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Epilepsy is a common clinical syndromewith recurrent neuronal discharges in the temporal lobe, cerebral cortex, and hippocampus.
Clinical antiepileptic medicines are often ineffective or of little benefit in 30% of epileptic patients and usually cause severe side
effects. Emerging evidence indicates the crucial role of inflammatory mediators in epilepsy. The current study investigates the role
of toll-like receptor 4 (TLR4) and its underlying mechanisms in kainic acid- (KA-) induced epileptic seizures in rats. Experimental
KA injection successfully initiated an epileptic seizure accompanied by increased expression of TLR4 in the prefrontal cortex,
hippocampus, and somatosensory cortex. In addition, calcium-sensitive phosphorylated Ca2+/calmodulin-dependent protein
kinase II (pCaMKII𝛼) increased after the initiation of the epileptic seizure. Furthermore, downstream-phosphorylated signal-
regulated kinase (ERK), c-Jun NH

2
-terminal protein kinase (JNK), and p38 kinase simultaneously increased in these brain areas.

Moreover, the transcriptional factor phosphorylated nuclear factor-𝜅B (pNF-𝜅B) increased, suggesting that nucleus transcription
was affected. Furthermore, the aforementioned molecules decreased by an electric stimulation (ES) of either 2Hz or 15Hz of the
ear in the three brain areas. Accordingly, we suggest that ES of the ear can successfully control epileptic seizures by regulating the
TLR4 signaling pathway and has a therapeutic benefit in reducing epileptic seizures.

1. Introduction

Temporal lobe epilepsy is a neurological disease causing ab-
normal discharges in the brain, particularly in the cortex and
hippocampus. Epilepsy is defined as an abnormal condition
of brain imbalance, with unpredictable electrical discharges
and seizures. According to clinical studies, 30% of epileptic
patients undergo uncontrolled epileptic seizures owing to
ineffective antiepileptic drugs. In general, several antiepilep-
tic drugs serve as antiexcitatory or enhanced inhibitory
agents to depress seizure occurrence. Accordingly, thesemed-
icines have severe side effects on cognition andmemory [1, 2].

Epilepsy is the result of an imbalance between excitatory and
inhibitory function and can be induced in animal models
by overactivation of excitatory neurotransmitter receptors
through a kainic acid (KA) injection, which is utilized to initi-
ate epileptic seizures [3]. Another method to induce epileptic
seizures involves blocking the inhibitory GABAA receptors,
and this can be performed using pilocarpine [4]. Increase of
GABA, including gabapentin and sodium valproate, was clin-
ically used for epileptic seizure control with little effectiveness
and numerous side effects.

Toll-like receptors (TLR) are mainly located on the cell
membrane, but TLR3 and TLR7 are located in the endosomal
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compartment [5]. TLR2, TLR3, and TLR4 are majorly ex-
pressed in microglia, astrocytes, and neurons, and their
expression is decreased because of physiological conditions.
In pathology-related epileptic seizures, TLRs are increased
[6–9]. Activation of TLR2 triggers the signaling pathway for
myeloid differentiation factor 88 (MyD88) and further acti-
vates nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-𝜅B) in the nucleus to increase proinflammatory
mediators [10]. Several studies have demonstrated that TLR4
is crucial for regulating inflammatory responses [11–13].
TLR4 is reported to recognize both exogenous pathogen-
associated and endogenous damage-associated molecular
patterns. TLR4 is also reported to act as a receptor, that is,
a marker of microglial activation in central nervous system
(CNS) inflammation [14, 15].

Acupuncture has been used in Asia for thousands of years
to treat diseases. A number of studies have indicated that elec-
troacupuncture (EA) can be used to treat stroke-induced
dementia [16], epilepsy [3], body weight control [17], Parkin-
son’s disease [18], depression [19], and pain [20, 21]. Initially,
scientists determined that acupuncture treatment worked
through the release of endogenous opiates [22], serotonin
[23], and adenosine [24]. The well-known mechanism of
acupuncture analgesia involves the release of opiates in CNS
[22] and adenosine in the peripheral nervous system (PNS)
[24]. A recent study showed that long-term electric stimula-
tion (ES) of the ear significantly reduces inflammatory medi-
ators in CA1 of the hippocampus in KA-induced epileptic
seizure in rats [3]. In the current study, we hypothesized that
TLR4 and relatedmolecules are crucial for epileptic seizure in
rats. ES of the ear is effective in treating KA-induced epilepsy
seizure by regulating TLR4 and related pathways in the rat
brain.

2. Materials and Methods

2.1. Animals. Male Sprague-Dawley (SD) rats weighing 200–
300 g were purchased from BioLASCO (BioLASCO Taiwan
Co., Ltd) and hosted in the animal center of China Medical
University (CMU). A 12–12 h light-dark cycle was main-
tained, and the room temperature was controlled at 25∘C.
Adequate food and water were provided. The Animal Care
and Use Committee of CMU approved the use of these ani-
mals. In addition, all procedures were performed according
to the Guide for the Use of Laboratory Animals (National
Academy Press).

2.2. Epileptic Seizure Rat Model. Thirty SD rats were placed
in a stereotaxic apparatus in a prone position under isoflu-
rane (Aerrane, Canada) anesthesia administered through a
vaporizing system (MATRXVIP 3000,Midmark, USA). Hair
from the rats’ scalp was cut using surgical scissors, and
a surgical knife was used to incise the scalp at the midline to
expose the skull. Stainless steel screw electrodes, which were
placed on the dura above the bilateral sensorimotor cortices,
served as recording electrodes. A reference electrode was
placed at the frontal sinus for electroencephalogram (EEG)
recordings. Bipolar electrical wires were passed through the
subcutaneous tissue and around the neck muscles for elec-
tromyogram (EMG) recordings.The electrodes were plugged

into a conductor, which was fixed to the skull with dental
acrylic cement. These electrodes were then connected
to EEG- and EMG-monitoring machines (MPIOOWSW,
BIOPAC Systems, Inc., CA, USA). Epileptic seizure behaviors
were confirmed using a video-recording epileptic behavioral
analysis system (SeizureScan,Clever Sys., Inc., Virginia,USA),
and both EEGandEMGfindingswere recorded during a con-
scious and free-moving state for at least 4 days after electrode
implantation. On EEG recordings, intraperitoneal injection
(i.p.) of KA (12mg/kg) was observed tomainly induce epilep-
tic seizure behaviors, namely, wet-dog behavior, facial myo-
clonia, paw tremors, and epileptiform discharges.The epilep-
tic seizures were confirmed on the observation of behavioral
changes, including wet-dog shakes, paw tremors, and facial
myoclonia in a freely moving and conscious state and on
that of epileptiform discharges based on EEG recordings.
Rats exhibitingmore than 250 wet-dog shakes andmore than
100 facialmyoclonia plus paw tremorswere selected. Epileptic
seizure behaviors were observed on EEG and EMG record-
ings at 15min before and 3 h after the KA injection. We fol-
lowed the methods of Liao et al., 2017 [3].

2.3. Grouping. The rats were randomly divided into five ex-
perimental groups, and each group contained six rats as fol-
lows: (1) control group, in which the rats were peritoneally
injected with phosphate buffer solution (PBS); (2) KA group,
in which the rats were injected with KA (12mg/kg i.p.); (3)
2Hz ES group, in which the rats received 2Hz ES (using
clip electrodes, with the cathode at the ear apex and anode
at the ear lobe; stimulus frequency: 2Hz; stimulus intensity:
visual ear twitch; stimulus duration: 20min/day, with each
ear receiving the stimulus for 10min alternately); (4) 15Hz
ES group, in which the rats received 15Hz ES (using clip
electrodes, with the cathode placed at the ear apex and anode
at the ear lobe; stimulus frequency: 15Hz; stimulus intensity:
visual ear twitch; stimulus duration: 20min/day, with each ear
receiving the stimulus for 10min alternately); (5) sham group,
in which the clip electrodes were connected to an electric
stimulator without electric charge. ES was applied for 3 days
per week for 20min/day for 3 weeks, starting from the day
following the KA injection. All the rats were sacrificed at 3
weeks, and their brains were removed.

2.4. Western Blot Analysis. Following brain extraction, the
frontal cortex, hippocampus, and somatosensory cortex were
immediately excised for protein extraction. The total protein
was prepared by homogenizing the hippocampi for 1 h at
4∘C in a lysis buffer containing 20mmol/L of imidazole: HCl
(pH 6.8), 100mmol/L of KCl, 2mmol/L ofMgCl

2
, 20mmol/L

of ethyleneglycoltetraacetic acid (pH 7.0), 300mmol/L of
sucrose, 1mmol/L of NaF, 1mmol/L of sodium vanadate,
1mmol/L of sodiummolybdate, 0.2%TritonX-100, and a pro-
teinase inhibitor cocktail. From each sample, 30 𝜇g protein
was extracted and analyzed through a bicinchoninic acid
protein assay. The protein was subjected to 10%–15% sodium
dodecyl sulfate-tris-glycine gel electrophoresis andwas trans-
ferred to a nitrocellulose membrane. The membrane was
blocked with 5% nonfat milk in TBST buffer (10mmol/L of
Tris, pH 7.5; 100mmol/L of NaCl; and 0.1% Tween 20) and
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incubated overnight at 4∘Cwith the primary antibodies (anti-
TLR4, anti-pCaMKII𝛼, anti-pERK, anti-pp38, anti-pJNK,
and anti-pNF𝜅B) in TBST containing bovine serum albumin.
Peroxidase-conjugated antibody (1 : 500) was used as the
secondary antibody. The membrane was assessed using the
ECL-Plus protein detection kit. We followed the methods of
Liao et al., 2017 [3].

2.5. IHC Staining. The rats were anesthetized with isoflurane
and then intracardially perfused with saline. The brains were
removed and postfixed in the same fixative overnight at 4∘C.
After briefly washing with PBS, the brains were transferred to
a 30% sucrose solution in 0.01M PBS for cryoprotection, and
coronal sections containing the hippocampal area were cut
into 16 𝜇m thick slices through cryosectioning. The sections
were preincubated for 10min at room temperature with 10%
normal goat serum in PBS to avoid nonspecific binding.
The sections were incubated overnight at 4∘C in PBS con-
taining the primary antibodies (anti-TLR4, anti-pERK, and
anti-pNF𝜅B).The sections were subsequently incubated with
the biotinylated-conjugated secondary antibody (diluted at
1 : 200; Vector, Burlingame, CA 94010, USA) for 10min
at room temperature, followed by incubation with avidin-
horseradish peroxidase complex (ABC kit, Genemed, USA).
The sections were then visualized using 3,3-diaminobenzi-
dine as a chromogen. During the incubation steps, the
sections were washed with PBS thrice for 10min per cycle.
The stained hippocampus slices were sealed under coverslips
and then examined for the presence of immune-positive
hippocampal neurons using a microscope (Olympus, BX-51,
Japan) with a 40x numerical aperture (NA = 1.4) objective.
We followed the methods of Liao et al., 2017 [3].

2.6. Statistical Analysis. All data are presented as mean ±
standard deviation. Statistical significance among the control,
KA, 2Hz ES, 15Hz ES, and sham groups was analyzed
through one-way ANOVA, followed by Tukey’s post hoc test.
A 𝑝 value of <0.05 was considered statistically significant.

3. Results

3.1. Effect of Ear ES on the Levels of TLR4 in Prefrontal
Cortex of KA-Induced Epileptic Seizure Rats. We first used
the western blot technique to investigate TLR4 and related
signaling pathways in the frontal cortex. Our results indicated
that TLR4 increased in KA-induced epileptic rat prefrontal
cortex (Figure 1(a), 149.67% ± 14.16%, 𝑝 < 0.05, 𝑛 = 6).
The potentiation was reversed by either 2Hz ES (Figure 1(a),
103.35% ± 10.29%, 𝑝 < 0.05, 𝑛 = 6) or 15Hz ES (Figure 1(a),
102.72% ± 10.27%, 𝑝 < 0.05, 𝑛 = 6). However, we did not ob-
serve this phenomenon in shamcontrols (Figure 1(a), 146.18%
± 17.45%, 𝑝 > 0.05, 𝑛 = 6). TLR4 activation can further initi-
ate Ca2+ influx into cell plasma. We then checked the Ca2+-
mediated second messenger pathway in rat prefrontal cortex.
We showed that pCaMKII𝛼 significantly increased by KA
injection (Figure 1(b), 156.28% ± 31.97%, 𝑝 < 0.05, 𝑛 =
6). This phenomenon was reversed by 2Hz ES (Figure 1(b),
90.62% ± 21.13%, 𝑝 < 0.05, 𝑛 = 6) and 15Hz ES (Figure 1(b),

95.41% ± 17.53%, 𝑝 < 0.05, 𝑛 = 6), except in sham controls
(Figure 1(b), 139.26% ± 21.73%, 𝑝 > 0.05, 𝑛 = 6). We also
checked the serial downstream molecules such as the MAPK
subfamily pERK, pp38, and pJNK. We found that immuno-
positive signals of pERK, pp38, and pJNK were increased
in the KA group (Figures 1(c)–1(e), 157.52% ± 13.28%,
155.22% ± 16.59%, 129.59% ± 17.04%, 𝑝 < 0.05, 𝑛 = 6). All
the results were reversed by 2Hz ES (Figures 1(c)–1(e),
102.15% ± 10.21%, 115.73% ± 10.02%, 88.63% ± 8.99%, 𝑝 <
0.05, 𝑛 = 6) and 15Hz ES (Figures 1(c)–1(e), 112.02%
± 12.77%, 107.51% ± 7.86%, 96.16% ± 10.35%, 𝑝 < 0.05, 𝑛 =
6), except in sham controls (Figures 1(c)–1(e), 160.89%
± 12.76%, 139.36% ± 12.96%, 119.05% ± 12.01%,𝑝 > 0.05, 𝑛 =
6). To investigate the transcriptional factor, we examined
the level of nucleus factor pNF𝜅B. Our data demonstrated
that pNF𝜅B increased in the prefrontal cortex of epileptic
rats (Figure 1(f), 143.81% ± 25.04%, 𝑝 < 0.05, 𝑛 = 6).
These results were reversed by 2Hz ES (Figure 1(f), 84.61%
± 16.78%, 𝑝 < 0.05, 𝑛 = 6) or 15Hz ES (Figure 1(f), 87.59%
± 19.7%,𝑝 < 0.05, 𝑛 = 6), except in shamcontrols (Figure 1(f),
126.4% ± 26.34%, 𝑝 > 0.05, 𝑛 = 6).

3.2. Effect of Ear ES on the Levels of TLR4 in Hippocampus
of KA-Induced Epileptic Seizure Rats. We then showed that
TLR4 increased in the hippocampus of KA-induced epileptic
rats (Figure 2(a), 124.45% ± 7.25%, 𝑝 < 0.05, 𝑛 = 6). This
result was reversed by 2Hz ES (Figure 2(a), 92.76% ± 7.39%,
𝑝 < 0.05, 𝑛 = 6) and 15Hz ES (Figure 2(a), 95.91% ± 7.75%,
𝑝 < 0.05, 𝑛 = 6), except in sham controls (Figure 2(a),
137.24% ± 10.54%, 𝑝 > 0.05, 𝑛 = 6). We also showed that
pCaMKII𝛼 further increased by KA injection (Figure 2(b),
135.53% ± 12.53%, 𝑝 < 0.05, 𝑛 = 6) and decreased by 2Hz ES
(Figure 2(b), 95.27% ± 7.63%, 𝑝 < 0.05, 𝑛 = 6) and 15Hz ES
(Figure 2(b), 94.76% ± 7.17%, 𝑝 < 0.05, 𝑛 = 6), except in
sham controls (Figure 2(b), 142.36% ± 18.66%, 𝑝 > 0.05, 𝑛 =
6). In addition, serial downstream molecules, such as pERK,
pp38, and pJNK, significantly increased in theKAgroup (Fig-
ures 2(c)–2(e), 167.18% ± 37.36%, 140.88% ± 17.74%, 155.81%
± 28.37%, 𝑝 < 0.05, 𝑛 = 6). These results were then attenu-
ated by 2Hz ES (Figures 2(c)–2(e), 95.07% ± 21.24%, 105.32%
± 17.18%, 83.93% ± 17.58%, 𝑝 < 0.05, 𝑛 = 6) or 15Hz ES
(Figures 2(c)–2(e), 100.52% ± 26.75%, 105.36% ± 19.71%,
89.31% ± 16.45%, 𝑝 < 0.05, 𝑛 = 6), except in sham controls
(Figures 2(c)–2(e), 150.55% ± 21.37%, 140.69% ± 25.59%,
131.58% ± 12.07%,𝑝 > 0.05, 𝑛 = 6). Furthermore, we demon-
strated that pNF𝜅B increased in the hippocampus of epileptic
rats (Figure 2(f), 134.59% ± 15.12%, 𝑝 < 0.05, 𝑛 = 6). The
potentiation was attenuated by both 2Hz ES (Figure 2(f),
102.94% ± 10.27%,𝑝 < 0.05, 𝑛 = 6) and 15Hz ES (Figure 2(f),
109.48% ± 9.42%, 𝑝 < 0.05, 𝑛 = 6), except in sham controls
(Figure 2(f), 138.48% ± 16.27%, 𝑝 > 0.05, 𝑛 = 6).

3.3. Effect of Ear ES on the Levels of TLR4 in Somatosensory
Cortex of KA-Induced Epileptic Seizure Rats. We further
checked if the TLR4 signaling pathway was involved in the
somatosensory cortex and found that TLR4 increased in
the somatosensory cortex of the epileptic rats (Figure 3(a),
132.07% ± 8.91%, 𝑝 < 0.05, 𝑛 = 6). This phenomenon was
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Figure 1: Expression levels of TLR4 and related molecular proteins in the prefrontal cortex. (a) TLR4, (b) pCaMKII𝛼, (c) pERK, (d) pp38,
(e) pJNK, and (f) pNF𝜅B expression levels in the prefrontal cortex of the PBS, KA, 2Hz, 15Hz, and sham ES groups (from left to right).
PBS = phosphate-buffered saline; KA = kainic acid-induced epileptic rats; 2Hz ES = 2Hz electrical stimulation of the ear; 15Hz ES = 15Hz
electrical stimulation of the ear; sham= sham-operated electrical stimulation of the ear. ∗𝑝 < 0.05 compared with the control group. #𝑝 < 0.05
comparedwith theKAgroup.Thewestern blot bands at the top indicate the target protein.The lower bands correspond to the internal controls
(𝛽-actin or 𝛼-tubulin).

reversed by 2Hz ES (Figure 3(a), 102.42% ± 10.69%, 𝑝 <
0.05, 𝑛 = 6) and 15Hz ES (Figure 3(a), 103.57% ± 7.79%,
𝑝 < 0.05, 𝑛 = 6), except in sham controls (Figure 3(a),
129.75% ± 10.02%, 𝑝 > 0.05, 𝑛 = 6). We further determined
that pCaMKII𝛼 increased in epileptic rats (Figure 3(b),
129.45% ± 17.92%, 𝑝 < 0.05, 𝑛 = 6), and this increase was
reduced by both 2Hz ES (Figure 3(b), 94.55% ± 12.38%, 𝑝 <
0.05, 𝑛 = 6) and 15Hz ES (Figure 3(b), 98.77% ± 14.92%,

𝑝 < 0.05, 𝑛 = 6), except in sham controls (Figure 3(b),
134.73% ± 25.33%, 𝑝 > 0.05, 𝑛 = 6). Similarly, pERK, pp38,
and pJNK also increased in the KA group (Figures 3(c)–3(e),
134.69% ± 13.49%, 153.43% ± 12.26%, 139.17% ± 11.44%, 𝑝 <
0.05, 𝑛 = 6), and this increase was reversed by both 2Hz
ES (Figures 3(c)–3(e), 100.69% ± 10.09%, 112.83% ± 6.03%,
102.01% ± 7.47%, 𝑝 < 0.05, 𝑛 = 6) and 15Hz ES (Fig-
ures 3(c)–3(e), 101.32% ± 7.82%, 105.35% ± 8.18%, 103.92%
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Figure 2: Expression levels of TLR4 and related molecular proteins in the hippocampus. (a) TLR4, (b) pCaMKII𝛼, (c) pERK, (d) pp38, (e)
pJNK, and (f) pNF𝜅B expression levels in the hippocampus of the PBS, KA, 2Hz, 15Hz, and sham ES groups (from left to right). PBS =
phosphate-buffered saline; KA = kainic acid-induced epileptic rats; 2Hz ES = 2Hz electrical stimulation of the ear; 15Hz ES = 15Hz electrical
stimulation of the ear; sham= sham-operated electrical stimulation of the ear. ∗𝑝 < 0.05 comparedwith the control group. #𝑝 < 0.05 compared
with the KA group.The western blot bands at the top indicate the target protein.The lower bands correspond to the internal controls (𝛽-actin
or 𝛼-tubulin).

± 9.62%, 𝑝 < 0.05, 𝑛 = 6), except in sham controls (Fig-
ures 3(c)–3(e), 126.57% ± 8.52%, 138.17% ± 8.02%, 129.19 ±
18.78%, 𝑝 > 0.05, 𝑛 = 6). Furthermore, we determined that
pNF𝜅B increased in the somatosensory cortex of epileptic
rats (Figure 3(f), 143.11% ± 14.24%, 𝑝 < 0.05, 𝑛 = 6), and
this potentiation was attenuated by both 2Hz ES (Figure 3(f),
91.13% ± 8.55%, 𝑝 < 0.05, 𝑛 = 6) and 15Hz ES (Figure 3(f),
95.16% ± 9.84%, 𝑝 < 0.05, 𝑛 = 6), except in sham controls
(Figure 3(f), 121.05 ± 10.12%, 𝑝 > 0.05, 𝑛 = 6).

3.4. Effect of Ear ES on Immunohistochemistry Analysis of
TLR4-pERK-pNF𝜅B Expression in Hippocampus and Somato-
sensory Cortex. Immunohistochemical staining, visualized
in brown color, demonstrated that TLR4 expression level was
expressed in control rat hippocampus and somatosensory
cortex, which further increased in KA-induced epileptic rats.
The overexpression of TLR4 was reversed by both 2Hz ES
and 15Hz ES, except in sham controls (Figure 4). A similar
pattern was observed in pERK expression; we found that
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Figure 3: Expression levels of TLR4 and related molecular proteins in the somatosensory cortex. (a) TLR4, (b) pCaMKII𝛼, (c) pERK, (d)
pp38, (e) pJNK, and (f) pNF𝜅B expression levels in the somatosensory cortex of the PBS, KA, 2Hz, 15Hz, and sham ES groups (from left to
right). PBS = phosphate-buffered saline; KA = kainic acid-induced epileptic rats; 2Hz ES = 2Hz electrical stimulation of the ear; 15Hz ES =
15Hz electrical stimulation of the ear; sham = sham-operated electrical stimulation of the ear. ∗𝑝 < 0.05 compared with the control group.
#𝑝 < 0.05 compared with the KA group. The western blot bands at the top indicate the target protein. The lower bands correspond to the
internal controls (𝛽-actin or 𝛼-tubulin).

pERK increased after KA injection, and this was reversed by
both 2HzES and 15HzES, except in sham controls (Figure 5).
We further determined that pNF𝜅B also increased in the KA
group, and this potentiationwas reversed by both 2HzES and
15Hz ES, except in sham controls (Figure 6). All data were
analyzed and plotted as Figure 7.

4. Discussion

The current study provides information about the molecular
effects of ES on TLR4-related mechanisms in KA-induced
epileptic rats. Several articles have suggested that brain
inflammation is an intrinsic feature of epileptic seizures [25].
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Figure 4: Expressions of TLR4 in the hippocampus and somatosensory cortex of PBS, KA, 2Hz ES, 15Hz ES, and sham rats. Arrows identify
immunopositive neurons.

In inflammatory conditions of CNS, TLR can be activated
by inflammatory mediators such as interleukin-1 (IL-1) and
high-mobility group box-1 (HMGB1). Activation of TLR fur-
ther triggers a signaling pathway comprising cAMP, NF𝜅B,
and COX-2 [25]. Song et al. reported that both the mRNA
and protein expression of TLR4 in rat hippocampuswere reli-
ably increased with pentylenetetrazole injection [26]. They
suggested that TLR4 contributes to epilepsy and may also
contribute to epileptic therapy [26]. Luan et al. reported that
HMGB1 was detected in the cytoplasm of astrocytes in the
cortex, suggesting that it is released by glial cells [27]. Levels
of HMGB1 and its receptors were increased in inflammatory
conditions of the cortex. In brain inflammation, stronger
TLR was observed in gray matter [28]. A recent article
reported that activation of TLR4, which is determined by
agonist injection, influences neuronal excitability to recruit
sterile inflammatory responses [29].We previously suggested
that COX-2 levels in the hippocampus and the number
of COX-2 immunoreactive cells in the hippocampal CA1
region increased after KA-induced epileptic seizures, and
this increase was reduced through a 6-week application of
ES at the ear or EA at the ST36-ST37 acupoints [3]. This
has an anti-inflammatory effect, which can reduce COX-2

overexpression, suggesting that ES and EA are beneficial for
the treatment of epileptic seizures [3]. Our results indicated
that 2Hz or 15Hz ES successfully controlled epileptic seizures
by regulating the TLR4 signaling pathway.

Han reported that there are four endogenous opioids,
namely, 𝛽-endorphin, enkephalin, endomorphin, and dynor-
phin that can be released by EA in the brain [22]. They
indicated that 𝛽-endorphin is released mainly around the
periaqueductal graymatter at 2Hz and 15Hz EA. In addition,
enkephalin and endomorphin increasedmajorly in the spinal
cord by 2Hz EA. Furthermore, dynorphin is released at the
spinal cord level but only under high frequency EA. EA
is suggested to be involved in the inflammatory response
through the hypothalamus-pituitary-adrenal axis and the
nervous system [30]. EA is also indicated to reduce the
inflammation-induced expression of neurokinin-1 in the
spinal cord dorsal horn (SCDH) of rats [31]. Activation of
opioid receptors markedly reduces peripheral inflammation
in local tissues [32] and suppresses Ca2+ currents in primary
afferent neurons [33]. Several reports suggest that TLR4 plays
a crucial role in epilepsy [27, 29, 34]. Accordingly, we suggest
that ES increases the level of opiates in both peripheral and
central levels to reduce TLR4 expression through inhibition
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Figure 5: Expressions of pERK in the hippocampus and somatosensory cortex of PBS, KA, 2Hz ES, 15Hz ES, and sham rats. Arrows identify
immunopositive neurons.

of inflammatory responses. In Chinese medicine, ES or EA
is usually used to treat epilepsy. Auricular sensory afferents
constituted by vagus, glossopharyngeal, and facial nerves can
contribute to parasympathetic nerve activity [35–37]. Vagus
nerve stimulation has been used to reduce the occurrence
of seizures in pediatric patients with intractable epilepsy [37,
38]. ES has also been reported to activate parasympathetic
tone to reduce epilepsy [38]. Recently, acupuncture is report-
ed to reduce hippocampal neuronal death through inhibition
of inflammatory mediators in epileptic KA-induced mice
[3]. Our recent study reported that pERK1/2 expression was
increased in the KA-induced seizure rats and can be further
reduced by both auricular and somatic EA at 6 weeks after
induction [39]. Li et al. also indicated that spontaneous sei-
zures and associated ERK activation could contribute to the
proliferation in epilepsy model [40]. In addition, recent arti-
cle showed that NF𝜅B signaling pathway is crucial in a spike-
wave discharges (SWD) characterizing absence epilepsy in
WAG/Rij rats [41].We suggested that 2Hz or 15HzESsuccess-
fully controlled epileptic seizures by attenuating the pERK
and pNF𝜅B signaling pathway.

In conclusion, ES treatment leads to a decrease in inflam-
matory TLR4 expression in the prefrontal cortex, hippo-
campus, and cerebral cortex of epileptic rats. Furthermore,

pCaMKII𝛼, pERK, pp38, and pJNK are involved in this
inflammatory process. Moreover, transcriptional pNK𝜅B lev-
els in the three brain areas also were altered by 2 or 15Hz ES.
Our data strongly demonstrate an anti-inflammatory effect
of ES in KA-induced epileptic rats. Thus, the knowledge
obtained here supports its use in the treatment of epilepsy.
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