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Epidemiological studies have observed that the seasonal peak incidence of influenza virus infection is sometimes separate from the 
peak incidence of human respiratory syncytial virus (hRSV) infection, with the peak incidence of hRSV infection delayed. This is 
proposed to be due to viral interference, whereby infection with one virus prevents or delays infection with a different virus. We 
investigated viral interference between hRSV and 2009 pandemic influenza A(H1N1) virus (A[H1N1]pdm09) in the ferret model. 
Infection with A(H1N1)pdm09 prevented subsequent infection with hRSV. Infection with hRSV reduced morbidity attributed to 
infection with A(H1N1)pdm09 but not infection, even when an increased inoculum dose of hRSV was used. Notably, infection with 
A(H1N1)pdm09 induced higher levels of proinflammatory cytokines, chemokines, and immune mediators in the ferret than hRSV. 
Minimal cross-reactive serological responses or interferon γ–expressing cells were induced by either virus ≥14 days after infection. 
These data indicate that antigen-independent mechanisms may drive viral interference between unrelated respiratory viruses that 
can limit subsequent infection or disease.
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Viral interference is a phenomenon whereby infection with one 
virus limits or delays infection with a second virus. It has been 
described in human epidemiological studies observing viral epi-
demic peaks [1–4], vaccine efficacy studies [5], studies assessing 
virus infections in clinical samples [6–8], animal studies [9–13] 
and in vitro infectivity studies [14]. Viral interference has been 
observed between a range of viruses, including between arbo-
viruses, such as yellow fever and dengue virus [15]; between 
different respiratory viruses [9, 13, 16]; and between influenza 
viruses of different types [10] and subtypes/lineages [10, 11].

At a population level, respiratory virus infections may dis-
play distinct epidemic peaks. Observational studies from the 
Netherlands, France, and Hong Kong showed that emergence 
of 2009 pandemic influenza A(H1N1) virus (A[H1N1]pdm09) 
delayed infections with human respiratory syncytial virus 
(hRSV) [1, 3, 4]. Influenza A virus infections also interrupted 
peak incidences of hRSV infections in Japan during 2000–2002 

[2] and in the Netherlands during 2003–2012 [3]. Negative 
associations between respiratory viruses have been reported 
when analyzing the proportion of coinfections with differ-
ent respiratory viruses, using swab specimens from patients  
[6, 7, 17]. A(H1N1)pdm09 was least likely to be detected with 
any of the other respiratory viruses tested, including hRSV, in 
samples from all age groups [8, 18]. Taken together, these data 
suggest that interference may occur between A(H1N1)pdm09 
and hRSV.

The ferret provides an ideal model of human influenza 
because animals can be directly infected with virus without 
adaptation and display similar disease symptoms to those in 
humans [19, 20]. Historically, the ferret has also been used 
to study hRSV infection [21–23], with recent studies assess-
ing the pathogenesis, immunity, and transmission of hRSV  
[24, 25]. Clinical symptoms are mild in ferrets infected with 
hRSV strains described to date [24, 25]. Previously, we used the 
ferret model to demonstrate that viral interference can occur 
following infection with human influenza A  and B viruses 
and will prevent, delay, or limit subsequent infection with an 
influenza virus of a different type, subtype, or lineage [10, 11]. 
Notably, this effect depends on the virus combinations and the 
order and timing of sequential infections [10, 11, 26]. We have 
established complementary influenza viral dynamics models 
that explain these observations via the innate immune response 
[27] and cross-reactive adaptive immune responses [28].
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Ecological data suggest that infection with A(H1N1)pdm09 
can prevent or delay infection with hRSV. Using our ferret mod-
els of influenza and hRSV, we have systematically investigated 
this hypothesis.

MATERIALS AND METHODS

Ferrets

Adult ferrets were housed at the Peter Doherty Institute for 
Infection and Immunity Bioresources Facility. Experiments 
were conducted with approval from the University of Melbourne 
Microbiology and Immunology Animal Ethics Committee, in 
accordance with the Australian National Health and Medical 
Research Council code of practice for the care and use of ani-
mals for scientific purposes. All ferrets were seronegative for 
antibodies to currently circulating influenza viruses and hRSV 
(Long and A2 strains) before use in experiments.

Viruses

A/Tasmania/2004/2009 (A[H1N1]pdm09) virus was passaged 
allantoically in embryonated hen’s eggs and stored at −80°C. 
The infectious influenza virus titer was measured by a 50% tis-
sue culture infectious dose (TCID50) assay [29], read by hem-
agglutination with turkey red blood cells. hRSV Long and A2 
strains were passaged [24]. Infectious hRSV titers were deter-
mined by plaque assay [24].

Virus Infection, Sampling, and Monitoring of Ferrets

Ferrets were infected intranasally with 103.5 TCID50 A(H1N1)
pdm09 in 500 µL and 105 plaque-forming units (PFU) of Long 
hRSV or 106 PFU of Long or A2 hRSV in 500 µL and monitored 
[24, 26]. Ferrets were housed in pairs, by infection group. Nasal 
wash specimens were collected and stored [24]. On the day of 
collection, viral RNA was extracted from 140-µL nasal wash 
specimens for quantitative polymerase chain reaction (qPCR) 
analysis. Blood samples were obtained from ferrets before pri-
mary virus infection and immediately before and 14 days after 
challenge, and serum was isolated. The proportional change 
in weight was calculated as the percentage difference from the 
weight on the day of challenge.

Reverse Transcription (RT)–qPCR Quantification of Viral Load in Ferret 

Nasal Wash Specimens

Four microliters of viral RNA [24] was assayed by RT-qPCR with 
A(H1N1)pdm09 hemagglutinin–specific primers/probes from the 
CDC Influenza Virus RT-qPCR Influenza A (H1/H3/H1pdm09) 
Subtyping Panel, obtained from the Influenza Reagent Resource 
(available at: http://www.influenzareagentresource.org/) and hRSV 
N–specific primers/probes [24]. Copy numbers for A(H1N1)
pdm09 viral RNA were calculated relative to plasmid pHW2000-A/
Tasmania/2004/2009 hemagglutinin; copy numbers for RSV RNA 
were calculated relative to a hRSV RNA standard [24].

qPCR Analysis of Ferret Cytokine and Chemokine Messenger 

RNA (mRNA)

mRNA was isolated from nasal wash samples [30]. mRNA 
expression of cytokines, chemokines, and housekeeping genes 
was quantified by qPCR [30, 31].

ViroSpot (VS) Assay

Infectious hRSV in nasal wash samples was measured using the 
VS assay [24].

Interferon γ (IFN-γ) Enzyme-Linked Immunospot (ELISpot) Assay

IFN-γ–producing cells were detected by a ferret IFN-γ 
ELISpotPlus assay (Mabtech). Single cell suspensions were pre-
pared from ferret retropharyngeal lymph nodes [31]. A  total 
of 5 × 104 lymph node cells were cultured with or without live 
influenza virus, hRSV, or 5 µg/mL concanavalin A (Sigma) for 
48 hours at 37oC in 5% CO2 [11].

Hemagglutination Inhibition (HI) Assay

Titers of antibodies to A/Tasmania/2004/2009 were mea-
sured using HI assays [31, 32]. Titers were expressed as the 
reciprocal of the highest dilution of serum for which hem-
agglutination was prevented. Geometric mean titers (GMTs) 
were calculated, with undetectable titers expressed as having 
a value of “5.” Seroconversion was defined as a titer of ≥40 
at the end of the experiment and at least a 4-fold rise from 
baseline.

VS Microneutralization (VS MN) Assay

Titers of antibodies that neutralize hRSV Long and A2 were 
measured using VS MN assays [24]. Seroconversion was defined 
as a titer ≥160 at the end of the experiment and an increase of at 
least 4-fold from the baseline titer.

Enzyme-Linked Immunosorbent Assay (ELISA) 

Antibodies that bind to the F glycoprotein of hRSV were 
detected by an ELISA [24].

Definitions of Infection Measurements and Statistics

Viral kinetics were assessed in viral RNA from nasal wash 
specimens. For A(H1N1)pdm09, >106 copies of hemaggluti-
nin/100 µL of nasal wash were positively correlated with rep-
licating virus, based on the TCID50 assay [10] and the level of 
infectious virus as measured by transmission in ferrets [33]. For 
hRSV, 103.8 copies of N/100 µL of nasal wash corresponded to 
a 50% chance of a sample being positive by the ViroSpot assay, 
as determined using a probit regression model (Supplementary 
Figure  1). Accordingly, samples were considered to be infec-
tious for hRSV when the amount of viral RNA exceeded 103.8 
copies/100  μL nasal wash and infectious for A(H1N1)pdm09 
when viral RNA exceeded 106 copies/100 µL of nasal wash for 
at least 1 measurement. Clinical signs (ie, weight loss and fever) 

http://www.influenzareagentresource.org/
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy184#supplementary-data
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were assessed daily, and seroconversion was measured 14 days 
after challenge.

Statistical Analysis

Statistical analysis was conducted using Prism, version 6.0g, 
unless otherwise indicated and is described in the figure legends.

RESULTS

A(H1N1)pdm09 Infection Can Prevent or Alter the Kinetics of hRSV 

Infection

Ferrets were first infected with A(H1N1)pdm09 virus then 
challenged with hRSV 3, 7, or 11 days later, or vice versa 
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Figure 1.  Virus shedding among ferrets infected with 2009 pandemic influenza A(H1N1) virus (A[H1N1]pdm09), followed at intervals of 3, 7, or 11 days by human respiratory 
syncytial virus (hRSV). A, Experimental plan and outcomes. Ferrets were infected via the intranasal route with A(H1N1)pdm09 and then challenged at various intervals (3, 
7, or 11 days later) with hRSV, or vice versa. Control ferrets were not infected with the primary infecting virus. Virus shedding in nasal wash specimens was assessed every 
second day after primary infection and daily after challenge. B–E, Ferrets underwent primary infection with 103.5 50% tissue culture infectious doses of A(H1N1)pdm09, 3.100 
followed by challenge with 105 plaque-forming units of hRSV strain Long 3 (C), 7 (D), or 11 (E) days later. Control animals were infected with hRSV alone (B). Quantitative 
reverse-transcription polymerase chain reaction analysis was used to detect the A(H1N1)pdm09 hemagglutinin gene (filled) and the hRSV N gene (striped) in viral RNA recov-
ered from nasal wash samples. The lower dotted lines indicate the limit of detection of infectious A(H1N1)pdm09, and the upper dotted lines indicate the limit of detection 
of infectious hRSV, as defined in Materials and Methods.
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(Figure  1A). The intervals between inoculations spanned the 
times of peak titer and clearance of both virus infections [24, 
30] and induction of humoral immunity (Figure 2A).

Primary infection with A(H1N1)pdm09 prevented sub-
sequent infection with hRSV in 3 of 4 ferrets when primary 
infection and challenge were separated by 3 days. Shedding of 
hRSV was minimal in the single ferret infected, compared with 
control animals (Figure  1B and 1C). No ferrets in this group 
seroconverted to hRSV (Figure 2Bi and 2Bii). Primary infection 
with A(H1N1)pdm09 prevented infection with hRSV in 2 of 4 
ferrets when infections were separated by 7 days (Figure 1D). 
Ferrets that did not shed virus did not seroconvert (Figure 2Bi 
and 2Bii), while ferrets that shed virus seroconverted to hRSV 
(Figure  2Bi and 2Bii). Prior infection with A(H1N1)pdm09 
did not prevent infection with hRSV 11 days later (Figure 1E), 
with all ferrets showing a similar pattern of virus shedding 
(Figure 1B) and antibody titers to control animals that received 
hRSV alone (Figure 2Bi and 2Bii).

The kinetics of hRSV shedding was examined in animals not 
protected from hRSV challenge. The peak of hRSV shedding 
was delayed in ferrets infected with A(H1N1)pdm09 followed 
by hRSV as compared to control animals infected with hRSV 
alone (median, 8 vs 6  days; P  =  .0091 by the Mann-Whitney 
test; Figure 2Ci). There was no change in the duration of virus 
shedding (Figure 2Cii).

Clinical signs following hRSV challenge were minimal 
(Supplementary Figure 2), consistent with our previous study 
[21]. All ferrets, except 1 control ferret infected with hRSV, 
maintained or gained weight (Supplementary Figure 2A–D).

hRSV Infection Can Reduce Morbidity Attributed to A(H1N1)pdm09 

Infection

Primary infection with hRSV did not prevent infection 
with A(H1N1)pdm09 at any interval; rather, animals shed 
both hRSV and A(H1N1)pdm09, indicative of coinfection 
(Figure  3). All animals seroconverted to A(H1N1)pdm09 
(Figure 2Biii) with similar GMTs as control animals (2153 [95% 
confidence interval {CI}, 1526–2779] at 3 days, 2153 [95% CI, 
1526–2779] at 7 days, and 3620 [95% CI, 2172–5069] at 11 days, 
compared with 2152 [95% CI, 1742–2563] in the control group; 
Figure  2Biv). The median duration of A(H1N1)pdm09 shed-
ding was increased in ferrets infected with hRSV followed by 
A(H1N1)pdm09 as compared to control animals infected with 
A(H1N1)pdm09 alone (8 vs 7  days; P  =  .0196 by the Mann-
Whitney test; Figure 2Civ). There was no change in the peak day 
of shedding (Figure 2Ciii).

Prior infection with hRSV did reduce disease following infec-
tion with A(H1N1)pdm09. The mean maximum weight loss 
(±SD) among 8 control ferrets infected with A(H1N1)pdm09 
was 10.6% ± 3.7% (Supplementary Figure  3A and 3D). The 
mean maximum weight loss (±SD) for ferrets in all test groups 
(n = 12) was 4.1% ± 2.3% (Supplementary Figure 3B, 3C, and 

3E). Thus, prior infection with hRSV significantly reduced mor-
bidity, as measured by weight loss, after challenge with A(H1N1)
pdm09 (P  =  .0002 by the Mann-Whitney test). No fever was 
detected following A(H1N1)pdm09 infection (Supplementary 
Figure 3F–J).

An Increased Dose of Infectious hRSV or a Different Strain of hRSV Does 

Not Prevent or Limit Subsequent A(H1N1)pdm09 Infection

Ferrets were infected (1) with an increased viral dose of the same 
hRSV strain, Long, or (2) with an alternate hRSV strain, A2 
(also at an increased viral dose), then challenged with A(H1N1)
pdm09 3  days later. A2 is a laboratory-adapted strain that is 
shed at similar levels to Long in ferrets and transmits between 
cohoused animals [24]. Infection of ferrets with a 10-fold higher 
inoculum (ie, 106 PFU) of hRSV Long led to a small increase 
in virus shedding on days 2–6 after infection, compared with 
animals infected with 105 PFU of hRSV Long, although these 
differences were not significant (Supplementary Figure 4).

Primary infection with 106 PFU hRSV Long or A2 did not 
prevent infection with A(H1N1)pdm09 when infections were 
separated by 3  days (Figure  4). All animals seroconverted to 
A(H1N1)pdm09 at similar levels (Figure 2Bv and 2Bvi). Most 
ferrets lost weight after A(H1N1)pdm09 infection. The mean 
maximum weight loss (±SD) among 4 ferrets infected with 
A(H1N1)pdm09 alone was 7.1% ± 3.0%, whereas the mean 
maximum weight loss (±SD) for ferrets (n  =  8) that received 
primary infection with hRSV prior to A(H1N1)pdm09 chal-
lenge was 4.9% ± 3.2% (P = .2828 by the Mann-Whitney test; 
Supplementary Figure 5A–C). There was no difference in fever 
(Supplementary Figure 5D–F) and no change to the kinetics of 
infection between animals that received a prior hRSV infection, 
compared with those that did not (data not shown).

A(H1N1)pdm09 Infection Induces Increased Levels of Proinflammatory 

Cytokines, Compared With hRSV Infection

Inflammation induced by viral infection may contribute to viral 
interference [10, 11]. We investigated the localized immune 
response following infection with hRSV or A(H1N1)pdm09. 
Nasal wash specimens were collected early (day 2) and later (day 
6/7) after infection, because the pattern of inflammatory medi-
ators changes throughout H(H1N1)pdm09 [30] and hRSV [24] 
infections. Expression of influenza virus matrix (M) mRNA was 
highest on day 2 after infection, whereas expression of hRSV 
nucleoprotein (N) mRNA was highest on day 6 (Figure 5A). Two 
days after infection, animals infected with A(H1N1)pdm09 had 
significantly higher levels of interferon β (IFN-β), granzyme B, 
IFN-γ, interleukin 6 (IL-6), monocyte chemoattractant protein 1 
(MCP-1), and tumor necrosis factor α (TNF-α) mRNA as com-
pared to animals infected with hRSV (Figure 5D, 5G–I, 5N, and 
5O). Expression of IFN-α and granzyme A mRNA was increased 
but not significantly (IFN-α, P  =  .097; granzyme A, P  =  .18; 
Figure 5E and 5F). On day 6/7 after infection, levels of granzyme 

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy184#supplementary-data
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of human respiratory syncytial virus (hRSV), and sera, collected on the days indicated, was assayed for neutralizing antibodies to the infecting virus, using hemagglutination 
inhibition (HI) or ViroSpot (VS) microneutralization (MN) assays. Data are geometric mean titers (GMTs) and 95% confidence intervals from 4 ferrets. B, After undergoing 
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after challenge by the titer of the serum sample collected prior to primary infection. Horizontal lines indicate the median of each group, samples above the dotted line are 
positive for seroconversion. Titers (Bii, Biv, and Bvi) were measured in serum samples collected 14 days after challenge, with horizontal lines indicating GMT, and samples 
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by quantitative reverse-transcription polymerase chain reaction analysis of viral RNA from nasal wash (NW) samples. For statistical analysis, titers or fold changes were 
compared between test and control groups, using 1-way Kruskal-Wallis analysis of variance with the Dunn multiple comparison test. *P < .05 and **P < .01. C, The kinetics 
of shedding was analyzed for all ferrets that shed challenge virus in Figures 1 and 3. Data from ferrets obtained at the 3-day, 7-day, and 11-day intervals were pooled into the 
test group. The number of days from challenge inoculation to the peak level of challenge virus shedding (Ci and Ciii) and the number of days the challenge virus was shed (Cii 
and Civ) was determined for each ferret in the indicated groups. Horizontal lines indicate median values. The number of days of virus shedding were compared between test 
and control groups, using the Mann-Whitney test. *P < .05 and **P < .01.
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A, granzyme B, IFN-γ, interleukin 17, and MCP-1 mRNA were 
significantly higher in animals infected with A(H1N1)pdm09 as 
compared to those infected with hRSV (Figure 5F–H, 5M, and 
5N). There was significant increase in expression of interleukin 
8 (IL-8) mRNA 2 days after infection and of interleukin 1β, IL-6, 
and IL-8 mRNAs 6/7 days after infection in ferrets infected with 
hRSV as compared to A(H1N1)pdm09 (Figure 5C, 5I, and 5J). 
This suggests a localized inflammatory response was induced 
after hRSV infection, which coincided with the increase in hRSV 
virus replication (Figure 5A).

To directly compare the magnitude of expression of cyto-
kines and chemokines induced by both virus infections, we 
assessed mRNA expression on the day after infection at which 

the level of virus shedding was highest (ie, day 2 for A(H1N1)
pdm09 and day 6 for hRSV). When assessed at these times, 
an equivalent fold change in mRNA expression was observed 
for RSV N and influenza virus M (Figure 5A). Infection with 
A(H1N1)pdm09 induced significantly higher levels of IFN-β 
(P = .00021; Figure 5D), IL-6 (P = .0088; Figure 5I), interleukin 
12p40 (P =  .0137; Figure 5L), MCP-1 (P =  .0018; Figure 5N), 
and TNF-α (P  =  .00078; Figure  5O) mRNA expression in 
ferrets, compared with hRSV. These data suggests there is 
increased inflammation in nasal tissues of animals infected with 
A(H1N1)pdm09 as compared to hRSV. There was no difference 
in expression of any cytokines or chemokines between ferrets 
infected with 105 or 106 PFU of hRSV Long (data not shown).
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There Is Minimal Cross-reactive Immunity Between A(H1N1)pdm09 

and hRSV

We have demonstrated that cross-reactive IFN-γ cellular 
responses can be detected between influenza B virus lineages 
and may contribute to viral interference [11]. Thus, we assessed 
whether cellular immunity induced by infection with A(H1N1)
pdm09 showed any cross-reactivity to hRSV. Whereas retro-
pharyngeal lymph node cells from A(H1N1)pdm09-infected 
ferrets were restimulated with A(H1N1)pdm09 (Figure 6B), few 
cells produced IFN-γ when stimulated with hRSV (Figure 6A). 
Lymph node cells from hRSV-infected ferrets were restimulated 
with hRSV in vitro, although at much lower levels (Figure 6A), 
and were not restimulated by A(H1N1)pdm09 (Figures  6B). 
Responses to concanavalin A were similar for all ferrets regard-
less of infection (Figure 6B). Moreover, there was limited sero-
logical cross-reactivity. Animals infected with A(H1N1)pdm09 
had high levels of influenza virus–specific neutralizing antibod-
ies (Figure 6C), yet minimal total serum or neutralizing anti-
bodies to hRSV (Figure 6D and 6E). Similarly, infection with 
hRSV induced total serum and neutralizing antibodies to hRSV 
but few antibodies that were reactive with A(H1N1)pdm09 
(Figure 6C–E).

DISCUSSION

We have demonstrated that infection with A(H1N1)pdm09 can 
prevent infection and replication of hRSV in a ferret model of 
human disease for up to 7 days. Infection with hRSV did not 

prevent subsequent infection with A(H1N1)pdm09; rather, ani-
mals were coinfected, albeit with reduced morbidity. Infection 
with A(H1N1)pdm09 leads to increased levels of proinflamma-
tory cytokines in the respiratory tract as compared to infection 
with hRSV. Overall, these data support the ecological observa-
tion that viral interference induced by A(H1N1)pdm09 infec-
tion delayed infection with hRSV in the winter of 2009–2010.

Infection with A(H1N1)pdm09 induced higher expression 
of MCP-1, IL-6, type I IFNs, TNF-α, IFN-γ, and granzyme A/B 
mRNAs as compared to hRSV infection. MCP-1 and TNF-α 
regulate the migration of macrophages/monocytes and natu-
ral killer (NK) cells into the respiratory tract. Macrophages 
produce MCP-1, TNF-α, and IL-6; thus, upregulation of these 
genes suggests an influx of macrophages and NK cells into 
the respiratory tissues [34]. NK cells produce IFN-γ, which 
activates macrophages and neutrophils and promotes T-cell 
proliferation and killing of virus-infected cells [34]. Because 
cytotoxic T lymphocytes and NK cells also produce gran-
zymes A/B, increased expression of IFN-γ and granzyme A/B 
mRNAs on day 6 after infection suggests recruitment/activa-
tion of these cells to the site of infection. IL-6 and type I IFNs 
are produced by respiratory epithelial cells, monocytes/mac-
rophages, and dendritic cells [34, 35]. IL-6 is a proinflamma-
tory cytokine, whereas type I  IFNs induce an antiviral state 
that may also limit replication and spread of hRSV [34, 35] 
It would be useful to explore the cellular infiltrate following 
A(H1N1)pdm09 and hRSV infections to gain further insight 
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into potential differences in the level and cellular composi-
tion present in local inflammation. Infection with A(H1N1)
pdm09 induced a 7-fold higher cellular IFN-γ recall response 
as compared to infection with hRSV in our study. Because 
there was no significant difference in IFN-γ responses to con-
canavalin A between the groups, this observation was not due 
to a difference in overall T-cell numbers but, instead, was due 
to an increase in the reactivation of A(H1N1)pdm09-specific 
cells. Taken together, these data suggest that infection with 
A(H1N1)pdm09 induces a robust cytokine and chemokine 
response that strongly stimulates the adaptive and memory 
immune responses. Conversely, infection with hRSV elicited 
a weaker and more limited cytokine and chemokine response 
that led to a reduced antigen-specific cellular response. 
However, it is possible that hRSV may not infect the ferret 
respiratory tract as efficiently as A(H1N1)pdm09 does, and 
this could result in reduced inflammatory responses. Yet, 
infected animals seroconverted at titers consistent for ster-
ilizing immunity, indicating a productive infection (data not 
shown) [24]. Furthermore, increasing the inoculum of hRSV 
did not significantly affect the pattern or amount of virus 
shedding nor the expression of inflammatory mediators, 
suggesting that the hRSV level was already maximal in this 
ferret model. Notably, increased expression of inflammatory 

mediators following infection with influenza virus as com-
pared to hRSV has been observed in studies assessing human 
clinical samples and in vitro airway epithelial cell cultures 
[36–39].

What is the mechanism of viral interference induced by 
A(H1N1)pdm09? The increased antiviral state and inflam-
mation observed after A(H1N1)pdm09 infection has the 
potential to prevent subsequent infection or delay shedding 
of hRSV, as was observed here. Both viruses predominantly 
infect ciliated airway epithelial cells, and we have shown that 
A(H1N1)pdm09 and hRSV Long replicated in the upper and 
lower respiratory tracts of ferrets [24, 30]. Infection with 
A(H1N1)pdm09 can also prevent infection with an influenza 
B/Yamagata virus [10]. There are minimal shared epitopes 
between influenza A and B viruses [40], and we showed that 
minimal cross-reactive IFN-γ–producing cells were induced 
between hRSV and influenza virus. These data suggest that 
short-lived mechanisms drive this effect, as no effect was 
detected in ferrets after one week or, as shown by others, in 
mice, when infections were separated by 35  days [41]. The 
timing of interference indicate that interactions between dif-
ferent viruses may also be important. It is possible that dif-
ferent mechanisms act on different virus combinations. Gene 
expression analysis of early markers of the immune response 
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of respiratory epithelium infected with the virus strains used 
in these studies may provide further insight.

It is notable that infection with hRSV reduced morbidity 
induced by A(H1N1)pdm09 infection. Although virus loads 
were not decreased in nasal wash specimens, virus shedding 
may be reduced in the lower respiratory tract, limiting clini-
cal disease. IL-8 mRNA expression was elevated in nasal wash 
samples of ferrets infected with hRSV as compared to A(H1N1)
pdm09. Increased IL-8 expression has been associated with 
milder disease in ferrets infected with pathogenic influenza 
virus strains, potentially mediated by rapid recruitment of 
neutrophils, which assist in clearing virus [42]. Analysis of the 
lung influenza virus loads in animals that have been infected 
with hRSV prior to challenge with A(H1N1)pdm09 would be 
of interest.

Epidemiological data reported in France described a 3–4-
week delay in the peak incidence of hRSV infections following 
the emergence of the A(H1N1)pdm09, compared with previ-
ous years [1]. Similarly, a delay of 2-4 weeks of the expected 
peak of hRSV was reported following an early influenza A 
season in the Netherlands. [3]. These population-level obser-
vations of viral interference arise from the interplay between 
(1) immunodynamics (ie, host-level viral interference), (2) 
heterogeneity between hosts (ie, differences in immunity 
to virus strains between individuals), and (3) transmission 
dynamics (ie, within or between different age groups) [43]. 
For influenza, these processes have been investigated in some 
detail. Others have demonstrated that a short period (ie, days 
rather than weeks) of viral interference at the host level may 
result in substantial separation between epidemic waves at 
the population level [43]. Our results provide the first host-
level immunodynamic evidence in support of these processes 
driving the epidemiological interactions observed previously 
in Europe [1, 2].

Our study has limitations. We used a circulating strain of 
A(H1N1)pdm09 from early 2009 and laboratory strains of 
hRSV, Long and A2. The Long and A2 strains induce con-
sistent infections and disease in ferrets, with characterized 
cytokine profiles [24]. Use of a circulating clinical isolate of 
hRSV may provide more-realistic data but was not available 
for these experiments. Interference between influenza virus 
and hRSV has been reported in epidemiological studies in 
various years [2, 3], suggesting that influenza viruses other 
than A(H1N1)pdm09 may also prevent/limit infection and 
replication of hRSV.

There are currently no licensed vaccines for hRSV. 
Identification of host- and/or virus-encoded factors that con-
tribute to viral interference provides a platform to facilitate 
development of novel prophylactic or therapeutic strategies 
to prevent or ameliorate respiratory infections, such as hRSV 
infection, that have a significant burden in the community, 
especially among young children.
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