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genes underlying population-level metabolome 
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Abstract 

Background: Fungi produce a wide range of specialized metabolites (SMs) involved in biotic interactions. Pathways 
for the production of SMs are often encoded in clusters of tightly arranged genes identified as biosynthetic gene clus-
ters. Such gene clusters can undergo horizontal gene transfers between species and rapid evolutionary change within 
species. The acquisition, rearrangement, and deletion of gene clusters can generate significant metabolome diversity. 
However, the genetic basis underlying variation in SM production remains poorly understood.

Results: Here, we analyzed the metabolite production of a large population of the fungal pathogen of wheat, 
Zymoseptoria tritici. The pathogen causes major yield losses and shows variation in gene clusters. We performed untar-
geted ultra-high performance liquid chromatography-high resolution mass spectrometry to profile the metabolite 
diversity among 102 isolates of the same species. We found substantial variation in the abundance of the detected 
metabolites among isolates. Integrating whole-genome sequencing data, we performed metabolite genome-wide 
association mapping to identify loci underlying variation in metabolite production (i.e., metabolite-GWAS). We found 
that significantly associated SNPs reside mostly in coding and gene regulatory regions. Associated genes encode 
mainly transport and catalytic activities. The metabolite-GWAS identified also a polymorphism in the 3′UTR region of a 
virulence gene related to metabolite production and showing expression variation.

Conclusions: Taken together, our study provides a significant resource to unravel polymorphism underlying metabo-
lome diversity within a species. Integrating metabolome screens should be feasible for a range of different plant 
pathogens and help prioritize molecular studies.

Keywords: Fungal pathogens, Zymoseptoria tritici, Whole-genome sequencing, Metabolomics, Metabolite genome-
wide association mapping, Specialized metabolites, Metabolite-GWAS
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Background
Fungi are capable of synthesizing a wide range of com-
pounds including amino acids, pigments, antibiotics, 
and toxins [1–3]. Such metabolites are typically classified 
as primary and specialized (or secondary) metabolites. 
Primary metabolites are essential for growth, devel-
opment, and reproduction and tend to be conserved 
across the phylogeny of fungi. Specialized metabolites 
(SMs) confer benefits in specific ecological niches but 
are not essential for cell survival [4]. The production 
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of primary metabolites is encoded by a vast array of 
enzymes involved in metabolic reactions. In contrast, the 
production of SMs in fungi is often encoded by a small 
set of enzymes establishing a minimal metabolic path-
way. The underlying genes tend to be arranged in close 
proximity forming a biosynthetic gene cluster (BGCs) 
including tight regulatory control [5]. SMs play an impor-
tant role in shaping species interactions with the micro-
biome. For example, the production of the antibacterial 
bikaverin, which is induced upon contact with the bac-
terium Ralstonia solanacearum, is conserved in dis-
tant fungal pathogens [6]. Besides, SMs are essential for 
regulating fungal pathogenicity by acting as virulence 
factors against animal and plant hosts [7]. In the case of 
Fusarium graminearum, the BGC encoding the path-
way for the production of the mycotoxin trichothecene is 
upregulated during colonization of wheat [8] and essen-
tial for fungal colonization of kernels. SM can also act as 
messengers in inter- and intra-species communications 
between fungi [9, 10]. The high degree of niche specificity 
of SMs generates diversity in BGCs among closely related 
species and even within some species [5, 11]. BGCs are 
also among the most mobile elements in fungal genomes 
with extensive evidence for horizontal gene transfer and 
turnover within species [12].

Large-scale fungal genome analyses have revolution-
ized the discovery of genes underlying the specialized 
metabolism and rapidly evolving BGCs transferred 
among species [11, 13, 14]. Genetic changes underly-
ing the production of SM can be pinned down to single 
nucleotide variation as shown for fumonisin production 
in Fusarium fungi [15]. The evolution of BGCs often 
involves larger changes including the gain and loss of 
genes [16, 17]. BGCs are often located in more repeti-
tive regions of the genome including subtelomeres [18]. 
Furthermore, BGCs in some groups of fungi are mainly 
regulated by epigenetic changes including chromatin 
modification [19]. The fact that BGCs encode entire path-
ways for the production of SM, horizontal gene transfers 
effectively mean for species to acquire novel ecological 
functions [20–22]. Horizontal gene transfers and rear-
rangements may lead to substantial differences within 
and among closely related species in the content of BGCs 
and the potential to produce SMs. Among Aspergillus 
fungi, BGCs contribute to shared virulence profiles based 
on gliotoxin and fumitremorgin production and species-
specific virulence, e.g., due to fumagillin [23]. Genetic 
differences in qualitative and quantitative variation of 
SM production are hence likely under strong selection. 
Variation in metabolite production among conspecific 
isolates can be used for association mapping. Identifying 
associations between genetic variants in populations with 
relative levels of metabolite production is performed as 

metabolite genome-wide association studies (mGWAS) 
with a primary focus on the plant model Arabidopsis 
thaliana [24]. Recent applications on rice cultivars iden-
tified genes underlying flavonoid production [25] and 
contributions to the phenol-amides metabolic pathway 
[26]. Metabolite variation was often mapped to a small 
number of major effect loci [27, 28]. The intra-specific 
variation in metabolite profiles, high-quality genomic 
resources, and experimental tractability make fungi 
attractive models for genome-wide association mapping 
approaches.

The ascomycete Zymoseptoria tritici is a highly poly-
morphic fungal pathogen of wheat and shows a marked 
variability in BGCs among members of the species [29–
31]. The pathogen causes yield losses of ~ 5–30% depend-
ing on environmental conditions [32, 33]. Populations 
sampled across the world show evidence for the gain and 
loss of genes constituting BGCs [34]. Comparisons of 
complete genome assemblies confirmed that BGCs are 
partly or entirely missing in some isolates [31] raising 
questions about the functional relevance of the encoded 
SMs. However, the role of SM in the lifecycle of Z. tritici 
remains poorly understood. A metabolome analysis of 
the wheat infection process showed that lipid metabo-
lism is the initial energy source during leaf colonization 
prior to the induction of host cell death [35]. The patho-
gen upregulates BGCs mostly during the same transition 
to feeding from dead plant material (i.e., necrotrophic 
lifestyle) ~10 days after infection [35, 36]. Precursors of 
melanin were also found in the metabolite profile at this 
stage [35]. Melanin, which plays an important role in vir-
ulence, ultraviolet protection, and anti-microbial resist-
ance in fungi, is one of the best-studied SMs of Z. tritici. 
The locus underlying variation in melanin production 
was first identified using quantitative trait mapping and 
then confirmed to be a polyketide synthase gene cluster 
[37, 38]. Among individual variation in melanin, accumu-
lation is governed by the insertion of a transposable ele-
ment, which impacts the regulation of the BGC [38]. A 
recent study illuminated chemical diversity among mul-
tiple isolates of the same species and identified possible 
links to BGC diversity [39]. Population-level metabo-
lomic diversity within the species and the underlying 
genetic basis remain unknown.

Here, we take advantage of genome-wide associa-
tion (GWA) mapping using the production of individual 
metabolites under standardized conditions as trait val-
ues. GWA mapping in Z. tritici has been used success-
fully to identify the genetic basis underlying virulence on 
different wheat cultivars, resistance to fungicides, and 
temperature adaptation [40–43]. We focused on a sin-
gle wheat field to establish a panel of 102 isolates show-
ing considerable genetic diversity [43]. We performed 
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untargeted ultra-high performance liquid chromatog-
raphy-high resolution mass spectrometry on individual 
fungal cultures growing under sterile conditions. We 
found considerable variation in metabolite profiles with 
the majority of metabolites showing abundance varia-
tion among isolates. GWA mapping revealed significantly 
associated loci in proximity to genes encoding functions 
related to transport and catalytic activity.

Results
Species‑wide polymorphism in specialized biosynthetic 
gene clusters
A pangenome based on 19 genomes of Z. tritici isolates 
collected from six continents and 13 different countries 
(Fig.  1A) [31] was used to retrieve between 29 and 33 
BGCs per genome (Fig.  1B). The genomes were assem-
bled without gaps spanning telomere to telomere. Gene 
models were annotated using transcriptomic datasets for 
training [31]. Non-ribosomal peptide synthetase (NRPS) 
and type 1-polyketide synthase were the most abundant 
gene clusters encoded by the genomes. Approximately 
72% of the predicted core biosynthetic genes were shared 
among isolates and ~24% were accessory (present in 
2–18 isolates; Fig. 1C). We also retrieved a singleton core 
biosynthetic gene found only in an isolate sampled in 
Tunisia. We found similar proportions for additional bio-
synthetic genes with ~60% and 30% core and accessory 
genes, respectively (Fig.  1C). Regulatory genes of gene 
clusters were all conserved, but only 90% of the trans-
porter genes were conserved (Fig. 1C). BGCs show poly-
morphism also at the level of single fields. Focusing on 
BGCs encoded in the genomes of four isolates collected 
in the same year from nearby wheat fields in central 
Europe, seven clusters showed presence/absence varia-
tion [31] (Fig. 1D).

Genetic diversity in a single‑field mapping population
To test whether individual isolates differ in the produc-
tion of metabolites and show heritable genetic variation, 
we performed a genome-wide metabolite association 
study (mGWAS). We analyzed whole-genome sequences 
of 102 strains isolated from a single wheat field during a 
single growing season [43]. The isolates were collected 
from 11 genetically different winter wheat cultivars (1–9 
isolates per cultivar) from three collection time points 
(Fig. 2A, Additional file 1: Table S1). At the first collec-
tion time point, the wheat seedling was at growth stage 
(GS) 41 where flag leaves start extending. At the second 
(GS 75) and third collection (GS 85) time point, plants 
were fully developed and grains were reaching maturity 
[45]. The average Illumina sequencing coverage was 21X 
as previously described [43, 44]. After quality filtering, 
we retained 504,557 high-confidence single nucleotide 

polymorphisms (SNPs). To assess whether the mapping 
population was well-suited for GWAS (i.e., without sig-
nificant substructure), we first performed a principal 
component analysis (PCA). The PCA identified a small 
group of outlier isolates (n = 7; Fig. 2B). The percent vari-
ance explained was only 3.9% and 2.5% though for princi-
pal components 1 and 2, respectively (Fig. 2B). The PCA 
revealed no meaningful genetic substructure among col-
lection time points or cultivars (Fig.  2B [44];). Further-
more, a PCA performed after removing the seven most 
differentiated genotypes based on the PCA revealed no 
meaningful association of genetic differentiation with 
collection time point or cultivar (Additional file  2: Fig. 
S1A). We constructed an unrooted phylogenetic net-
work using Splitstree and we found nearly all genotypes 
to be at similar genetic distances to each other (Addi-
tional file 2: Fig. S1B). Finally, we conducted a discrimi-
nant analysis of principal components (DAPC) and found 
that individual principal components made only weak 
contributions to the overall structure (Additional file  2: 
Fig. S2) and a single cluster encompassing all genotypes 
was the most parsimonious grouping (Additional file  2: 
Fig. S2). The mapping population also included eight 
clonal groups for a total of 19 isolates [44]. To account for 
genetic relatedness among genotypes, we included relat-
edness as a random factor for association mapping (i.e., 
mixed linear model).

Untargeted metabolite profiling at the population level
We performed an untargeted metabolite profiling of all 
102 isolates using ultra-high-performance liquid chroma-
tography high-resolution mass spectrometry (UHPLC-
HRMS). The analyzed metabolites were extracted from 
blastospores after culture washing. After excluding highly 
hydrophilic (e.g., sugars, amino acids) and hydropho-
bic (e.g., lipids) molecules based on retention times, we 
retained 2633 metabolite marker peaks (Additional file 1: 
Table S2). Using relative abundance across all peaks, we 
performed a principal component analysis (Fig.  2C). 
Interestingly, the metabolite profiles of different iso-
lates clustered based on their field collection time point 
(Fig. 2C). This contrasts with the genome-wide differen-
tiation at neutral markers (Fig. 2B). Removing the seven 
most differentiated genotypes from the PCA had no 
meaningful impact on the grouping of metabolite profiles 
by collection time point (Additional file  2: Fig. S1A) or 
analyzing exclusively SNPs within BGC genes (Additional 
file 2: Fig. S3A). We further investigated the possibility of 
the metabolite profiles being explained by genome-wide 
genetic differentiation of the collected isolates. For this, 
we performed cross-validation to predict the best num-
ber of principal components to cluster genotypes based 
on the collection time point (Fig. 2D). The DAPC analysis 
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showed that ~30 principal components were optimal 
to cluster according to time point, consistent with a 
weak association of genome-wide genetic structure and 

metabolome profiles (Fig. 2D). We analyzed the ten most 
important metabolite markers contributing to the differ-
entiation in the PCA (Fig. 2E). Variation in five out of ten 

Fig. 1 Genetic diversity of specialized metabolite gene clusters in Zymoseptoria tritici. A World map indicating the isolate names and country 
of origin. B Detected gene clusters in 19 genomes constituting the species pangenome [31]. Colors indicate different categories of specialized 
metabolite gene clusters depending on the metabolite compound or the core biosynthetic gene: indoles, non-ribosomal peptide synthetase 
(NRPS), siderophores, polyketide synthase (PKS), and terpenes. C The proportions of core, accessory, and singletons specialized metabolite gene 
clusters in the species pangenome. D Presence-absence variation of 34 gene clusters in genomes of four isolates collected in Switzerland



Page 5 of 17Singh et al. BMC Biology          (2022) 20:224  

of these metabolite markers was significantly associated 
to individual SNPs in the mGWAS (see below; Additional 
file 1: Table S3). We performed a down-sampling analysis 
to identify the proportion of metabolite markers detected 
in isolates. We found approximately equal proportions of 
metabolite markers detected in 75%, 50%, and 25% of the 
total isolates (Additional file 2: Fig. S3B).

Metabolite‑GWAS based on variation in metabolite 
abundance
Variation in relative abundance among isolates may have 
a genetic basis (Fig. 2C). We performed mGWAS on rela-
tive metabolite marker intensities based on mixed lin-
ear models taking genetic relatedness into account. We 
first evaluated the most significant associations based 
on p-values for each of the 2388 untargeted metabolite 
markers showing distinct m/z peaks. After filtering asso-
ciation p-values, 68.8% (1644 out of 2388) of untargeted 
metabolites showed at least one significant SNP asso-
ciation (Additional file  1: Table  S3). Overall, we found 
similar proportions of associated SNPs on core (n = 13) 
and accessory chromosomes (n = 8). Accessory chromo-
somes 14 and 18 showed high proportions of associated 
SNPs (Fig. 3A). A total of 21 associations were found on 
chromosome 14 in close proximity to the telomere and 
~25 kb from the closest gene (Additional file 1: Table S3). 
Chromosome 14 contains large repetitive regions stem-
ming from a recent insertion. The repetitiveness of acces-
sory chromosome sequences leads to few reliable SNP 
calls outside of genes. Hence, the high proportion of 
associated SNPs on chromosome 14 (and 18) are most 
likely explained by low overall number of called SNPs 
rather than a biological reason.

We analyzed the closest gene to the most significantly 
associated SNP for each metabolite marker (Fig.  3B, 
Additional file  1: Table  S3). Overall, 75% of these most 
significantly associated SNPs were found at a maximum 
distance of 915 bp to the closest gene and 50% within 18 
bp (Fig.  3B). Genome-wide SNPs are for a large major-
ity (75%) within coding sequences. This is consistent 
with the gene-dense genome organization, the average 
distance between genes of ~1 kb [46], and challenges in 
calling SNPs in repetitive regions [44]. The average inter-
genic distance also matches the distance at which linkage 
disequilibrium decays on chromosomes (r2 < 0.2 within 

500–1500 bp) [44]. The abundance of genome-wide SNPs 
being found within coding sequences is also partially 
explained by the difficulty of obtaining accurate SNP gen-
otyping calls far from genes. Interestingly, the most sig-
nificantly associated SNPs were further away from genes 
than random SNPs and highly enriched for intergenic 
regions (p < 0.00001). This suggests that such variants 
tend to be linked to regulatory variation. For the remain-
der, we focused only on the most significantly associated 
SNPs for each metabolite marker falling within 5 kb of a 
gene (Additional file 1: Table S3, n = 1508).

We performed gene ontology (GO) term enrichment 
analyses of the protein functions encoded by genes near-
est to the most significantly associated SNP (Additional 
file 1: Table S4). We found that 27% of all nearby genes 
were assigned GO terms in contrast with 49% for all 
genes in the genome (Additional file  1: Table  S3). We 
found the strongest enrichment for membrane transport 
functions and catalytic activity (Fig. 3C, Additional file 1: 
Table S4). Transporters play key roles in metabolic path-
ways [11] and often underpin niche adaptation [47].

Associations of metabolite‑GWAS loci with gene clusters
Due to the large number of metabolic traits analyzed (n 
= 2388), we focused on the closest gene to the most sig-
nificantly associated SNP of each trait (i.e., metabolite) 
to prioritize the most robust metabolic pathway associa-
tions. We identified 124 genes encoding functionally pre-
dicted proteins including seven proteins characterized 
as putative effectors (Fig. 3D). We additionally found 42 
genes involved in specialized biosynthetic gene clusters 
(BGC) covering 19 out of the 39 known BGC in the spe-
cies (Fig.  1B). BGCs of the polyketide, fungal-RiPP, and 
NRPS classes showed the most associations (Fig.  3D). 
Core biosynthetic genes accounted for five associations, 
while the largest number of associations (n = 33) were of 
unknown category. Next, we focused on BGC candidate 
gene clusters due to their well-established role in fungal 
metabolism [4]. We manually curated promising targets 
based on metabolite peak quality, relative marker inten-
sity variation among genotypes, and the proximity of 
SNPs to gene distance (<500 bp) focusing on SNP most 
likely residing in regulatory and UTR regions.

Our first focus was on the biallelic SNP at 1,835,172 
bp on chromosome 6 showing a significant association 

(See figure on next page.)
Fig. 2 Whole-genome sequencing and untargeted metabolite analyses of 102 Zymoseptoria tritici isolates collected from a single field. A Number 
of isolates collected from each of the eleven cultivars at each collection time point (C1–3; early, middle and late in the season; see also [44]). B The 
first two principal components (PC) from a PC analysis of genome-wide SNPs. Isolates are color coded by the collection time point. C The first two 
PCs from a PC analysis of 2633 metabolite markers. Isolates are color coded by the collection time point. D Cross-validation for the determination 
of optimum number of PCs to be retained for the discriminant analysis of principal components (DAPC) and DAPC plot. Isolates are color coded by 
the collection time point. E Bi-plot of 2633 metabolite markers showing the ten metabolite markers contributing most to the differentiation of the 
metabolite profiles. Metabolite markers are labeled using their respective m/z values
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Fig. 2 (See legend on previous page.)
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with the metabolite Zt248 (m/z of 248.1323 and reten-
tion time of 3.52 min; Fig. 4A). We found that 14% of the 
population carried the alternative C allele associated with 
higher metabolite production (Fig.  4C). We found no 
association of the C allele with the field collection time 
point (Fig. 4C). The SNP is 180-bp downstream (3′UTR) 
of a functionally predicted effector gene Zt09_6_00502 
(Additional file 1: Table S3). Interestingly, Zt09_6_00502 
was identified as a component of a NRPS gene cluster 
(cluster 18; Fig. 1D). The gene cluster is 35kb in size and 
predicted to carry 15 genes including two biosynthetic 
core genes and a regulatory gene (Fig. 5A). The gene clus-
ter is conserved within the species and shared between 
three closely related sister species (Fig.  5A). Based on 
RNA-seq analyses of the same isolates growing in a mini-
mum medium liquid culture, we found a significant asso-
ciation between transcription of the gene Zt09_6_00502 
and the genotypes at the focal mGWAS SNP (p-value < 
0.001; Fig.  4D). Hence, the locus may mediate metabo-
lite production through variation in gene expression. We 
found that the biosynthetic core genes share a similar 
transcription profile as the effector gene indicating co-
regulation during the wheat infection cycle. Furthermore, 
the predicted effector is primarily expressed during the 
initial phase of the infection suggesting contributions to 
the onset of the disease (Fig.  4D). We analyzed data on 
controlled infections based on the same set of mGWAS 
isolates and found that the isolates carrying the alterna-
tive genotype caused more lesions (median of 71% of leaf 
area covered by lesion) in contrast to strains carrying the 
reference genotype (median of 57% of leaf area covered 
by lesions; Additional file 2: Fig. S4).

We performed a multiple sequence alignment of the 
3′UTR region containing the significantly associated 
SNPs using genomic sequences from species across the 
Zymoseptoria genus (Additional file 2: Fig. S5A). The phy-
logenetic context of the 3′UTR indicates that the alterna-
tive allele is derived in Z. tritici. Interestingly, variants in 
the gene sequence of Zt09_6_00502 are consistent with 
geographic differentiation of the species. In contrast, 
variants in the 3′UTR region reveal haplotypes shared 
between the Swiss field population (ST16CH_1A27 and 
ST16CH_1M28) and geographically distant isolates 
from Yemen (Yeq92) and Tunisia (TN09; Additional 
file 2: Fig. S5B, C). Pairwise linkage disequilibrium analy-
ses of the BGC showed higher values (r2 < 0.2 at ~6000 

bp) compared to genome-wide expectations (r2 < 0.2 at 
~500bp for core chromosome [44]) (Additional file 2: Fig. 
S5 D, E) consistent with recent selection and/or epistasis 
to maintain regulatory functions of the BGC.

We investigated a second locus in detail located at 
665,920 bp on chromosome 13 with a significant asso-
ciation with metabolite Zt231 (m/z 231.171 and retention 
time of 2.24 min; Fig. 4B). Isolates carrying the alterna-
tive allele A showed higher metabolic intensity relative 
to isolates carrying the reference allele T (Fig.  4C). The 
SNP is located 255 bp downstream (3′UTR) of the F-box 
gene Zt09_13_00231. The encoded F-box domain (posi-
tions 55–99) overlaps with a leucine-rich region (LRR 
domain; amino acid positions 42–374; Additional file  2: 
Fig. S6). Expression analyses of Zt09_13_00231 revealed 
no significant association with the genotypes identified 
through mGWAS under culture conditions (Fig.  4D). 
However, we identified an expression quantitative trait 
locus (eQTL) mapped using the same single-field popula-
tion at the same mGWAS locus (snp_13_664471; Abra-
ham et al. DOI pending). The transcription of the F-box 
Zt09_13_00231 gene was upregulated at the beginning 
of the infection (7 dpi) followed by a decrease during the 
transition to the necrotrophic phase (12–14 dpi) and a 
final increase at 28 dpi late in the infection (Fig. 4D). The 
gene Zt09_13_00231 is predicted to encode a component 
of the PKS gene cluster 32 (Fig. 1B). The cluster is con-
served within Z. tritici and the sister species Zymosep-
toria brevis (Fig.  5A). The gene cluster includes a PKS 
core gene and two additional biosynthetic genes. Inter-
estingly, we found that the transcription of the BGC is 
largely antagonistic to the transcription of the F-box gene 
(Zt09_00231) suggesting a negative feedback mecha-
nism during infection (Fig. 5B). Experimental infections 
of wheat with a subset of the field population (n = 76) 
showed a trend of higher pycnidia production of the iso-
lates carrying the alternative genotype associated with 
higher metabolite production (Additional file 2: Fig. S4).

Chemical characterization of associated metabolites
We analyzed the two metabolites Zt248 and Zt231 fur-
ther using chemical and natural product databases. The 
prediction based on the software Canopus [48] classified 
the metabolite Zt248  (C11H21NO3S) with 90% confidence 
as a cysteine derivative. The PubChem database classified 
Zt248 as an N-Acetyl-S-(2-ethylbutyl)-L-cysteine. The 

Fig. 3 Metabolite genome-wide association studies (mGWAS) and candidate gene functions. A Number of the most significantly associated single 
nucleotide polymorphisms (SNP) and proportion of significantly associated SNPs. B Distance to the closest gene and association −log10(p) values 
of the most significantly associated SNP for each metabolite marker. The dotted red line delimits 75% of the SNPs. Number of genome-wide SNP 
closest to gene. Proportion of SNPs found per gene element across the genome and for the significantly SNPs. C Gene ontology term enrichment 
analysis of functions encoded by the closest genes. D Number of the most significantly associated SNP to the closest gene based on gene type, 
biosynthetic gene cluster class and function. *, **** : p-value <0.05, <0.00001, respectively

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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metabolite Zt231  (C11H22N2O3) produced fragments at 
m/z 86.097 typical for leucine and isoleucine moieties. A 
natural product database search retrieved N-Valyl-Leu-
cine as the most likely compound for Zt231. Our analy-
sis using MS/MS showed three peaks at 2.15, 2.24, and 
2.37, corresponding to the D-l, L-D, and L-L isoforms 

(Additional file  2: Fig. S7). We searched for possible 
analogues and found that confluenine A produced by 
the basidiomycete Albatrellus confluens [49] shares the 
same molecular formula. The underlying polyketide BGC 
shares no homology among known fungi though. Accord-
ing to a CFM-ID in silico fragmentation confluenine A 

Fig. 4 Analyses of key loci identified by the metabolome-GWAS. A Manhattan plots of genome-wide association mapping performed for the 
metabolite Zt248 and B the metabolite Zt231 in a Z. tritici single-field population (n = 102 isolates). The red line refers to the Bonferroni threshold (α 
< 0.05). C Relative metabolite intensity and isolate counts based on genotypes (N: unassigned genotype). Colors refer to field collection time point 
of the isolates. D Expression of the closest genes to the focal SNP under culture conditions (same isolates as mapping population; upper box) and of 
four different isolates collected nearby over the course of an experimental wheat infection (lower box)
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Fig. 5 Conservation of the NRPS and PKS biosynthetic gene clusters in the Z. tritici pangenome and sister species. A Conservation of the effector 
Zt_06_00502 gene in the NRPS gene cluster and the F-box gene Zt_13_00231 in the PKS gene cluster. Amino acid identity compared to the gene 
cluster in the Z. tritici reference genome IPO323. Arrows below the heatmap correspond to genes locations and SNP positions in the reference 
genome. B Mean expression of the NRPS and PKS gene clusters based on four isolates collected in a nearby field (3D1, 3D7, 1A5 and 1E4). Colors 
identify gene functions. NRPS: nonribosomal peptide-synthetase, PKS: polyketide synthase. Sister species isolates Zp13: Z. pseudotritici, Zpa63: Z. 
passerinii, Zb87: Z. brevis, Za17: Z. ardabiliae 
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should fragment into m/z 85.065 and metabolite Zt231 
should fragment to m/z 85.02 and 86.09.

Discussion
We used untargeted metabolite profiling and genome-
wide association mapping to identify candidate loci 
underlying the production of metabolites. We found that 
a single, highly diverse field population of Z. tritici har-
bors substantial variation in the production of individual 
compounds. We performed association mapping based 
on standardized metabolite peak intensities as a pheno-
typic trait and identified significantly associated loci in 
close proximity to regulatory regions encoding virulence 
factors and biosynthetic gene clusters.

We identified highly variable metabolite profiles among 
isolates from a single field population. Given the stand-
ardized conditions, genetic factors are likely contribut-
ing to the observed metabolome diversity. The analyzed 
population is genetically highly diverse [44]. Surpris-
ingly, overall metabolite profiles clustered according to 
the isolate collection time point over the growing season 
(i.e., C1-C3 spread over several weeks). This is in con-
trast to the genetic differentiation of the same isolates 
where no clustering is evident based on collection time 
[44]. A DAPC provided consistent findings in that col-
lection time point does not reasonably explain genome-
wide differentiation. However, this does not preclude that 
individual loci could be strongly differentiated among 
collection time points. A possible explanation for the 
consistent shifts of the metabolome over the course of 
the growing season is the selection for isolates express-
ing a specific set of metabolites. Such candidate loci 
could be discovered using genetic differentiation scans 
along the genome; however, the sample size is limited for 
sufficiently powerful tests and a series of confounding 
environmental factors would have to be accounted for. 
Focusing on genetic differentiation at SNPs segregating 
in gene clusters, we find no meaningful differentiation by 
time point consistent with no overall selection BGC poly-
morphism. More expansive datasets would be required 
to distinguish selection signatures metabolite loci and to 
distinguish selection from neutral processes impacting 
differentiation over time.

One possible environmental factor driving selection is 
the two fungicide treatments applied midway between 
the collections C1 and C2 [44]. Additional shifts in phe-
notypic traits were also apparent for pathogen repro-
duction (i.e., pycnidia formation) on wheat leaves with 
isolates collected later in the season showing higher 
reproductive output under controlled conditions [43, 44]. 
Shifts in aggressiveness were also previously observed in 
multi-year studies of Z. tritici over years, cultivars and 
leaves on individual plants [50]. Identifying the chemical 

structure of the compounds contributing most strongly 
to shifts in the metabolome over the course of the grow-
ing season will provide insights into the adaptive nature 
of such changes.

Variation in metabolite abundance among individuals 
can be used to identify candidate genes underlying the 
regulation of metabolite production. We found a strong 
enrichment of intergenic regions contributing to metabo-
lite production suggesting cis-regulation (i.e., promoter 
regions) playing a role in shaping within species metab-
olome diversity. We identified genetic polymorphisms 
close to genes encoding a broad range of functions with 
an enrichment of transporter and catalytic functions. 
Such transporters include major facilitator superfam-
ily (MFS) transporters known to modulate fungicide 
and stress tolerance [51–53]. MFS transporters are also 
involved in the secretion of phytotoxins during infection 
and, hence, can contribute to virulence [54–56].

The studied species harbors a high degree of polymor-
phism in BGCs with likely consequences for the produc-
tion of specialized metabolites. The mGWAS captured 41 
BGC-related associations affecting approximately half of 
all known BGCs of the species. Standing variation for the 
production of SM elevates the evolutionary potential of 
Z. tritici, because populations could respond rapidly to 
selection for or against the production of specific metab-
olites. Intra-species variation in BGCs and SM produc-
tion have been observed in a range of fungi including the 
rice blast pathogen Pyricularia oryzae, where a gain of 
virulence was linked to the duplication of a hybrid PKS-
NRPS cluster [53]. Aspergillus species show also signifi-
cant intra- and interspecific variation in BGCs and the 
potential to produce specific SM with consequences for 
niche adaptation [57].

We investigated in detail two associations linking a 
SNP segregating in a BGC with clear metabolite vari-
ation. The first SNP was found in the candidate effector 
gene Zt09_00502, which is a component of the NRPS 
gene cluster 18 upregulated during the initial phase of 
infection. Pathogens secrete effectors to manipulate the 
host immune responses and physiology to its advantage 
[58]. The production of the metabolite is also associated 
with the expression of the candidate effector. Higher 
aggressiveness of the isolates was weakly associated 
with higher levels of the metabolite. Establishing causal 
links will require experimental approaches such as allelic 
replacements or silencing, since the genetic background 
and epigenetic factors may also influence the phenotypic 
trait. In fungi, BGCs are often regulated by epigenetic 
factors such as histone methylation [19]; however, there 
is no indication that Z. tritici BGCs show such an asso-
ciation as well [39]. The conservation of the gene cluster 
including the effector suggests that the cluster has gained 
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its original function prior to the specialization of the 
pathogen on wheat. However, the recently arisen adap-
tive mutation associated with the metabolite production 
could be an evolutionary response of the pathogen to 
gain an advantage on wheat.

The second investigated metabolite association was 
within the UTR region of the gene Zt09_13_00231 
encoding an F-box protein, which generally binds and 
transports proteins to be discarded by the cell [59]. The 
encoded protein contains domains consistent with a typi-
cal F-box FBLX family protein shown to be involved in 
conidiation, carbon intake, and virulence regulation in 
fungi [60, 61]. Deletion of the gene encoding a homolo-
gous F-box MoGrr1 in the fungal pathogen P. oryzae 
resulted in reduced lesion sizes on rice [62]. The dipep-
tide Zt09231 and the encoded F-box protein possibly 
play a regulatory role for the PKS biosynthetic gene clus-
ter. Dipeptides were implicated in biosynthetic path-
way regulation at least in some bacteria [63]. Chemical 
structure predictions and database searches revealed 
that the metabolite Zt231 associated with the F-box gene 
shares a structure matching confluenine A. This metab-
olite has antimicrobial activities and is produced by the 
basidiomycete A. confluens [49]. Convergent molecular 
structures may be an indicator of similar functionality; 
however, detailed chemical analyses and interaction stud-
ies on the plant are needed.

Conclusions
Our study highlights the power of association mapping 
to identify candidate loci underlying metabolite diversity 
and associated with the host infection process. Previ-
ously, mGWAS was limited to plant models, but our find-
ings illustrate how applications to plant pathogenic fungi 
can efficiently produce candidate lists. A key requirement 
is access to large, experimentally tractable isolate collec-
tions. High degrees of recombination and rapid decay of 
linkage disequilibrium are further requirements for the 
successful application of association mapping approaches 
[64]. Establishing metabolome-wide profiles for a range 
of pathogens under variable conditions will complement 
analyses focusing on proteaceous effectors.

Methods
Field collection and storage
We collected Z. tritici isolates from the Field Phenotyp-
ing Platform (FIP) site of the ETH Zürich, Switzerland 
(Eschikon, coordinates 47.449° N, 8.682° E) [65]. We 
analyzed a total of 102 isolates collected during the 2016 
growing season from 11 winter wheat cultivars, which 
are commonly grown in Switzerland [66]. We analyzed 
isolates originating from three collection time points 
over the season (Additional file  1: Table  S1). The first 

collection (n = 48) was established in May when wheat 
plants were in growth stage (GS) 41. The second (n = 
7) and third collections (n = 47) were established when 
the plants were in GS 75 and GS 85, respectively. After 
sampling, spores of each isolate were stored in either 50% 
glycerol or anhydrous silica gel at −80 °C. Additional 
information regarding the sampling scheme and genetic 
diversity of the collection is described in [44].

Culture preparation and metabolite extraction
Isolates were revived from glycerol stock by adding 50 
μl fungal stock solution to a 50-ml conical flask contain-
ing 35 ml liquid YSB (yeast-sucrose broth) medium. The 
inoculated flasks were incubated in the dark at 18°C and 
160 rpm on a shaker-incubator. After 8 days of incuba-
tion, the cultures were passed through four layers of 
meshed cheesecloth and washed thrice with sterile milli-
Q water to remove media traces. Spores were then lyo-
philized and metabolites extracted by resuspending the 
spores (~80 mg) in 1 ml of HPLC-grade methanol. The 
extract was centrifuged at 15,000 rpm for 5 min to pel-
let down debris before retrieving the supernatant. The 
last step was repeated until a clear supernatant was 
recovered.

Whole‑genome sequencing and variant calling
Approximately 100 mg of lyophilized spores was used 
to extract high-quality genomic DNA with the Qia-
gen DNeasy Plant Mini Kit according to the manufac-
turer’s protocol. We sequenced paired-end reads of 
100 bp each with an insert size of ~550 bp on the Illu-
mina HiSeq 4000 platform. Raw reads are available on 
the NCBI Sequence Read Archive under the BioProject 
PRJNA596434 [67, 68]. Illumina sequences were quality-
checked using FastQC v. 0.11.9 [69].. Sequencing reads 
were then screened for adapter sequences and quality 
trimmed using Trimmomatic v. 0.39 [70] using the fol-
lowing settings: illuminaclip=TruSeq3-PE.fa:2:30:10, 
leading=10, trailing=10, sliding-window=5:10, and min-
len=50. Trimmed sequencing reads were aligned to the 
reference genome IPO323 [46] available from Ensembl 
Fungi (https:// fungi. ensem bl. org/ Zymos eptor ia_ triti 
ci/ Info/ Index) and the mitochondrial genome (Euro-
pean Nucleotide Archive accession EU090238.1) using 
Bowtie2 v. 2.4.1 [71]. Multi-sample joint variant calling 
was performed using the HaplotypeCaller and Geno-
typeGVCF tools of the GATK package v. 4.0.1.2 [72]. We 
retained only SNP variants (excluding indels) and pro-
ceeded to hard filtering using the GATK VariantFiltration 
tool based on the following cutoffs: QD < 5.0; QUAL < 
1000.0; MQ < 20.0; −2 > ReadPosRankSum > 2.0; −2 > 
MQRankSum > 2.0; −2 > BaseQRankSum > 2.0. Next, we 
filtered for locus level genotyping rate (>50%) and minor 

https://fungi.ensembl.org/Zymoseptoria_tritici/Info/Index
https://fungi.ensembl.org/Zymoseptoria_tritici/Info/Index
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allele count (MAC) of 1 using VCFtools v. 0.1.15 [73]. 
Additional sequencing and variant call statistics are avail-
able from [44].

Population structure analyses
We reduce the SNP dataset using vcftools –thin [73] 
with a 1000-bp window to randomly select a single SNP 
per window in order to reduce linkage disequilibrium 
among loci and computational demands. To investigate 
population structure of the mapping population, we first 
performed principal component (PCA) analyses. We 
processed the filtered SNPs using the R packages vcfR 
v. 1.8.0 [74] and PCs were calculated using the function 
dudi.pca() of the R package ade4 v. 1.7-16 [75]. The data 
was visualized using ggplot2 v. 3.1.0 [76]. Dudi.pca()
uses the same model as the base prcomp function in R. 
We generated an unrooted phylogenetic network using 
SplitsTree v4.14.6 using uncorrected p distances [77]. 
We performed a pairwise homoplasy index (Phi) test for 
recombination using SplitsTree v4.14.6 [77]. The cross-
validation and discriminant analysis of principal com-
ponents (DAPC) was performed using adegenet v2.1.7 R 
package [78]. All file format conversions were performed 
using PGDSpider v2.1.1.5 [79].

Functional annotation of genes
We analyzed gene models predicted for the reference-
quality genomes assembled for the pangenome of the 
species with models trained using RNA-seq datasets [31]. 
Protein functions were predicted using InterProScan v 
5.31-70.0 [80]. Putative effectors were identified among 
the set of secreted proteins using EffectorP v 2.0 [81]. 
BGCs were predicted using antiSMASH 4.0 [82]. Genes 
included in a predicted cluster were annotated as “bio-
synthetic,” “biosynthetic-additional,” “transport,” “regula-
tory,” or “other” (i.e., not matching any other category).

Untargeted metabolite profiling using UPLC‑HRMS
Metabolome analyses were carried out by UHPLC-HRMS 
using an Acquity UPLC coupled to a Synapt G2 QTOF 
mass spectrometer (Waters). An Acquity UPLC HSS T3 
column (100x2.1mm, 1.8 μm; Waters) was employed at a 
flow rate of 500 μl/min and maintained at a temperature 
of 40°C. The following gradient with 0.05% formic acid in 
water as mobile phase A and 0.05% formic acid in ace-
tonitrile as mobile phase B was applied: 0–100 % B in 10 
min, holding at 100% B for 2.0 min, re-equilibration at 
0% B for 3.0 min. The injection volume was 2.5 μl. The 
QTOF was operated in electrospray negative mode using 
data-independent acquisition (DIA) alternating between 
two acquisition functions, one at low and another at high 
fragmentation energies. Mass spectrometric parameters 
were as follows: mass range 50–1200 Da, scan time 0.2 

s, source temperature 120°C, capillary voltage −2.5 kV, 
cone voltage −25V, desolvation gas flow and temperature 
900 L/h and 400°C respectively, cone gas flow 20 L/h, col-
lision energy 4 eV (low energy acquisition function) or 
15–50 eV (high energy acquisition function). A 500 ng/
ml solution of the synthetic peptide leucine-enkephaline 
in water:acetonitrile:formic acid (50:50:0.1) was infused 
constantly into the mass spectrometer as internal refer-
ence to ensure accurate mass measurements (<2ppm). 
Data was recorded by Masslynx v.4.1. Marker detection 
was performed using Markerlynx XS (Waters) with the 
following parameters: initial and final retention time 1.5 
and 10.0 min, mass range 85–1200 Da, mass window 0.02 
Da, retention time window 0.08 min, intensity thresh-
old 500 counts, automatic peak width and peak-to-peak 
baseline noise calculation, deisotoping applied. Data was 
mean-centered and Pareto scaled before applying multi-
variate analysis.

Genome‑wide association mapping and linkage 
disequilibrium analyses
We performed GWAS based on mixed linear mod-
els accounting for degrees of kinship among genotypes 
(MLM+K). The kinship matrix was computed using the 
scaled identity-by-state (IBS) algorithm implemented 
in TASSEL v. 20201114 [83]. We included the kinship 
matrix as a random effect in the mixed linear models for 
association mapping using TASSEL. Accounting for kin-
ship performs sufficiently well to control for genetic sub-
structure in the mapping population [43]. Untransformed 
relative abundance values for each peak were used as trait 
values for association mapping. Outcomes were visual-
ized using the R package qqman v. 0.1.4 [84]. We filtered 
association p-values based on the Bonferroni threshold at 
alpha = 0.05. Per metabolite, we selected the closest gene 
to the most significant associated SNP using the “closest” 
command in bedtools v. 2.29.0 [85]. Linkage disequilib-
rium was performed using PLINK v.1.0 [86] and visual-
ized with the R package LDheatmap 1.0 [87]. GO term 
enrichment analyses were performed using the Fisher’s 
exact test based on gene counts with the topGO R pack-
age [88] and plotted using the GOplot R package [89]. To 
investigate mGWAS-associated loci in close proximity to 
BGCs, we filtered for SNPs at a minimum distance of 500 
bp to cluster edges and analyzed metabolites exhibiting 
minimal m/z peak intensity to chemical prediction qual-
ity (intensity above >5).

RNA‑seq analyses
To investigate loci during the fungal life cycle, we used 
public RNA-seq dataset (NCBI Short Read Archive 
accession number SRP077418) of four isolates included 
in the pangenome dataset (3D1, 3D7, 1E4, and 1A5). 
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The isolates were inoculated on wheat plants to monitor 
transcription levels during the infection process at four 
time points (7, 12, 14, and 28 days after infection) [90]. 
For transcriptional profiling of the field population, we 
cultured the same isolates (n = 102) in a Vogel Minimal 
N Medium [91] where ammonium nitrate was replaced 
with potassium nitrate and ammonium phosphate. The 
medium contained no sucrose and agarose to induce 
hyphal growth. Total RNA was isolated from the fil-
tered mycelium after 10–15 days using the NucleoSpin® 
RNA Plant and Fungi kit. For all analyses, the Illumina 
raw reads were trimmed and filtered for adapter con-
tamination using Trimmomatic v. 0.32 with parameters: 
ILLUMINACLIP:Trueseq3_PE.fa:2:30:10 LEADING:3 
TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36 
[70]. Filtered reads were aligned using Hisat2 v. 2.0.4 with 
default parameters [92] to the Z. tritici reference genome 
(IPO323). Mapped transcripts were quantified using 
HTSeq-count [93]. Read counts were normalized based 
on the trimmed mean of M-values (TMM) method using 
the calcNormFactors option. To account for gene length, 
we calculated reads per kilobase per million mapped 
reads (RPKM) values using the R package edgeR [94].

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12915- 022- 01422-z.

Additional file 1: Table S1. Zymoseptoria tritici field collection informa-
tion including collection time point (C1-3), cultivar of origin, field plot. 
Table S2. Relative intensities of 2633 metabolite markers. The isolate 
name corresponding to sample identifiers are detailed in Table S1. 
Table S3. List of metabolite-GWAS top significant SNPs and distance to 
closest gene. Table S4. Gene function enrichment based on m-GWAS 
closest genes to top significant SNPs.

Additional file 2: Figure S1. A) The first two principal components (PC) 
from a PC analysis of genome-wide SNPs after removal of outliers (n=7). 
Isolates are color coded by the collection time point and wheat cultivar. B) 
SplitsTree phylogenetic network constructed from genome-wide single 
nucleotide polymorphism (SNP) data. Figure S2. Discriminant analysis 
of principal components (DAPC) results from the genome-wide SNP 
dataset. Cumulated variance explained by the eigenvalues of the PCs and 
scatter plot of the Bayesian Information Criterion (BIC) values. The lowest 
BIC value indicates the most parsimonious number of clusters. Figure 
S3. A) The first two principal components (PC) from a PC analysis of SNPs 
closest to biosynthetic gene clusters BGC. Isolates are color coded by the 
collection time point and wheat cultivar. B) Down sampling analysis to 
identify the proportion of 2633 metabolite markers detected in mapping 
population. Figure S4. Percentage leaf area covered by lesions and pyc-
nidia during wheat infection for subset of Z. tritici strains included in the 
metabolome-GWAS analysis (n = 76). The isolates are grouped by their 
genotype at significant metabolome GWAS SNPs. Figure S5. Evolution-
ary history of the putative effector gene Zt09_00502. A) Alignment of the 
3’UTR region of the gene. The box refers to the haplotypes found in the 
single Swiss field population. B) Phylogenetic tree of the 3’UTR region 
and (C) of the gene sequence. Names in bold black, blue and grey refer 
to the reference genomes of the species (IPO), isolates included in the 
metabolite GWAS and sister species, respectively. The phylogenetic tree 
was inferred by using maximum likelihood and the Tamura-Nei model. 
D) Pairwise linkage disequilibrium (LD) among all pairs of SNPs within the 
gene cluster. The red dotted line marks the r2=0.2. The blue dotted line 

represents distance where the LD drops to r2<0.2. Figure S6. Classification 
of protein family domains encoded by the gene Zt09_13_00231. Figure 
S7. MS scans of metabolite elution (A) Zt248 and (B) Zt231, eluting at 3.53 
and 2.15 minutes, respectively. The neighboring peaks at the m/z range 
eluting at different retention times likely represent distinct structural 
isomers of the same compound.
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