation did not vary with rejector status across either group
[35].

Table 1. Summary of published studies using observational tests of the relationship between intraclutch egg appearance variability and
rejection rate by hosts of obligate brood parasitic birds.a

Parasite Host Parasite Mim./Nonmim. Correlation intra- Correlation inter- Reference

Cuculus canorus Various Mim. None Positive [20]

Cuculus canorus Various Mim. Negative Positive [23]

Cuculus canorus Acrocephalus arundinaceus Mim. Positive NA [28]

Cuculus canorus Acrocephalus arundinaceus Mim. None Positive [24] b

Cuculus canorus Acrocephalus arundinaceus Mim. Positive NA [32]

Cuculus canorus Acrocephalus scirpaceus Nonmim. Negative NA [27]

Cuculus canorus Sylvia communis Nonmim. None NA [29]

Cuculus canorus Anthus pratensis Mim. Negative NA [25] b

Cuculus canorus Lanius collurio Mim. None NA [31]

Cuculus pallidus Lichenostomus penicillatus Mim. None Positive [33]

Clamator glandarius Pica pica Mim. Negative NA [34]

Clamator glandarius Pica pica Mim. Positive NA [30]

Chrysococcyx caprius Ploceus cucullatus Mim. Negative Positive [22]

Molothrus ater Various Nonmim. None None [21]

Molothrus ater Various Mim. None None [35]

Molothrus ater Various Nonmim. None None [35]

Molothrus ater Quiscalus quiscula Nonmim. Negative NA [36]

a
“Parasite Mim./Nonmim.” indicates whether natural parasitic eggs mimic those of hosts. “Correlation” indicates the direction of correlation (if any)

between color variation within (“Correlation intra-”) and between (“Correlation inter-”) and the rejection rate of parasitic eggs.
b Studies that compared inter- and intraclutch color variation between 2 populations, one in sympatry and one in allopatry with cuckoos. Positive

correlation for interclutch color variation is derived from statistical difference between these two populations. Lack of correlation for intraclutch color

variation is derived from lack of statistical difference between these two populations.

doi:10.1371/journal.pone.0121213.t001

Table 2. Summary of published studies on egg rejection responses (relative to controls) to experimental brood parasitism, where the
methodology included manipulations to increase intraclutch egg appearance variation.a

Parasite Host Parasite Mim./Non. Exp. Mim./Nonmim. Significant effect on rejection Reference

Cuculus canorus Acrocephalus arundinaceus Mim. Mim. None [26]

Cuculus canorus Acrocephalus arundinaceus Mim. Nonmim. Negative [37]

Cuculus canorus Acrocephalus arundinaceus Mim. Mim. Negative [37]

Cuculus canorus Acrocephalus arundinaceus Mim. Both Negative [38] b

Anomalospiza imberbis Prinia subflava Mim. Mim. Negative [39]

a
“Parasite Mim./Nonmim.” indicates whether natural parasitic eggs mimic those of hosts. “Exp. Mim./Non.” indicates whether eggs used in artificial

parasitism mimicked those of hosts. “Effect” indicates the induced change in the rate of rejection of experimental eggs.
b To our knowledge, this is the only previous study to experimentally both increase and decrease intraclutch color variation.

doi:10.1371/journal.pone.0121213.t002
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Here we test for patterns of egg color variation within versus between unmanipulated non-
mimetic brood parasite host clutches, and test for effects of experimentally increasing or de-
creasing intraclutch egg color variation on the likelihood of parasitic egg rejection. We combine
observational and experimental approaches to analyze within and between-clutch color varia-
tion in a population of American robins (Turdus migratorius), a robust egg-rejecting host of
obligate parasitic brown-headed cowbirds [2,46]. American robins are one of only ~26 hosts of
extremely generalist [47,48] brown-headed cowbirds [49] to reject artificial and real cowbird
eggs in up to 100% of trials where nests are experimentally parasitized [2,46]. We compare
inter- and intraclutch color variation across the entire avian visual spectrum by combining
spectrophotometric measures of egg color with statistical models describing the birds’ own
spectral sensitivities [50]. Robins lay immaculate blue-green eggs, and cowbird eggs do not
closely mimic those of their hosts [1] (but see [15]). Additionally, using artificial parasitism in
combination with egg color manipulation, we experimentally test predictions associated with
the role of intraclutch color variation in eliciting egg rejection (Table 3). Critically, we assess
the effects of both experimentally increasing and decreasing intraclutch color variation but
note that our theoretical considerations (Table 3) make a prediction of no effect on egg rejec-
tion rates for robins under either type of experimental treatment. If, however, robins evolved to
reject foreign eggs due to selective pressures imposed by mimetic brood parasites (including in-
traspecific brood parasitism [45]), then we predict a decrease in egg rejection rates following
experimental increases in intraclutch variability, if robins employ at least one of two known
cognitive mechanisms used by rejecters to identify foreign eggs (Table 3).

Materials and Methods

Study site and nests
This study took place in and around Ithaca, Tompkins County, NY, USA fromMay-July in the
breeding seasons 2010–2012. Nests were located through searches in and around buildings,
bridges, barns, and clearing edges, especially in residential areas and farmland. Additional
nests were located by enlisting the help of local residents using classified advertisements, sign-
boards, and local internet communities.

Egg color measurement and avian visual modeling
During the 2012 breeding season, we quantified eggshell color for complete, unmanipulated
American robin clutches. All color measurements were taken on either the day of, or the first
day following clutch completion, as blue-green color may fade over the course of incubation
[51]. We quantified egg color across the entire avian visual spectrum by measuring spectral re-
flectance using a high resolution spectrometer with deuterium tungsten halogen light source

Table 3. Summary of predictions for egg color variation and responses to experimental increase in intraclutch color variation based on different
cognitive mechanisms underlying egg recognition, as a result of coevolution per se with mimetic versus nonmimetic brood parasites.a

Discordancy Template Online self-reference

Intra- Inter- Predicted effect Intra- Inter- Predicted effect Intra- Inter- Predicted effect

Mimetic parasite Decrease Increase Negative Decrease Increase No effect Decrease Increase Negative

Nonmimetic parasite No effect No effect No effect No effect No effect No effect No effect No effect No effect

a
“Predicted effect” represents the direction of the predicted effect of an experimental increase in intraclutch color variation on the probability of rejecting

the parasitic egg.

doi:10.1371/journal.pone.0121213.t003
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and 455μm solarization-resistant shielded cable (Ocean Optics Jaz portable spectrometer with
ultraviolet-visible (UV-VIS) light source, Ocean Optics Inc., Dunedin, FL, USA). Measure-
ments were taken holding the fiber optic probe perpendicular to the egg surface. The spectrom-
eter was calibrated using a Spectralon light reflectance standard (WS-1, Ocean Optics, Inc.,
which reflects> 95% of UV and visible light), and a black-box standard, which measures base-
line noise in the spectrophotometer. The spectrometer was re-calibrated after measuring every
third egg throughout sampling. The relative reflectance at each wavelength was calculated auto-
matically with reference to the light and dark standards. To minimize measurement error, each
egg was measured nine times, including three measurements each at the blunt pole, middle,
and sharp pole, which were then averaged to yield one spectrum per egg.

To estimate degree of color variation both within and between unmanipulated robin
clutches with respect to the spectral sensitivities of avian photoreceptors [52], we used the Vor-
obyev and Osorio [53] model for tetrachromatic vision in AVICOL v5 avian visual modeling
software [54]. American robins are an ultraviolet-sensitive (UVS) species [55–57], but detailed
spectral sensitivity data are not as yet available. We therefore extracted spectral sensitivity data
for a congener, the European blackbird T.merula, from the published data in Hart et al. [58]
using Vistametrix software (Vista Metrix 1.3, SkillCrest LLC) and ranging from 330–700nm.
AVICOL requires sensitivity data ranging from 300–700 nm; we set photoreceptor absorbance
for 300–330 nm to 0, sensu [59,60]. Relative cone densities were set to ultraviolet sensitive
(UVS): 1.0, short-wavelength sensitive (SWS): 1.78, medium-wavelength sensitive (MWS):
2.21, long-wavelength sensitive (LWS): 1.96, and Weber fraction was set to 0.1 [58] sensu [59].
As the ability to discriminate different colors is influenced by environmental light [53] (but see
[61]), we used published ambient light irradiance data for broken canopy forest [53], which
may most closely simulate the variable forest-edge light environments in which many Ameri-
can robins nest, even when breeding in sub/urban sites [62].

Prior to analysis, we applied a correction to each egg spectra using triangular smoothing
over 30 nanometers, available as a function within AVICOL, to attenuate the effect of spec-
trometer noise on the visual model. AVICOL extracts receptor catch quanta specific to each
single-cone receptor type, and combines these with the known spectral sensitivities of the
model taxon’s visual system (here T.merula) to quantify photoreceptor activity across the en-
tire avian spectral sensitivity range and quantify birds’ abilities to distinguish between any two
colors as the perceptual distance between spectra (ΔS), or JNDs (‘just noticeable differences’).
By definition, JND values greater than 1.0 indicate a chromatic difference that is discriminable
based on the published estimates of T.merula spectral sensitivities [63]. AVICOL can also be
used to extract discriminability based on achromatic contrasts using the sum of the sensitivities
of the MWS and LWS cones, as these are similar to the sensitivities of rods and principal dou-
ble-cone cells in the avian retina [58].

For the sensory analysis, we extracted photoreceptor catches for each of the four avian sin-
gle-cone receptors, and normalized these to 1 within the total reflectance of each egg, such that
for each egg, we have calculated the proportion of total receptor catch that is attributable to
each photoreceptor. We compared mean quantum catches for each photoreceptor across all
nests using independent univariate ANOVAs, with the proportionate receptor catches
(PrUVS, PrSWS, PrMWS, PrLWS) as response variables, and Nest ID as predictor. Likewise,
we compared mean achromatic quantum catches among nests, repeating the above approach
with achromatic quantum catch data for each egg, and comparing means across nests.

Finally, we compared discriminable difference values between eggs sharing a nest and eggs
not sharing a nest as JNDs. To do this, we calculated JNDs differentiating each egg from every
other egg in the data set. Then, to avoid pseudoreplication, we randomly selected among these
paired comparisons such that each egg was included in the analysis only once. We compared
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mean within-nest JNDs to mean between-nest JNDs using univariate ANOVA, with type of
comparison (within nest/between nest) as a predictor and JNDs as response.

Egg rejection experiment
To experimentally test whether intraclutch color variation contributes to the ability of Ameri-
can robins to recognize and reject foreign eggs, we manipulated egg color within clutches, ex-
perimentally decreasing or increasing egg shell color variability [37]. We altered host eggs
according to one of two treatments: in each, we removed eggs one at a time from nests, and
painted each egg with one of two different blue/blue-green paints (acrylic, Artist’s Loft), chosen
by spectrophotometric specifications of hue as determined by wavelength at peak reflectance,
and of known [64], low (0–20% for cowbird-sized model eggs) rejection rates. Eggs were al-
lowed to dry fully before being returned to the nest.

In order to increase the amount of color variation within a clutch (increased color variation
treatment; IV), we painted two eggs with either pale robin-mimetic or vivid robin-mimetic
paint (Fig. 1) at random, and the third egg was painted the second blue-green shade (Fig. 1; see
also inset). The second treatment group consisted of nests where the amount of color variation
within a clutch was artificially decreased by painting all 3 eggs in the clutch with the same paint
shade (Vivid robin-mimetic paint, decreased color variation treatment; DV). We added a third,
unmanipulated group (UNM) of nests using data from previous years sensu [65]. These nests
consisted of clutches containing 2–4 eggs whose colors were not altered but where the eggs
were handled and treated otherwise identical to IV and DV nests, and inspected with the same
frequency and manner.

Subsequent to manipulating host egg color, we returned the following day, and artificially
parasitized nests with plaster-of-Paris model eggs painted a third shade of blue (Fig. 1), also of
known rejection rate (58%) from previous experiments [64]. We chose a blue model parasitic
egg because behavioral responses to model mimetic cowbird eggs are invariable in our robin
population (rejected in 100% of experimental trials, [64]), whereas exposure to the blue model
yielded an intermediate rejection rate (58%), with a variable host response [64]. Model ‘parasit-
ic’ eggs mimicked the mass and dimensions of real cowbird eggs, measuring 2.6–3.3 g and with
dimensions 21 x 16 mm [66] (as cited in [67]). Model cowbird eggs are known to be rejected at
statistically similar rates to real eggs in artificial parasitism studies with American robins [2].
We employed a one-day latency between manipulation and experimental parasitism in order
to ensure that no host eggs were rejected as a result of color manipulation (a single pale mimet-
ic host egg was rejected at n = 1 nest, out of 27 total nests). Where a 4th egg was laid after ma-
nipulation, this was removed in order to keep clutch sizes consistent across IV and DV nests.
In most cases, hosts were theoretically able to view these 4th eggs alongside painted eggs for a
period of 1–4 hours before removal. Because the degree of variation remained greater in IV
than in DV treatments even in nests where a 4th egg was laid, and because hosts were free to
view their full unmanipulated clutches in cases where we discovered a clutch already contain-
ing 3 eggs, we do not consider that this limited exposure to additional natural eggs has effected
the robins’ rejection decisions [65].

We monitored experimental and control nests by returning daily and visually determining
the status of the artificial egg, using binoculars and small nest-mirrors as necessary. Eggs were
considered rejected if they were not present in the nest on the day following a previous nest-
check with the egg still present, except when hatching or predation may have occurred. Model
eggs were considered accepted if they remained in the nest for 6 consecutive days (sensu [68]),
after which nests were emptied, as painting the egg shells inhibits respiratory exchange and
thereby prevents proper embryonic development. By disposing of the eggs immediately, we
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minimized the loss of parental investment and maximize the likelihood of renesting. For each
nest we recorded the treatment, date of parasitism (Julian date), nesting stage (laying-
/incubation), and outcome of parasitism (accept/reject).

Frequency tables of treatment (IV, DV, control) and outcome (accept/reject) data were ana-
lyzed using Fisher’s exact test with Monte Carlo simulation based on 2000 replicates. We next
evaluated possible effects of nesting stage, clutch size, and Julian date by including these as co-
variates in fitting a binomial logistic generalized linear mixed model (GLMM) with treatment
group and incubation stage as additional possible predictors, and year as a random variable.
Experimental parasitism during the laying stage was defined as taking place at any time before
or on the day the last egg was laid; at any point beyond it was considered as taking place during

Fig 1. Representative egg color spectra, with experimentally manipulated nest (inset). Representative
spectra showing each of the three colors used in the egg rejection experiment, in addition to natural American
robin egg spectrum. Pale-mimetic and vivid-mimetic paints were used to manipulate the color of real robin
eggs. Blue paint was used to color plaster-of-Paris model parasitic eggs. The unmanipulated spectrum
represents the average spectrum of real robin eggs. Inset shows a representative nest with experimentally
increased variation in egg color, showing two natural robin eggs painted with vivid-mimetic paint, one painted
with pale-mimetic paint, and one blue model egg.

doi:10.1371/journal.pone.0121213.g001

Table 4. Univariate ANOVA outputs.

Photoreceptor Mean prop. catch/egg (SE) Num. df Den. df F p

UVS 0.03(0.00) 19.00 14.45 6.25 < 0.005

SWS 0.22(0.00) 19.00 14.17 10.28 < 0.005

MWS 0.37(0.00) 19.00 14.38 8.86 < 0.005

LWS 0.38(0.00) 19.00 15.50 72.08 < 0.005

Achrom 20.78(0.55) 19.00 14.82 10.12 < 0.005

Chrom JNDs W 0.89(0.53) 1.0 19.98 5.86 < 0.05

B 2.26(0.19)

Summary of ANOVA results describing differences in the proportional photoreceptor catches between eggs within versus between unmanipulated host

nests. For each photoreceptor type, ‘Mean (SE)’ represents the proportionate receptor catch per egg, and standard error. JNDs values indicate

discriminable chromatic difference between two eggs, as perceived by avian visual physiology (see Methods). For JNDs, mean JND values are shown

both for within (W) and between (B) nest comparisons. Significant p values for JNDs indicate that mean discriminability was greater between nests than

would be expected based on variation within nests. For all measures, there is significantly more variation between nests than within clutches.

doi:10.1371/journal.pone.0121213.t004
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the incubation stage. We also fit a binomial logistic generalized linear model (GLM) with vari-
ables as listed above, but with year treated as a fixed effect in order to verify that results were
not biased by parsing data across only three year levels (sensu [69]).

Because our hypotheses predict no effect of manipulating clutch color variation (Table 3),
we have also included here a power analysis for our experimental manipulation. All analyses
were conducted in R version 2.12.1. This study was conducted in accordance with guidelines
for animal care and use as approved by the Institutional Animal Care and Use Committee of
Hunter College of the City University of New York (permit number MH 2/13-T3). All manipu-
lations took place on private property and with the explicit consent of the property owner.

Results

Avian visual modeling of egg color analysis
Mean quantum receptor catches for natural robin eggs differed significantly more between
nests (n = 23) than expected based on variation within nests, for four avian single-cone photo-
receptors (ultraviolet, UVS; short wavelength, SWS; medium wavelength, MWS; long wave-
length, LWS), and for achromatic photoreceptors (Table 4). Mean chromatic discriminability
as JNDs, (n = 35 comparisons) was greater between nests than would be expected based on var-
iation within nests (Table 4).

Egg rejection experiment
We found no significant effect of experimentally increasing or decreasing intraclutch color var-
iation on the probability of egg rejection (across all groups Fisher’s exact test, p = 0.59; with
Monte Carlo simulation, p = 0.60; Fig. 2). Likewise, the probability of egg rejection did not dif-
fer between IV and DV nests (Fisher’s exact test, p = 1; with Monte Carlo simulation, p = 1). In
a generalized linear mixed model, the likelihood of egg rejection was not statistically predicted
by treatment, clutch size, Julian date of artificial parasitism, or incubation stage (binomial logis-
tic regression; see Table 5). Results were qualitatively similar for a model using identical predic-
tors, but where year was treated as a nominal variable and a fixed effect (all p> 0.05).

We also conducted a power analysis using the true effect size from the Fisher’s exact test
above, as Cramer’s V. Based on Cramer’s V = 0.16 for our actual data set, statistical
power = 0.10. To achieve statistical power of 0.8 for this low true effect size, n = 396 nest ma-
nipulations would be necessary.

Discussion
Our behavioral experiments showed that the degree of intraclutch color variation had no effect
on hosts’ ability to reject parasitic eggs, because the rejection of our model parasitic eggs was
independent of intraclutch color variation manipulation. Importantly, in this study we tested
for effects of both increasing and decreasing intraclutch color variation. To our knowledge, the
effect of decreasing intraclutch color variation has been addressed in only a single prior study,
Bán et al. [38], in which investigators manipulated entire great reed warbler (Acrocephalus
arundinaceus) clutches, dying some eggs or entire clutches with the same color paint or with
3–5 different colors. As predicted for this host of a mimetic brood parasite, the common cuck-
oo (Table 3), the rejection rates of foreign egg colors in nests with more experimental intra-
clutch variability were decreased relative to rejection rates in nests with less variability.
Notably, relative rejection rates across different color manipulations remained consistent
across egg color treatments with different levels of mimicry [70], such that more mimetic blue
eggs, for example, were always rejected least often, and less mimetic orange eggs were rejected
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most often. This implies that hosts use a relative color-based sensory threshold to make deci-
sions whether or not to reject foreign eggs, but responses may be modified by context, as in
multiple parasitism [38]. These conclusions highlight the need for further study testing for ef-
fects of both increasing and decreasing intraclutch color variation, in order to clearly test for ef-
fects on foreign egg rejection.

Some variation in response to experimental manipulation of intraclutch color variation for
hosts of mimetic brood parasites (Table 2) may be the result of hosts’ differential use of cognitive
mechanisms in the decision to reject foreign eggs (Table 3). Hosts may recognize parasitic eggs
using one or more of the following cognitive mechanisms (or additional mechanisms not listed
here, e.g. [71,72]): in 1) discordancy-based recognition, hosts use the current nest contents to as-
sess egg identity, and remove egg(s) which are unlike the rest of the clutch [73,74]. In 2) tem-
plate-based recognition, host females compare clutch contents to a template of their own eggs
frommemory, with each egg evaluated against the acceptance threshold anchored by this tem-
plate [28,75]. Template based-recognition allows the discrimination and rejection of foreign eggs
when no host eggs are available in the clutch due to multiple parasitism [38]. Finally, in 3) online
self-referent phenotype matching, hosts use the current nest contents to assess egg identity, but

Fig 2. Summary of results of experimental parasitism following the manipulation of clutch contents.
Bars represent the rejection rates for parasitic eggs in each experimental group (+ binomial SE estimates).
Sample sizes are indicated inside bars.

doi:10.1371/journal.pone.0121213.g002

Table 5. Summary of binomial GLMM outputs.

Variable Estimate Error z p

Treatment (IV) -0.15 1.00 -0.15 0.88

Treatment (Con) 0.92 0.86 1.07 0.28

Nesting stage 0.01 0.81 0.01 0.99

Julian date 0.01 0.02 0.45 0.65

Clutch size -0.31 0.60 -0.51 0.61

Summary of GLMM outputs describing the effects of experimental manipulation, nesting stage (laying

versus incubation), and Julian date on the likelihood of the rejection of ‘parasitic’ eggs.

doi:10.1371/journal.pone.0121213.t005
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rejection is not dependent on relative numbers of each egg type within the clutch, as each egg is
compared with the hosts known eggs ([38], sensu [76]) as identified shortly after laying [12,76].

Even for hosts of mimetic parasites, isolating and testing the specific cognitive mechanisms driv-
ing parasitic egg rejection remain challenging. For example, Stevens et al. [39] concluded that
tawny-flanked prinias (Prinia subflava) use both template-based recognition and discordancy in re-
jection decision-making, because the rejection of mimetic experimental eggs was mediated in part
by the relative numbers of host and parasitic eggs in the clutch. However, they have also shown
that prinias rarely reject their own eggs when clutch contents are manipulated such that these are
in the minority. Here Stevens et al. [39] may have referred to discordancy without the predictable
rejection of the egg in the minority in the clutch, and conflated this with differences in proportion
of host versus parasite eggs in the nest. The need to clearly identify the cognitive mechanism under-
lying egg discrimination highlights the importance for protocols to be better designed to tease apart
such closely tied proximate mechanisms, manipulating clutch contents such that specific and differ-
ent predictions can be made and tested under each cognitive mechanism (Table 3).

However, differential use of cognitive mechanism cannot explain any variation among hosts
of non-mimetic parasites because parasitism by a non-mimetic parasite per se is predicted to
have no effect on the intraclutch color variation or rejection rates for hosts (Table 3). Likewise,
investigations of intraclutch color variation and its effect on egg rejection will also be of limited
utility in parsing cognitive mechanisms underlying egg rejection in these hosts [38,39,65]. If
hosts of non-mimetic parasites utilize a discordancy-based recognition system [70], experi-
mental manipulation of intraclutch variation cannot effect rejection unless clutch contents are
modified specifically to make hosts eggs appear similar to parasite eggs, guaranteeing that these
eggs are generalizable and recognizable as foreign and allowing the test to focus only on re-
sponses elicited by differences in egg number. Likewise, if hosts utilize template-based recogni-
tion [77], the characteristics of the existing clutch are again not relevant to decision-making,
irrespective of intraclutch variation, unless the recognition template is updated frequently and-
/or parasitism rates are consistently high. If hosts utilize online self-referent phenotype match-
ing [76], experimental manipulation of intraclutch color variation can only affect rejection
rates if hosts are not allowed to view their own eggs at any point prior to manipulation.

In parallel with several other studies focusing on hosts of both mimetic and non-mimetic
brood parasitic birds (Table 1, 2), our observations of natural egg coloration in the robins re-
vealed significantly higher perceivable variation between clutches than within clutches, across
the sensitivity ranges for all avian photoreceptors. However, increased inter- vs. intraclutch
variation in eggshell coloration has been repeatedly detected not only amongst hosts (but see
[35]), but also amongst non-hosts of brood parasitic birds [78,79], and thus cannot be a critical
test of coevolutionary history with mimetic brood parasitism.

Overall, these results support predictions associated with coevolution between non-mimetic
parasitic cowbirds and egg-rejecter robins. In addition, we also demonstrated that for hosts of
non-mimetic parasites, parsing the cognitive mechanisms used to make rejection decisions is
theoretically challenging. Further research should be focused toward devising new treatments
and designs to tease apart the cognitive mechanisms driving parasitic egg rejection (e.g. [70]),
particularly in hosts of non-mimetic parasites, where testing for effects of both increasing and
decreasing intraclutch color variation does not provide informative tests between alternative
cognitive mechanisms (Table 3).
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