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Abstract

Background

Some mother-to-child transmission (MTCT) studies suggest that allelic variations of Fc

gamma receptors (FcγR) play a role in infant HIV-1 acquisition, but findings are inconsistent.

To address the limitations of previous studies, the present study investigates the association

between perinatal HIV-1 transmission and FcγR variability in three cohorts of South African

infants born to women living with HIV-1.

Methods

This nested case-control study combines FCGR genotypic data from three perinatal cohorts

at two hospitals in Johannesburg, South Africa. Children with perinatally-acquired HIV-1

(cases, n = 395) were compared to HIV-1-exposed uninfected children (controls, n = 312).

All study participants were black South Africans and received nevirapine for prevention of

MTCT. Functional variants were genotyped using a multiplex ligation-dependent probe

amplification assay, and their representation compared between groups using logistic

regression analyses.

Results

FCGR3A gene duplication associated with HIV-1 acquisition (OR = 10.27; 95% CI 2.00–

52.65; P = 0.005) as did the FcγRIIb-232TT genotype even after adjusting for FCGR3A

copy number and FCGR3B genotype (AOR = 1.72; 95%CI 1.07–2.76; P = 0.024). The
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association between FcγRIIb-232TT genotype and HIV-1 acquisition was further strength-

ened (AOR = 2.28; 95%CI 1.11–4.69; P = 0.024) if adjusted separately for FCGR2C c.134-

96C>T. Homozygous FcγRIIIb-HNA1a did not significantly associate with HIV-1 acquisition

in a univariate model (OR = 1.42; 95%CI 0.94–2.16; P = 0.098) but attained significance

after adjustment for FCGR3A copy number and FCGR2B genotype (AOR = 1.55; 95%CI

1.01–2.38; P = 0.044). Both FcγRIIb-232TT (AOR = 1.83; 95%CI 1.13–2.97; P = 0.014)

and homozygous FcγRIIIb-HNA1a (AOR = 1.66; 95%CI 1.07–2.57; P = 0.025) retained

significance when birthweight and breastfeeding were added to the model. The common

FCGR2A and FCGR3A polymorphisms did not associate with HIV-1 acquisition.

Conclusions

Collectively, our findings suggest that the FcγRIIb-232TT genotype exerts a controlling influ-

ence on infant susceptibility to HIV-1 infection. We also show a role for less studied vari-

ants–FCGR3A duplication and homozygous HNA1a. These findings provide additional

insight into a role for FcγRs in HIV-1 infection in children.

Introduction

Antibody crystallisable fragment (Fc) gamma receptors (FcγRs) are hematopoietic cell surface

glycoproteins that bind the Fc region of immunoglobulin G (IgG) antibodies, linking both

humoral and cellular branches of immunity. Cross-linking of FcγRs on the cell surface initiates

and regulates immune mechanisms that include antibody-dependent cellular cytotoxicity

(ADCC), antibody-dependent cellular phagocytosis (ADCP), antibody production, B-cell acti-

vation, antigen presentation, and cytokine production [1–4]. Cumulative data have highlighted

the role of Fc-mediated effector functions in human immunodeficiency virus 1 (HIV-1) acqui-

sition and post-infection control of viremia [2, 5–13].

Generally, FcγRs are divided into three classes (FcγRI, FcγRII, and FcγRIII), each with dif-

ferent isoforms and encoded by different genes. The classes differ in structural domain organi-

sation, affinity for specific IgG subclasses and ability to trigger activating or inhibitory signals

[14, 15]. While FcγRI binds monomeric IgG with high affinity, both FcγRII and FcγRIII bind

to IgG complexes through multivalent and low affinity interactions [16]. The low affinity

FcγRs located on chromosome 1q23 (FcγRIIa, FcγRIIb, FcγRIIc, FcγRIIIa and FcγRIIIb) are

encoded by FCGR2A, FCGR2B, FCGR2C, FCGR3A and FCGR3B genes, respectively [15] and

they play different roles in regulating immune responses [4].

Functionally-relevant genetic variants, including single nucleotide polymorphisms (SNPs)

and copy number variation (CNV), have been characterized in low-affinity receptors and asso-

ciated with different diseases [10, 12, 15, 17–22]. Generally, CNV is considered an important

factor of inter-individual differences and to date, CNV has been demonstrated for only

FCGR2C, FCGR3A and FCGR3B [23, 24]. Variation in copy number of FCGR3A correlates

with FcγRIIIa surface expression levels on natural killer (NK) cells, a key mediator of ADCC

[23]. Similarly, CNV of FCGR3B directly correlates with protein expression and uptake of

immune complexes by neutrophils [25]. Functionally-significant amino acid changes have

been reported for FcγRIIa, FcγRIIb, FcγRIIIa and FcγRIIIb that affect either their binding

affinity for IgG or receptor function. An arginine (R) to histidine (H) substitution at amino

acid position 166 of FcγRIIa (position 131 in the mature protein), alters the receptor’s affinity
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of IgG and its subclasses. In FcγRIIb, an isoleucine (I) to threonine (T) substitution at position

232 in the full protein reduces its inhibitory function on B cells [15]. A polymorphism in

FcγRIIIa results in a substitution of valine (V) to phenylalanine (F) at amino acid position 176

(position 158 in the mature protein) that alters the receptor’s affinity for IgG and its subclasses

[15, 26]. Conversely, a combination of five amino acid changes in FcγRIIIb give rise to the

human neutrophil antigen 1 (HNA1) variants, HNA1a, HNA1b and HNA1c. Neutrophils

from HNA1a homozygous individuals display greater phagocytic capacity compared to

HNA1b homozygous individuals [27].

Accumulating evidence from mother-to-child transmission (MTCT) studies suggests that

allelic variations of FcγR play a role in infant HIV-1 acquisition, but the observed results are

inconsistent [11, 12, 28]. Specifically, Brouwer et al. reported a positive association between

the FcγRIIa 166HH genotype and perinatal HIV-1 acquisition in a cohort of infants in Kenya

[11] that was not observed in subsequent separate studies in Kenya and South Africa [12, 28].

The functional consequence for FcγR variants beyond FcγRIIa-H166R and FcγRIIIa-F176V

during HIV-1 infection and acquisition in vivo has not been largely investigated. Further

studies are therefore needed to elucidate the definitive role of FCGR genotypes on MTCT of

HIV-1.

The potential role of FcγR-mediated effector functions in modulating perinatal HIV-1

transmission and acquisition was investigated for the first time in South Africa, using FcγR

variants as proxy for functional capacity [12]. The study differed from the those conducted in

Kenya [11, 28] in that it investigated variation at multiple loci and gene copy number variation

in the FCGR locus. The population differences within Africa warrants that genetic association

studies are done for specific populations. The study found the maternal FcγRIIIa-158V allele,

which confers enhanced antibody binding affinity and ADCC capacity, to be significantly

associated with reduced HIV-1 transmission. In both mother and infant, having an FcγRIIIb-

HNA1b allotype (that reduces neutrophil-mediated effector functions) was associated with

increased HIV-1 transmission and acquisition, respectively. On the other hand, homozygosity

for the FcγRIIIb-HNA1a allotype in the infant was protective of perinatal HIV acquisition.

Since FcγRIIIb is largely expressed in neutrophils, the study findings were suggestive of a

potential role for neutrophils in modulating perinatal HIV-1 transmission and acquisition.

However, a relatively small number of HIV-1 infected infants (n = 78) were genotyped. This

study further interrogates the role of FcγR-mediated effector functions in modulating perinatal

HIV-1 acquisition, using a much larger cohort. As we strive towards the goal of elimination of

vertical HIV-1 transmission, more studies are required to elucidate natural mechanisms of

protection in order to identify novel targets for preventative and therapeutic interventions.

Materials and methods

Ethics approval for the study was obtained from the University of the Witwatersrand Human

Research Ethics Committee (Reference numbers: M170585; M180575). Written informed con-

sent to participate in this study was provided by the participants’ legal guardian/next of kin.

Study design and population

A nested case-control study was carried out to assess the association between low affinity

FCGR variability and HIV-1 perinatal acquisition in children, combining data from past stud-

ies of three perinatal cohorts at two hospitals in Johannesburg, South Africa [29–32]. The

HIV-1-infected cohort (cases) consists of 546 children who were recruited as part of two

sequential randomized clinical trials (NEVEREST 2 and 3) [29–31]. The remaining two

cohorts comprised of 566 HIV-1-exposed uninfected children (controls) [32]. For this study,
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only available samples with sufficient material were genotyped. FCGR genotypic data from 395

HIV-1-infected children were compared with 312 of the HIV-1-exposed uninfected children.

All study participants were black South Africans and received nevirapine for prevention of

MTCT. The receipt of nevirapine at birth, known to significantly reduce intrapartum trans-

mission [32–34], suggests that most of the infants were likely infected in utero. Maternal anti-

retroviral therapy was not routinely used at the time. The available demographic and perinatal

variables included for both cases and controls are sex, birthweight, breastfeeding status and

gestation (term or pre-term).

Genotyping

Functional FCGR variants were genotyped using the FCGR-specific multiplex ligation-depen-

dent probe amplification assay (MRC Holland, Amsterdam, The Netherlands) according to

manufacturer’s instructions [18, 35]. In two reactions, the assay detects genomic copy number

of FCGR2C, FCGR3A and FCGR3B, as well as functional allelic variants: FcγRIIa-H166R (alias

H131R), FcγRIIb-I232T, FcγRIIIa-V176F (alias V158F) and FcγRIIIb-HNA1a/b/c. Further-

more, the assay detects FCGR2C SNPs that affect gene expression– c.169T>C (p.X57Q), c.798

+1A>G, and the FCGR2B/C promoter variant at position c.−386G>C and c.−120A>T.

Amplicons were separated by capillary electrophoresis on an ABI Genetic Analyser 3130 (Life

Technologies, Applied Bio systems, Foster City, CA, USA) and fragments analysed with the

Coffalyzer.NET software (MRC Holland) using peak height as a measure of gene/allele copy

number. In this study, we did not distinguish FCGR2B and FCGR2C promoter sequences

since earlier findings indicate that African individuals do not possess the promoter variant

in FCGR2B, and thus any detected c.−386G>C minor alleles would be in FCGR2C (37). The

SNP nomenclature used in this manuscript refers to positions in accordance with the Human

Genome Variation Society (HGVS) guidelines [36]. The numbering of nucleotides is relative

to the Genome Reference Consortium Human Reference 38 [GRCh38 (hg38)].

Statistical analysis

Categorical data were presented as absolute numbers and percentages. The Chi-squared and

Fisher Exact tests (where appropriate) were used for comparisons between children with HIV-

1-infection and children who were HIV-1-exposed uninfected. Univariate and multivariate

logistic regression analyses were conducted to determine the association between functional

FCGR variants and perinatal HIV-1 acquisition. Each FCGR3B genotype is defined as the com-

bination of FcγRIIIb-HNA1a/b/c allotypes present or absent irrespective of gene copy number.

Genotype reference groups for the di-allelic FcγRIIa-H166R, FcγRIIb-I232T, and FcγRIIIa-

V176F variants were homozygosity for the major allele, while the genotype reference group for

the multi-allelic FcγRIIIb-HNA1a/b/c were selected based on prevalence. A P value < 0.05 in

the multivariate analysis was regarded as statistically significant and 95% confidence intervals

(CI) were used to estimate precision. Adjustment for multiple comparisons was performed

using the Bonferroni correction, which considered six independent tests for the different vari-

ants—FCGR3A copy number, FCGR3B copy number, FcγRIIa-H166R, FcγRIIb-I232T,

FcγRIIIa-V176F and FcγRIIIb-HNA1a/b/c. Both unadjusted and adjusted P values are

reported. All analyses were performed in STATA version 15.1 (StataCorp LP, Texas, USA).

Linkage disequilibrium (LD) between functional FCGR variants was assessed using the

Haploview software package [37] and expressed as D prime (D0) and square of the correlation

coefficient (r2). The closer D0 is to 1 the stronger the LD between two loci. We assessed LD for

FcγRIIIb-HNA1a/b/c allotype using tag SNP p.N65S (amino acid change from asparagine to

serine at position 65) that differentiates HNA1a (P.65N) from HNA1b|c (p.65S), and the SNP
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that differentiates HNA1b from HNA1c, resulting in aspartic acid replacing alanine at amino

acid position 78 (p.A78D). Genotypic data with multiple gene copies were considered homo-

zygous if all copies carried the same allele or heterozygous when both alleles were present.

Hardy-Weinberg equilibrium was considered for individuals with two gene copies and the sta-

tistics abstracted from the Haploview analysis output.

Results

Study population characteristics

There were no significant differences in sex and gestation between the 395 HIV-1 infected

(cases) and 312 HIV-1-exposed uninfected (controls) included in this analysis. However, a

higher proportion of HIV-infected children had a low birth weight (<2500g; P<0.001) and

were breastfed (P<0.001) than controls (Table 1).

Distribution of FCGR copy number variation and HIV-1 acquisition

Genes are deleted or duplicated at the FCGR2/3 locus within previously defined copy number

variable regions (CNRs) [38–40]. Fig 1 shows the SNPs genotyped (A) and the 4 distinct pat-

terns of CNV in the present South African cohort: FCGR2C/FCGR3B, FCGR2C/FCGR3A,

FCGR2C/FCGR3A/FCGR3B and FCGR3A only (Fig 1B). The most common variation was

observed for the combined duplication/deletion of complete FCGR2C and FCGR3B (29.6%;

209/707), equivalent to CNR1 as described by Niederer et al. [38]. Within CNR1, one or more

copies were deleted in 61/209 individuals (29%) and duplicated in 148/209 individuals (71%).

Thus, in the total group of 707 South African children, 8.6% carried a CNR1 deletion and

20.9% a CNR1 duplication. We observed low variation within CNR2, which encompasses

the complete FCGR3A and exons 1 to 6 of FCGR2C (1.7%; 12/707; 4 deletions and 8 duplica-

tions). In seven (1%) individuals, CNV in FCGR2C, FCGR3A and FCGR3B was observed

simultaneously, with one deletion and six duplications. Deletion or duplication of FCGR3A

Table 1. Characteristics of perinatal HIV-1 acquisition in our study cohort.

Characteristics HIV-1-exposed uninfected HIV-1 infected P value

n = 312 n = 395

Sex 0.661

Male 160 (51) 196 (49.6)

Female 152 (49) 199 (50.4)

Gestation (n = 312) (n = 389) 0.180

Term 282 (90) 339 (87)

Preterm (<37 weeks) 30 (10) 50 (13)

Birth weight (g) (n = 312) (n = 375) <0.001

� 2500 282 (90) 295 (79)

< 2500 30 (10) 80 (21)

Breastfed (n = 311) (n = 388) <0.001

No 289 (93) 297 (77)

Yes 22 (7) 91 (23)

Data are expressed as n (%).

Total numbers analyzed for each variable are indicated.

Bold indicates statistical significance of P < 0.05.

https://doi.org/10.1371/journal.pone.0273933.t001
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alone was noted in 16 individuals (2.3%), 11 with a gene deletion and 5 with a gene duplication

(Fig 1C).

Copy number variation in FCGR2C and FCGR3B were separately observed in 233/707

(33%) and 219/707 (31%) children, respectively, and did not associate with HIV-1 acquisition

(P> 0.05; Table 2). Complete absence of FCGR2C and FCGR3B was observed in one HIV-1

infected child. FCGR3A showed low frequency in copy number variation in 33/707 (4.7%)

individuals, with 16 (2.3%) carrying a single gene copy and 17 (2.4%) having three gene copies.

No individual with complete absence of FCGR3A was observed. A significant difference in

FCGR3A copy number distribution was observed between the HIV-1 infected and exposed-

uninfected children. Using one FCGR3A copy as reference, gene duplication was indepen-

dently associated with increased odds of HIV-1 acquisition (OR = 10.27; 95% CI 2.00–52.65;

P = 0.005, PBonf = 0.03; Table 2).

Fig 1. Diagrammatic representation of the FCGR2/3 locus structure and variation. (A) The FCGR2 and FCGR3 genes on human chromosome 1q23

with their orientation and the functional polymorphisms genotyped in the study. Polymorphic amino acids are indicated by one-letter code. (B) CNV

has been previously described within distinct copy number variable regions (CNRs) [38, 39]. Four gene combinations of CNV, either duplication or

deletion, were observed and are indicated as solid lines. The FCGR2C/FCGR3B and FCGR2C/FCGR3A combinations correspond to the previously

designated CNR1 and CNR2, respectively. (C) Copy number region deletions and duplications within CNR1 and CNR2. This displays further

breakdown of individuals with either a deletion or duplication within the 4 distinct gene combinations of CNV.

https://doi.org/10.1371/journal.pone.0273933.g001
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Table 2. Associations of FCGR variants with perinatal HIV-1 acquisition.

Variants HIV-1-exposed uninfected HIV-1 infected OR (95% CI) P value

n = 312 n = 395

FCGR2C copy number

� 1 copy 31 (10) 37 (9) Ref

2 copies 209 (67) 265 (67) 1.06 (0.64–1.77) 0.816

� 3 copies 72 (23) 93 (24) 1.08 (0.61–1.91) 0.785

FCGR3A copy number

1 copy 11 (3.5) 5 (1.3) Ref

2 copies 298 (95.5) 378 (95.2) 2.78 (0.95–8.08) 0.061

3 copies 3 (1.0) 14 (3.5) 10.27 (2.00–52.65) 0.005 (PBonf = 0.03)

FCGR3B copy number

� 1 copy 28 (9) 35 (9) Ref

2 copies 217 (70) 271 (69) 0.99 (0.59–1.69) 0.997

� 3 copies 67 (21) 89 (22) 1.06 (0.59–1.92) 0.840

FCGR2A genotype

166HH 65 (20.8) 86 (21.8) Ref

166HR 154 (49.4) 187 (47.3) 0.92 (0.62–1.35) 0.663

166RR 93 (29.8) 122 (30.9) 0.99 (0.65–1.51) 0.968

Allele carriage

� 1 166H allele 219 (70) 273 (70) 0.95 (0.69–1.31) 0.757

� 1 166R allele 247 (79) 309 (78) 0.95 (0.66–1.36) 0.762

FCGR2B genotype

232II 147 (47) 165 (41.8) Ref

232IT 126 (40) 160 (40.5) 1.13 (0.82–1.56) 0.453

232TT 39 (13) 70 (17.7) 1.60 (1.02–2.51) 0.041 (PBonf = 0.246)

Allele carriage

� 1 232I allele 273 (88) 325 (82) 0.66 (0.43–1.01) 0.057

� 1 232T allele 165 (53) 230 (58) 1.24 (0.92–1.67) 0.156

FCGR3A genotype

176FF 134 (43) 155 (39) Ref

176FV 135 (43) 176 (45) 1.13 (0.82–1.56) 0.467

176VV 43 (14) 64 (16) 1.29 (0.82–2.02) 0.273

Allele carriage

� 1 176F allele 269 (86) 331 (84) 0.83 (0.54–1.26) 0.373

� 1 176V allele 178 (57) 240 (61) 1.17 (0.86–1.58) 0.319

FCGR3B genotype

HNA1a+/1b+/1c- 101 (32) 116 (29.37) Ref

HNA1a+/1b+/1c+ 13 (4) 16 (4.05) 1.07 (0.49–2.34) 0.862

HNA1a+/1b−/1c+ 44 (14) 61 (15.44) 1.21 (0.75–1.93) 0.433

HNA1a+/1b-/1c- 60 (19) 98 (24.81) 1.42 (0.94–2.16) 0.098

HNA1a-/1b+/1c+ 43 (14) 50 (12.66) 1.01 (0.62–1.65) 0.960

HNA1a-/1b+/1c- 28 (9) 38 (9.62) 1.18 (0.68–2.06) 0.556

HNA1a-/1b-/1c+ 23 (7) 15 (3.80) 0.57 (0.28–1.15) 0.115

HNA1a-/1b-/1c- 0 (0) 1 (0.25) - -

Allele carriage

�1 HNA1a allotype 218 (70) 290 (73) 1.19 (0.86–1.66) 0.298

�1 HNA1b allotype 185 (59) 221 (56) 0.87 (0.65–1.18) 0.372

(Continued)
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FCGR2A and FCGR3A genotypes did not associate with perinatal HIV-1

acquisition

For the FcγRIIa-H166R genotype, 341 (48.2%) children were heterozygous (FcγRIIa-166HR),

151 (21.4%) were homozygous for the higher affinity IgG binding allele (FcγRIIa-166HH) and

215 (30.4%) homozygous for FcγRIIa-166RR. The genotype distributions of the FCGR3A were

311 (44%) for FcγRIIIa-176FV heterozygotes, 289 (41%) for FcγRIIIa-176FF, and 107 (15%)

for FcγRIIIa-176VV. The FcγRIIa and FcγRIIIa genotype distributions observed in this study

are similar to previous findings [12, 41]. FcγRIIa-H166R and FcγRIIIa-V176F genotype and

allele carriage frequencies did not differ significantly between the HIV-1 infected and unin-

fected cohort (Table 2). Neither genotypes significantly associated with HIV-1 acquisition in

the univariate or multivariate analyses (P> 0.05 for all comparisons).

Associations between FCGR2B and FCGR3B genotypes and perinatal HIV-

1 acquisition

The FcγRIIb-232II was the most prevalent FCGR2B genotype (44.1%; n = 312), followed by

232IT (40.5%; n = 286) and 232TT (15.4%; n = 109). Homozygosity for the FcγRIIb-232T allele

was overrepresented in the HIV-1-infected children compared to the exposed-uninfected chil-

dren (17.7% vs. 13%; Table 2). Compared to the FcγRIIb-232II genotype, the FcγRIIb-232TT

genotype significantly associated with increased odds of HIV-1 acquisition in univariate analy-

sis (OR = 1.60; 95% CI 1.02–2.51; P = 0.041, PBonf > 0.05). At the FCGR3B locus, HNA1a was

the dominant allotype (72%; n = 508), followed by HNA1b (57%; n = 406) and HNA1c (37%;

n = 264). We observed an overrepresentation of homozygous FcγRIIIb-HNA1a allotype in

HIV-1-infected children compared to the exposed-uninfected (24.81% vs. 19%) but it did not

independently associate with HIV-1 acquisition (OR = 1.42; 95% CI 0.94–2.16; P = 0.098, PBonf

> 0.05; Table 2).

The association with homozygous FcγRIIIb-HNA1a attained significance after further

assessment in a multivariate model that controlled for FCGR3A copy number and FCGR2B
genotype, which were independently associated with HIV-1 acquisition (AOR = 1.55; 95% CI

1.01–2.38; P = 0.044, PBonf > 0.05). Both FCGR3A copy number (AOR = 10.68; 95% CI 2.04–

55.86; P = 0.005, PBonf = 0.03) and FCGR2B genotype (AOR = 1.72; 95% CI 1.07–2.76;

P = 0.024, PBonf > 0.05) remained significant (Table 3). The strength of association for

FCGR2B genotype increased (AOR = 2.28; 95% CI 1.11–4.69; P = 0.024, PBonf > 0.05) when

adjusted for FCGR2C c.134-96C>T that associated with HIV-1 acquisition in our previous

study [42]. We further explored the associations in a subset of the study cohort that excluded

breastfed infants (91 HIV-1 infected and 22 HIV-1 exposed-uninfected; nested total n = 586)

and controlled for birthweight. The FcγRIIb-232TT genotype (AOR = 1.83; 95% CI 1.13–2.97;

P = 0.014, PBonf > 0.05), homozygous FcγRIIIb-HNA1a allotype (AOR = 1.66; 95% CI 1.07–

Table 2. (Continued)

Variants HIV-1-exposed uninfected HIV-1 infected OR (95% CI) P value

n = 312 n = 395

�1 HNA1c allotype 123 (39) 141 (36) 0.85 (0.63–1.16) 0.309

Data are expressed as n (%).

OR, Odds Ratio; CI, Confidence Interval; PBonf, Bonferroni corrected P value.

Bold indicates statistical significance of P < 0.05.

https://doi.org/10.1371/journal.pone.0273933.t002

PLOS ONE FCGR3A gene duplication, FcγRIIb-232TT, FcγRIIIb-HNA1a and perinatal HIV-1 acquisition

PLOS ONE | https://doi.org/10.1371/journal.pone.0273933 September 9, 2022 8 / 16

https://doi.org/10.1371/journal.pone.0273933.t002
https://doi.org/10.1371/journal.pone.0273933


2.57; P = 0.025, PBonf > 0.05) and FCGR3A copy number (AOR = 8.58; 95% CI 1.60–45.92;

P = 0.012, PBonf > 0.05) retained significance (Table 4).

Linkage disequilibrium of functionally relevant variants in the FCGR2/3
locus

The functionally-relevant variants in the FCGR2/3 locus have been reported to be in strong

linkage disequilibrium due to physical proximity of the genes on chromosome 1q23 [43–45].

The observed genotype frequencies for FcγRIIa-H1166R, FcγRIIIa-V176F and FcγRIIIb-

HNA1a/b/c were in Hardy-Weinberg equilibrium (P> 0.05) but those for FcγRIIb-I232T

were not (P = 0.018). We assessed linkage disequilibrium between FCGR2A, FCGR2B,

FCGR3A and FCGR3B variants, with and without considering the CNV, to determine whether

the observed associations with independent FCGR variants are linked due to coinheritance of

alleles at different loci. All participants were included irrespective of copy number; those with

3 or more copies were considered heterozygous if both alleles were present and homozygous if

all copies carried the same allele. We found the FcγRIIIb-HNA1a/b/c haplotype in complete

LD as expected (D0 = 1.0; r2 = 0.243). The FcγRIIb-I232T was in weak LD with FcγRIIIb-

HNA1a/b (D0 = 0.254; r2 = 0.032) and FcγRIIIa-V176F (D0 = 0.486; r2 = 0.077). Similarly, weak

LD was observed between FcγRIIa-H166R and FcγRIIIa-V176F (D0 = 0.280; r2 = 0.052), and

the FcγRIIIb-HNA1c allotype (D0 = 0.297; r2 = 0.02). When only those with two gene copies

were included, the observed LD pattern remained the same (Fig 2). Multivariate analysis was

used to test allelic association for each variant that had some LD. The observed association

remained significant for FcγRIIb-I232T (AOR = 1.69; 95% CI 1.06–2.70; P = 0.028, PBonf >

0.05) while FcγRIIIb-HNA1a did not (AOR = 1.50; 95% CI 0.98–2.30; P = 0.060) and remained

not significant for FcγRIIa-H166R and FcγRIIIa-V176F.

Table 3. Multivariate analysis of the effect of FCGR3A copy number, FCGR2B and FCGR3B variants on perinatal

HIV-1 acquisition.

Variants Adjusted OR (95% CI)� P value

FCGR3A copy number

1 copy Ref

2 copies 2.81 (0.94–8.36) 0.064

3 copies 10.68 (2.04–55.86) 0.005 (PBonf = 0.03)

FCGR2B genotype

232II Ref

232IT 1.20 (0.86–1.67) 0.295

232TT 1.72 (1.07–2.76) 0.024 (PBonf = 0.144)

FCGR3B genotype

HNA1a+/1b+/1c- Ref

HNA1a+/1b+/1c+ 1.18 (0.54–2.60) 0.674

HNA1a+/1b−/1c+ 1.27 (0.78–2.05) 0.333

HNA1a+/1b-/1c- 1.55 (1.01–2.38) 0.044 (PBonf = 0.264)

HNA1a-/1b+/1c+ 1.02 (0.63–1.68) 0.917

HNA1a-/1b+/1c- 1.10 (0.63–1.95) 0.734

HNA1a-/1b-/1c+ 0.64 (0.31–1.32) 0.228

OR, Odds Ratio; CI, Confidence Interval; PBonf, Bonferroni corrected P value.

Bold indicates statistical significance of P< 0.05.

� Multivariate model controlled for FCGR3A copy number, FCGR2B and FCGR3B variants.

https://doi.org/10.1371/journal.pone.0273933.t003
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Discussion

The human FCGR2/3 locus comprise activating and inhibitory receptors that are highly poly-

morphic (including SNPs and CNV), with functional implications. Whilst the role of some of

the genetic variants are not well understood, the functional and clinical relevance of others in

the pathogenesis of autoimmune and infectious diseases has been well documented [17, 18, 25,

45–47]. Furthermore, functional FCGR polymorphisms have been investigated in the context

of HIV-1 acquisition [11, 12, 28, 42], disease progression [10, 20, 48, 49] and response to vacci-

nation regimens [21, 22, 48] with inconsistent findings. In this study, we report further associ-

ations between the functional FCGR polymorphisms and HIV-1 acquisition in black South

African children born to women living with HIV. The analysis excluded an association with

FCGR2C variants, which was separately assessed by the authors in another study [42]. In that

study, the FCGR2C c.134-96C>T tag variant produced a deleterious association in perinatal

HIV-1 acquisition in contrast to the observed protective effect in the Thai RV144 vaccine trial

[21].

The potential role of FcγR variants in modulating perinatal HIV-1 transmission and acqui-

sition in South Africa was initially investigated by Lassaunière et al. [12], albeit in a small sam-

ple cohort. This present study used a larger cohort to validate the previously observed findings

and determine if new FcγR variants associated with perinatal HIV-1 acquisition that may have

been confounded by the earlier smaller sample size. The present study adds to a limited num-

ber of studies investigating the association between FCGR polymorphisms and HIV-1 acquisi-

tion in the maternal-infant HIV-1 transmission model. Whereas previous studies in Kenyan

Table 4. Associations of FCGR variants with perinatal HIV-1 acquisition in non-breastfed children after adjusting for birthweight.

Variants HIV-1-exposed uninfected HIV-1 infected Univariate Multivariate�

OR (95% CI) P value Adjusted OR P value

(95% CI)n = 289 n = 297

FCGR3A copy number

1 copy 11 (3.5) 5 (1.3) Ref Ref

2 copies 298 (95.5) 378 (95.2) 2.78 (0.95–8.08) 0.061 2.49 (0.82–7.54) 0.107

3 copies 3 (1.0) 14 (3.5) 10.27 (2.00–52.65) 0.005 (PBonf = 0.03) 8.58 (1.60–45.92) 0.012 (PBonf = 0.072)

FCGR2B genotype

232II 140 (48.4) 123 (41.4) Ref Ref

232IT 113 (39.1) 122 (41.1) 1.13 (0.82–1.56) 0.453 1.27 (0.90–1.80) 0.171

232TT 36 (12.5) 52 (17.5) 1.60 (1.02–2.51) 0.041 (PBonf = 0.246) 1.83 (1.13–2.97) 0.014 (PBonf = 0.084)

FCGR3B genotype

HNA1a+/1b+/1c- 94 (32.53) 90 (30.30) Ref Ref

HNA1a+/1b+/1c+ 11 (3.81) 12 (4.38) 1.07 (0.49–2.34) 0.862 1.27 (0.56–2.84) 0.568

HNA1a+/1b−/1c+ 42 (14.53) 40 (13.47) 1.21 (0.75–1.93) 0.433 1.32 (0.80–2.15) 0.275

HNA1a+/1b-/1c- 57 (19.72) 76 (25.59) 1.42 (0.94–2.16) 0.098 1.66 (1.07–2.57) 0.025 (PBonf = 0.15)

HNA1a-/1b+/1c+ 37 (12.8) 41 (13.8) 1.01 (0.62–1.65) 0.960 1.12 (0.59–1.63) 0.937

HNA1a-/1b+/1c- 26 (9) 26 (8.75) 1.18 (0.68–2.06) 0.556 0.95 (0.63–2.02) 0.676

HNA1a-/1b-/1c+ 22 (7) 10 (3.37) 0.57 (0.28–1.15) 0.115 0.55 (0.30–1.32) 0.217

HNA1a-/1b-/1c- 0 (0) 1 (0.34) - -

OR, Odds Ratio; CI, Confidence Interval; PBonf, Bonferroni corrected P value.

Bold indicates statistical significance of P < 0.05.

� The multivariate analysis adjusted for all 3 genetic parameters (FCGR3A copy number, FCGR2B and FCGR3B genotypes) simultaneously plus birthweight.

https://doi.org/10.1371/journal.pone.0273933.t004
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[11, 28] and South African [12] cohorts used data from mother-infant pairs, only infant data

was available for our study cohort.

We did not observe an association between the common FCGR2A and FCGR3A polymor-

phisms and HIV-1 acquisition. This is in line with findings from independent Kenyan [28]

and South African [12] cohorts, as well as a large genome-wide association study of adults

[50], but contrasts the increased acquisition risk associated with FcγRIIa-166HH genotype

reported in another Kenyan cohort [11]. Cohort differences, study design and statistical rigor

employed have been suggested as possible reasons for the observed variable results [28, 50].

Other FcγR variants beyond FcγRIIa-H166R and FcγRIIIa-V176F, which include FcγRIIb-

I232T, FcγRIIIb-HNA1a/b/c, and gene copy number are rarely studied in the context of HIV-

1, in particular MTCT. Our earlier study [12] included FcγRIIb-I232T, and found that posses-

sion of at least one 232I allele was protective against in utero infection. Since this current study

comprises a completely different cohort and are presumed to be predominantly in utero

infected infants (since all received nevirapine at birth that reduces intrapartum transmission),

our results on this larger cohort confirm those reported previously. Here we show that homo-

zygosity for the FcγRIIb-232T minor allele associated with increased odds of perinatal acquisi-

tion of HIV-1. These findings suggest that the FcγRIIb-232TT genotype exerts a controlling

influence on infant susceptibility to HIV-1 infection. FcγRIIb transmits signals via an immu-

noreceptor tyrosine-based inhibitory motif (ITIM) in its cytoplasmic tail. The FcγRIIb-232T

polymorphism affects the receptor’s ability to translocate to lipid rafts, disrupting the inhibi-

tory function of FcγRIIb, leading to a potentially higher activation state of cells [51, 52]. The

Fig 2. Linkage disequilibrium of functional FCGR variants in South African children born to women living with HIV-1. (A) All individuals, with

or without CNV (n = 707); (B) only individuals with two gene copies (n = 474). The black triangle illustrates a haplotype block. Values reflect D0

measures of LD and colour in the squares given by standard D0 divided by log of the odds of LD between two loci (LOD). Bright red colour indicates

very strong LD.

https://doi.org/10.1371/journal.pone.0273933.g002
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FCGR2B/C promoter variants at position c.−386G>C and c.−120A>T also influence FcγRIIb

expression but such an effect would not play a role in our cohort because African individuals

do not possess the promoter variant in FCGR2B [43].

The FcγRIIb-232T and FcγRIIIb-HNA1a alleles are subject to ethnic variation, both being

more prevalent in black compared to white South Africans [FcγRIIb-232T (30.9% vs. 10.9%;

FcγRIIIb-HNA1a (50.6% vs. 36.2%)] [43]. The observed genotype frequencies for FcγRIIb-

I232T were not in Hardy-Weinberg equilibrium possibly because of selection pressure from

potent endemic infections in Africa, such as malaria [47]. Significant selection pressure is a

likely driver of retention of the FcγRIIb-232T allele that produced a deleterious effect on sus-

ceptibility of HIV-1 infection in South African children.

Gene CNV not only contributes to differences in expression levels but also alters the cellular

distribution of FcγRs in response to activation by IgG complexes [53]. Variation in copy num-

ber of FCGR3A has been shown to correlate with FcγRIIIa surface expression and function of

NK cells [23]. In the present study, duplication or deletion of FCGR3A occurred either alone,

in combination with FCGR2C or simultaneously with both FCGR2C and FCGR3B and signifi-

cantly associated with HIV-1 acquisition. Specifically, we observed a trend towards an associa-

tion of FCGR3A duplications but due to the low frequency of FCGR3A duplication, further

studies of larger sample size are needed. We also observed 8.6% of the South African children

carried a CNR1 deletion, which leads to the formation of FCGR2C/2B chimeric genes. This

results in unusual expression of inhibitory FcγRIIb on NK cells and subsequently, reduced

ADCC activity [24]. Although, this genotype did not associate with HIV-1 acquisition.

The FcγRIIIb is a glycosylphosphatidylinositol (GPI)-anchored protein, expressed largely

on neutrophils [1]. Neutrophils from homozygous HNA1a individuals display higher affinity

for IgG1 and IgG3 and greater phagocytic capacity than homozygous HNA1b individuals [27].

We observed an association between FcγRIIIb-HNA1a/b/c allotype and perinatally acquired

HIV-1 infection. Specifically, homozygosity for the FcγRIIIb-HNA1a allotype produced a dele-

terious effect on perinatal HIV-1 acquisition. This is contrary to the protective effect observed

in the earlier study with a smaller South African cohort, primarily in the intrapartum infected

children [12]. The different observations between the two studies may be attributable to differ-

ent cohort compositions. The present study cohort was exposed to nevirapine for prevention

of MTCT and more likely infected in-utero, with few intrapartum infections. When the

breast-fed children were excluded from the analysis, the observed significant association with

FcγRIIb-232T, FcγRIIIb-HNA1a and FCGR3A copy number variants remained. These vari-

ants likely play a role in HIV-1 acquisition during the course of pregnancy and at the mater-

nal-foetal interface [12].

The study has several strengths. The genotyping method utilized is robust, as the MLPA

assay is able to assess functional SNPs and CNV within the FCGR2/3 locus simultaneously,

rather than investigating associations with perinatal HIV-1 infection using methodologies that

use candidate gene designs. Due to high homology of FCGR2/3 we checked for linkage dis-

equilibrium to identify functional interaction between the independently associated polymor-

phisms. A limitation of the study is that maternal data were not available. In particular, we

could not adjust for maternal viral load, a key determinant of MTCT of HIV-1 infection. Fur-

thermore, we could not assess the the effect of maternal FCGR genotypes on transmission.

The contribution of FcγRIIb to disease susceptibility has largely been studied in systemic

lupus erythematosus patients [47, 51] but there is paucity of data on association with HIV-1

acquisition. The findings of this study contribute to better understanding of the role of FcγRs

in HIV-1 infection in children and add to the growing evidence of a potential role for Fc-medi-

ated effector functions in modulating perinatal HIV-1 acquisition. As more FcγR variants
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associated with HIV-1 acquisition are reported, more studies are needed to critically evaluate

their clinical relevance in the development of preventive or therapeutic interventions.
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