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Reward boosts reinforcement-based motor learning

Pierre Vassiliadis,1,2,6,* Gerard Derosiere,1 Cecile Dubuc,1 Aegryan Lete,1 Frederic Crevecoeur,1,3

Friedhelm C. Hummel,2,4,5 and Julie Duque1

SUMMARY

Besides relying heavily on sensory and reinforcement feedback, motor skill
learning may also depend on the level of motivation experienced during training.
Yet, how motivation by reward modulates motor learning remains unclear. In 90
healthy subjects, we investigated the net effect of motivation by reward on mo-
tor learning while controlling for the sensory and reinforcement feedback
received by the participants. Reward improved motor skill learning beyond per-
formance-based reinforcement feedback. Importantly, the beneficial effect of
reward involved a specific potentiation of reinforcement-related adjustments in
motor commands, which concerned primarily the most relevant motor compo-
nent for task success and persisted on the following day in the absence of reward.
We propose that the long-lasting effects of motivation on motor learning may
entail a form of associative learning resulting from the repetitive pairing of the
reinforcement feedback and reward during training, amechanism that may be ex-
ploited in future rehabilitation protocols.

INTRODUCTION

Motor skill learning is the process by which the speed and accuracy of movements improve with practice

(Krakauer et al., 2019). A significant amount of research has long since demonstrated that motor learning

relies on sensory feedback, which allows reducing movement errors (e.g., Shadmehr et al., 2010; Tseng

et al., 2007). More recently, some studies have shown that reinforcement feedback, allowing the adjust-

ment of movements based on knowledge of performance, also plays a role in motor learning (Bernardi

et al., 2015; Galea et al., 2015; Mawase et al., 2017; Palminteri et al., 2011; Therrien et al., 2016; Wachter

et al., 2009). The contribution of reinforcement feedback to motor learning seems to be particularly impor-

tant when the quality of the available sensory feedback is low (Cashaback et al., 2017; Izawa and Shadmehr,

2011). These observations suggest that reinforcement feedback may be critical for motor rehabilitation

(Quattrocchi et al., 2017; Roemmich and Bastian, 2018), where patients often exhibit sensory impairments

in addition to their motor disability (Connell, 2008; Hepworth et al., 2016). However, before clinical trans-

lation can occur, significant research is required to characterize the optimal conditions in which sensory and

reinforcement feedback can improve motor learning.

One key factor that may influence sensory- and reinforcement-based motor learning is motivation (Lew-

thwaite andWulf, 2017). This idea is in line with an ethological perspective: in nature, animals are motivated

to learn efficiently motor behaviors that have been repetitively associated with rewarding outcomes, in or-

der to increase the likelihood of reaching these outcomes again in the future (Barron et al., 2010; Yamazaki

et al., 2016). Whereas past research on motivation has traditionally focused on the impact of reward on de-

cision-making (Balleine and O’Doherty, 2010; Bush et al., 2002; Dayan and Niv, 2008; Derosiere et al.,

2017b; 2017a; Gershman and Daw, 2017; Hare et al., 2011; O’Doherty, 2004; Padoa-Schioppa, 2011;

Schultz, 2015; Shima and Tanji, 1998), there has been a recent rise in interest regarding its influence on mo-

tor learning (Therrien et al., 2016, Mawase et al., 2017, Uehara et al., 2019; Vassiliadis et al., 2019; Chen et al.,

2017; Sporn et al., 2020, Vassiliadis and Derosiere, 2020, Holland et al., 2019).

To tackle this issue, previous studies have investigated motor skill learning with different types of reinforce-

ment and reward. This research showed that the combination of reinforcement (providing knowledge of

performance) and reward (providing motivation) can influence motor skill learning (e.g., Abe et al., 2011;

Steel et al., 2019, 2016; Wachter et al., 2009; Wilkinson et al., 2015). A key aspect of the aforementioned

studies is that they considered reinforcement and reward in a bonded way, with the rewarded participants
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being also the ones receiving performance-based reinforcement feedback. The assumption underlying this

approach is that receiving knowledge of performance (e.g., points or binary feedback) provides a form of

intrinsic reward that by itself increases motivation to perform well (Leow et al., 2018). However, in addition

to the intrinsically rewarding properties of reinforcement, knowledge of performance also provides a

learning signal to the motor system that can influence motor learning (Bernardi et al., 2015; Galea et al.,

2015; Huang et al., 2011; Kim et al., 2019; Leow et al., 2018; Mawase et al., 2017; Nikooyan et al., 2015;

Shmuelof et al., 2012; Therrien et al., 2016; Uehara et al., 2018). In contrast, extrinsic reward increases moti-

vation to perform well without conveying any additional learning signal (Berke, 2018). In accordance with a

dissociable role of reinforcement and reward in motor learning, past research has shown that certain sub-

populations of neurons in the motor cortex (i.e., a key region of the motor learning network; Krakauer et al.,

2019) are responsive to the outcome of previous movements irrespective of reward (Levy et al., 2020), while

others respond to reward regardless of the previous outcome (Ramkumar et al., 2016). Put together, these

elements indicate that estimating the net impact of reward on motor learning requires controlling for the

effect of the reinforcement feedback on the learning process. Based on these elements, we experimentally

uncoupled knowledge of performance from reward to test the hypothesis that reward induces a specific

improvement in motor skill learning and maintenance.

Another important question relates to how, at the single-trial level, motivation by reward may affect motor

skill learning and maintenance. As such, computational models of motor learning posit that movement er-

rors can be corrected based on sensory and reinforcement feedbacks on a trial-by-trial basis (Cashaback

et al., 2017), with possible interactions between these two processes (Izawa and Shadmehr, 2011). Sen-

sory-based motor learning relies on the ability to produce motor commands that match predicted sensory

consequences (e.g., visual, somatosensory consequences; Sidarta et al., 2016; Bernardi et al., 2015).

Conversely, reinforcement-based motor learning is thought to depend on the ability to efficiently regulate

between-trial motor variability based on previous outcomes (Dhawale and Smith, 2017; Pekny et al., 2015;

Sidarta et al., 2016; Therrien et al., 2016; Uehara et al., 2019; Wu et al., 2014). Importantly, in this framework,

reward may have a global influence, enhancing both sensory- and reinforcement-based adjustments from

one trial to another, or could have a more specific effect, boosting only one of the two learning systems

(Galea et al., 2015; Kim et al., 2019). Here, we investigated the impact of reward on sensory- and reinforce-

ment-based motor adjustments during motor skill learning at the single-trial level, in a situation where they

can both contribute to the learning process.

Healthy participants (n = 90) trained on a pinch-grip force reproduction task with limited sensory feed-

back over two consecutive days while we manipulated the reinforcement feedback and reward on Day 1.

By removing visual feedback on most trials, we ensured that the learning process would largely depend

on the integration of somatosensory and reinforcement feedbacks (Bernardi et al., 2015; Izawa and Shad-

mehr, 2011; Sidarta et al., 2019). Moreover, subjects were distributed in three groups where training

involved sensory (S) feedback only (Group-S; n = 30), sensory and reinforcement (SR) feedback (Group-

SR; n = 30), or both feedbacks and a reward (SRR, Group-SRR; n = 30). Monetary gains were used as

they are known to strongly modulate the motivation to engage in various tasks (Grogan et al., 2020a,

2020b; Manohar et al., 2015; Schultz, 2015; Shadmehr et al., 2019). We investigated how participants

learned and maintained the skill depending on the type of feedback experienced during training. We

found that while sensory and reinforcement feedbacks were not sufficient for the participants to learn

the task in the present study, adding reward during training markedly improved motor performance.

Reward-related gains in motor learning were maintained on Day 2, even if subjects were no longer

receiving a reward on that day. Importantly, single-trial analyses showed that reward specifically

increased reinforcement-related adjustments in motor commands, with this effect being maintained

on Day 2, in the absence of reward. The pinch-grip force task used here also allowed considering adjust-

ments separately for the speed of force initiation and the accuracy of the performed force, both in terms

of variability and amplitude. Importantly, we found that reward did not affect the control of all motor

components in the same way, with the amplitude component turning out to be the more strongly influ-

enced by the presence of reward.

Altogether, the present results provide evidence that motivation by reward can improve motor skill

learning and maintenance even when the task is performed with the same knowledge of performance.

More importantly, this effect seems to entail a specific potentiation of reinforcement-related adjustments

in the motor command at the single-trial level. These behavioral results are important to characterize the
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mechanisms by which reward can improve motor learning and may guide future motivational interventions

for rehabilitation (McGrane et al., 2015).

RESULTS

Ninety healthy participants practiced a pinch-grip force task over two consecutive days. The task required

participants to hold a pinch grip sensor in their right hand and to squeeze it as quickly as possible in order

to move a cursor displayed on a computer screen in front of them, from an initial position to a fixed target

(Figure 1A). The force required to reach the target (TargetForce) corresponded to 10% of the individual

maximum voluntary contraction (MVC). In most of the trials (90%), participants practiced the task with

very limited sensory feedback: The cursor disappeared when the generated force reached half of the

TargetForce. In the remaining trials (10%; not considered in the analyses), full vision of the cursor allowed

A

B C

Figure 1. The motor skill learning task

(A) Time course of a trial in the motor skill learning task. Each trial started with the appearance of a sidebar and a target.

After a variable preparatory phase (800-1000ms), a cursor appeared in the sidebar, playing the role of a ‘‘Go’’ signal. At

this moment, participants were required to pinch the force transducer to bring the cursor into the target as quickly as

possible and maintain it there until the end of the task (2000ms). Notably, on most trials, the cursor disappeared halfway

toward the target (as displayed here). Then, a reinforcement feedback was provided in the form of a colored circle for

1000ms and provided binary knowledge of performance (Success or Failure in Block-SR and Block-SRR) or was non-

informative (Block-S). The reinforcement feedback was determined based on the comparison between the Error on the

trial and the individual success threshold (computed in the Calibration block, see STARMethods). Finally, each trial ended

with a reminder of the color/feedback association and potential reward associated to good performance (1500ms).

(B) Experimental procedure. On Day 1, all participants performed two familiarization blocks in a Block-SR condition. The

first one involved full vision of the cursor while the second one provided only partial vision and served to calibrate the

difficulty of the task on an individual basis (See STAR Methods). Then, Pre- and Post-training Block-SR assessments were

separated by 6 blocks of training in the condition corresponding to each individual group (Block-S for Group-S, Block-SR for

Group-SR and Block-SRR for Group-SRR). Day 2 involved a Familiarization block (with partial vision) followed by a Re-test

assessment (4 Block-SR pooled together). There was no recalibration on Day 2.

(C) Example of a force profile. Force applied (in % of MVC) during the task. Participants were asked to approximate the

TargetForce as quickly and accurately as possible to minimize the Error (gray shaded area). As shown on the Figure, this

Error depended on the speed of force initiation (ForceInitiation) and on the accuracy of themaintained force, as reflected by

its amplitude with respect to the TargetForce (ForceAmplError) and its variability (ForceVariability). Note that the first 150ms of

each trial were not considered for the computation of the Error.
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participants to be visually guided toward the TargetForce and therefore to be reminded of the somatosen-

sory sensation corresponding to the TargetForce. Hence, in this task, learning reliedmostly on the successful

reproduction of the TargetForce based on somatosensory feedback (Raspopovic et al., 2014), with the target

somatosensory sensation being regularly reminded to the participants through the full vision trials. To learn

the task, subjects were provided with six training blocks (40 trials each; i.e., total of 240 training trials; Fig-

ure 1B), during which Group-S subjects trained with sensory feedback only (Block-S), Group-SR subjects

trained with sensory and reinforcement feedback (Block-SR), and Group-SRR subjects trained with both feed-

backs and a monetary reward (Block-SRR). Notably, the groups were comparable for a variety of features

including age, gender, TargetForce, difficulty of the task, muscular fatigue, and final monetary gains (see

STARMethods, Table 1). Beside the training blocks, all participants performed the task in a Block-SR setting

so that the familiarization, the pre- and post-training assessments on Day 1, as well as Re-test on Day 2,

occurred in the same conditions in the three experimental groups. This design allowed us to investigate

the effect of reinforcement and reward, both on learning and on maintenance of the learned motor skill.

Importantly, in Block-SR and Block-SRR, the binary reinforcement feedback depended on the Error, esti-

mated as the absolute difference between the TargetForce and the exerted force over the whole trial

(excluding the first 150 ms, Figure 1C; Abe et al., 2011; Steel et al., 2016). Hence, to be successful, partic-

ipants had to reduce the Error by approximating the TargetForce as quickly and accurately as possible.

Reward improves motor skill learning

Participants’ initial performancewas comparable in all groups: TheError in the Pre-trainingblock equaled 3.14G

0.18%MVC in Group-S, 3.33G 0.17%MVC in Group-SR and 3.30G 0.15% MVC in Group-SRR (one-way ANOVA:

F(2,87) = 0.37, p = 0.69, partial h2 = 0.0084; Figure 2A). In contrast, skill learning, estimated as the training-related

reduction in Error onDay 1 (Normalized Error = Post-training Error expressed in% of Pre-training Error) varied as

a function of the group (Figure 2B). As such, learning was stronger in the Group-SRR compared to the two other

groups (ANOVA: F(2,87) = 4.41, p= 0.015, partialh2 = 0.092; post-hocs:Group-SRR vs. Group-SR: p= 0.014, Cohen’s

d= 0.60;Group-SRR vs. Group-S: p= 0.010, d= 0.98), with no significantdifferencebetweenGroup-S andGroup-SR
(p = 0.91, d = 0.025). This was confirmed by a subsequent analysis showing that learning was significant in the

Group-SRR (Post-training = 80.7 G 3.5% of Pre-training; single-sample ttest against 100%: t(29) = �5.49, p <

0.00001, d = �1.42), but not in Group-S (Post-training = 103.9 G 5.15% of Pre-training; t(29) = 0.75, p = 0.46,

d = 0.19) or in Group-SR (Post-training = 102.9 G 8.80% of Pre-training; t(29) = 0.33, p = 0.745, d = 0.085). Skill

maintenance on Day 2, estimated as the Error at Re-test in percentage of Pre-training, was not significantly

different between the groups (F(2,87) = 1.96, p = 0.15, partial h2 = 0.043; Figure 2C). However, in Group-SRR,

we found that the Error at Re-test remained lower than at Pre-training (Re-test = 85.6 G 5.01% of Pre-training;

single-sample ttest against 100%: t(29) = �2.88, p < 0.0073, d = �0.74) demonstrating that the skill was main-

tained, while this effect was not significant in the two other groups (Group-S: Re-test = 100.5 G 4.63% of Pre-

training; t(29) = 0.11, p = 0.92, d = �0.12, Group-SR: Re-test = 97.0 G 6.82% of Pre-training; t(29) = �0.45, p =

0.66, d = �0.028). Hence, while reinforcement alone did not contribute to reduce the Error in this task, its com-

binationwith reward successfully helped participants to learn andmaintain the skill, as also evident when consid-

ering the averaged success rates (Figure 2D) and individual force profiles (Figure 2E).

Table 1. Group features and muscle fatigue in the three experimental groups (mean G SE)

Group-S (n = 30) Group-SR (n = 30) Group-SRR (n = 30) F(2,87) p

Age (years) 23.9 G 0.67 23.3 G 0.50 23.9 G 0.43 0.34 0.71

Gender (number of females) 19 19 20 / /

Success threshold (% MVC) 2.8 G 0.01 2.8 G 0.01 2.9 G 0.01 0.13 0.88

TargetForce (Newtons) 5.3 G 0.30 4.7 G 0.25 5.1 G 0.21 1.16 0.31

Sensitivity to reward (score) 37.1 G 1.18 35.6 G 1.11 37.5 G 1.14 0.79 0.46

Sensitivity to punishment

(score)

42.3 G 1.59 42.0G 1.59 40.9 G 1.46 0.22 0.81

Muscle fatigue – Day 1

(MVCPOST in % of MVCPRE)

95.7 G 2.39 99.0 G 2.61 98.6 G 2.57 0.51 0.60

Muscle fatigue – Day 2

(MVCPOST in % of MVCPRE)

94.6 G 2.74 93.9 G 1.52 97.0 G 1.89 0.60 0.55

The 2 last columns provide the results of one-way ANOVAs’ ran with the factor GroupTYPE.
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Reward boosts reinforcement-related adjustments during motor skill learning

To identify the mechanisms at the basis of the effect of reward onmotor learning, we quantified howmuch par-

ticipants adjusted motor commands based on reinforcement or sensory feedback at the single-trial level. This

allowed us to estimate how subjects relied on each type of feedback on a trial-by-trial basis and how this

behavior was affected by reward. In order to investigate reinforcement-related adjustments inmotor commands,

we computed the absolute between-trial change (BTC) in Error (ErrorBTC = |Errorn+1-Errorn|) following successful

or failed trialn of similar Error in the three groups (STARMethods, see also (Pekny et al., 2015; Uehara et al., 2019)

for similar approaches in reaching tasks). Comparing ErrorBTC depending on the Outcome of the previous trial

(Success or Failure) allowed us to estimate howmuch participants modified their force profile based on the rein-

forcement feedback.Notably, considering changes in the Error in absolute terms allowedus toexplore the effect

of reward on themagnitude of the adjustments in the different groups, regardless of their directionality (increase

or decrease in the Error). We found that ErrorBTC was generally higher after failed than successful trials (two-way

ANOVA; main effect of Outcome: F(1,84) = 8.66, p = 0.0042, partial h2 = 0.093; Figure 3A), consistent with an

exploration process following failed trials (Uehara et al., 2019; Pekny et al., 2015). Interestingly, this difference

A

D E

B C

Figure 2. Effect of reward on motor skill learning

(A) Error. Average Error is represented across practice for the three experimental groups (gray: Group-S, light green: Group-SR, dark green: Group-SRR). The

gray shaded area highlights the blocks concerned by the reinforcement manipulation. The remaining blocks were performed with knowledge of

performance only (i.e., in a Block-SR setting).

(B) Skill learning. Bar plot (left) and violin plot (right, each dot = one subject) representing skill learning (quantified as the Error in Post-training blocks

expressed in percentage of Pre-training blocks) in the three experimental groups. Skill learning was significantly enhanced in Group-SRR compared to the two

other groups. This result remained significant when removing the subject showing an extreme value in the Group-SR (ANOVA: F(2,86) = 6.44, p = 0.0025, partial

h2 = 0.13; post-hocs; Group-SRR vs. Group-SR: p = 0.027; Group-SRR vs. Group-S: p = 0.00064; Group-SR vs. Group-S: p = 0.21).

(C) Skill maintenance. Bar plot (left) and violin plot (right) representing skill maintenance quantified as the Error in Re-test blocks expressed in percentage of

Pre-training blocks) in the three experimental groups.

(D) Success. Proportion of successful trials for each block.

(E) Force profiles. Individual force profiles of one representative subject of Group-S (left), Group-SR (middle) and Group-SRR (right) in the Pre- (gray) and Post-

training blocks (blue). Note the better approximation of the TargetForce and the reduced inter-trial variability at Post-training in the exemplar subject of

Group-SRR.

*: significant difference between groups (p<0.05). #: significant difference within a group between normalized Post-training Error and a constant value of

100% (p<0.017 to account for multiple comparisons). Data are represented as mean G SE
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Figure 3. Between-trial adjustments in the Error

(A) Reinforcement-based adjustments in the Error during Day 1 training. Absolute between-trial adjustments in the Error

(ErrorBTC = |Errorn+1-Errorn|) according to the reinforcement feedback (i.e., Success or Failure) encountered at trialn in the
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between failed and successful trials was modulated by GroupTYPE (Outcome x GroupTYPE: F(2,84) = 11.47, p <

0.001, partial h2 = 0.21): While it was significant in Group-SR and Group-SRR (post-Success vs. post-Failure: p =

0.028, d = �0.54 and p < 0.001, d = �0.92 respectively), this effect was only at the trend level for Group-S

(p = 0.060, d = 0.29). Relatedly, post-hoc tests revealed that post-Success ErrorBTC was significantly lower in

Group-SRR than in Group-S (p = 0.026, d = �0.54), but not different between Group-SR and Group-S (p = 0.24,

d = �0.23) and between Group-SR and Group-SRR (p = 0.30, d = 0.29). Besides, post-Failure ErrorBTC was signif-

icantly higher in Group-SRR than in Group-S (p = 0.040, d = 0.65). Yet, it was not different between Group-SR and

Group-S (p = 0.14, d = 0.48) and between Group-SR and Group-SRR (p = 0.58, d = �0.16). Hence, providing a

rewardon top of reinforcement feedback led to a particularly low ErrorBTC following successful trials and a partic-

ularly high ErrorBTC following failed trials. This analysis suggests that rewardmodulated between-trial changes in

behavior in response to the reinforcement feedback, regardless of whether reinforcement was positive or nega-

tive. To further confirm this, we directly compared themagnitude of reinforcement-based adjustments between

the three groups, by expressing the ErrorBTC following failed trials relative to the ErrorBTC following successful

trials. Doing so, we found a significant effect of the GroupTYPE during Day 1 training (F(2,84) = 10.27, p < 0.001,

partial h2 = 0.20; Figure 3A). As expected, participants of the Group-SR adjusted their force profile depending

on the reinforcement feedback, while participants of the Group-S were unable to do so (post-hocs; Group-S

vs. Group-SR: p = 0.022, d =�0.68). Interestingly, this ability to adjust motor commands based on the reinforce-

mentwas amplifiedby reward (Group-SR vs. Group-SRR: p = 0.036, d =�0.57). This result suggests that onemech-

anism through which reward improves motor learning is the potentiation of reinforcement-related adjustments

inmotor commands. To further test this idea, weevaluated the relationship between themagnitudeof reinforce-

ment-based changes in motor commands and the average success rate in the following trial across all subjects.

Consistently, we found that the magnitude of reinforcement-related adjustments was strongly associated to the

probability of success (R2 = 0.62; p = 1.5 x 10�19; Figure 3B): Themore participants adjusted their behavior based

on the reinforcement feedback in a given trial (e.g., by reducing ErrorBTC following Success and/or by increasing

it following a Failure), the more they were likely to be successful in the following trial, supporting the view that

these adjustments were relevant in the present task. Hence, these data suggest that the effect of reward onmo-

tor skill learning relies on the ability to adjust movements based on the reinforcement feedback.

In the second step, we asked whether such single-trial effects were maintained on Day 2, while all partic-

ipants performed the task with sensory and reinforcement feedback, but in the absence of reward (i.e.,

in a Block-SR setting). Interestingly, there was also an Outcome 3 GroupTYPE interaction: F(2,78) = 3.75,

p = 0.027, partial h2 = 0.088) demonstrating differences in the way participants relied on the reinforcement

feedback on Day 2 based on the type of training experienced on Day 1 (Figure 3C). All groups displayed a

larger ErrorBTC following a failed compared to a successful trial (Group-S: p< 0.018, d = 0.46; Group-SR: p <

0.001, d = 0.75; Group-SRR: p < 0.001, d = 1.13). Notably though, post-hoc tests did not identify any group

difference in post-Success ErrorBTC (Group-SR vs. Group-SRR: p = 0.13, d = 0.72; Group-SR vs. Group-S: p =

0.96, d =�0.019; Group-SRR vs. Group-S: p = 0.12, d =�0.56) nor did it do so in post-Failure ErrorBTC (Group-

SR vs. Group-SRR: p = 0.33, d = �0.20; Group-SR vs. Group-S: p = 0.35, d = 0.25; Group-SRR vs. Group-S: p =

0.058, d = 0.39). Yet, when expressing ErrorBTC in Post-Failure relative to Post-Success trials, we found that

participants receiving reward in Group-SRR adjusted more of their movements according to the reinforce-

ment feedback compared to Group-S and Group-SR (F(2,78) = 3.53, p = 0.034, partial h2 = 0.083; post-hocs;

Group-S vs. Group-SRR: p = 0.017, d =�0.66, Group-SR vs. Group-SRR: p = 0.039, d =�0.56, Figure 3C). There

Figure 3. Continued

three GroupTYPES (gray: Group-S, light green: Group-SR, dark green: Group-SRR). Notably, these bins of trials were

constituted based on the success threshold-normalized Error at trialn in order to compare adjustments in motor

commands following trials of similar Error in the three groups. Stars denote significant group differences in ErrorBTC
for a given outcome (left panel, see STAR Methods). Reinforcement-based adjustments (ErrorBTC after Failure in

percentage of ErrorBTC after Success) were compared in the three GroupTYPES (right panel).

(B) Correlations between themagnitude of reinforcement-based adjustments in the Error and the average success rate on

the next trial, showing the relevance of these adjustments in the present task. Each dot represents a subject.

(C, D) Same for Day 2 training. Note that reinforcement-based adjustments in motor commands remained amplified in

GroupSRR, despite the absence of reward on Day 2.

(E) Sensory-based adjustments in the Error during Day 1 training. ErrorBTC following trialsn with Failures of different Error

magnitudes (left panel). Sensory-based adjustments (ErrorBTC after Large Failure in percentage of ErrorBTC after Small

Failure) were compared in the three GroupTYPES (right panel).

(F) Correlations between the magnitude of sensory-based adjustments in the Error and the probability of success on the

next trial, showing the relevance of these adjustments for task success.

(G, H) Same for Day 2 training. *: p < 0.05. Data are represented as mean G SE.
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was no difference between Group-S and Group-SR (p = 0.72, d =�0.10). Here, again, the magnitude of rein-

forcement-based adjustments correlated with the success in the next trial (R2 = 0.51; p = 5.5 x 10�14; Fig-

ure 3D). Hence, the effect of reward on reinforcement-based adjustments can persist on a subsequent ses-

sion of training, even after reward removal.

As explained above, we evaluated reinforcement-based adjustments by comparing ErrorBTC following suc-

cessful or failed trials. However, by definition, successful and failed trials did not only differ with respect to

the reinforcement feedback obtained at trialn, but also regarding the experienced sensory feedback.

Hence, the reward effect reported above could be specific to reinforcement-based adjustments, or may

reflect a different reliance on the sensory feedback (or a combination of both). To disentangle these pos-

sibilities, we reasoned that the extent to which participants relied on the somatosensory feedback to adjust

their movements could be estimated by computing ErrorBTC following failed trials of different Error mag-

nitudes (i.e., small or large Failure). In other words, we contrasted ErrorBTC following trials with the same

reinforcement feedback (i.e., Failure) but with different somatosensory experiences (i.e., resulting from

Small or Large Failures). Here too, we found a significant Outcome3GroupTYPE interaction on the ErrorBTC
(F(2,76) = 5.15, p = 0.0080, partial h2 = 0.12; Figure 3E). As such, adjustments were greater after Large than

after Small Failures in Group-SR and Group-SRR (p < 0.001, d = 0.65 and p < 0.001, d = 1.20, respectively), but

not in Group-S (p = 0.50, d = 0.19). Post-hoc tests also indicated that adjustments after a Large Failure were

greater in Group-SR and Group-SRR than in Group-S (p < 0.001, d = 1.15 and p < 0.001, d = 1.31, respectively),

but not different between Group-SR and Group-SRR (p = 0.26 p < 0.001, d = 0.25). After Small Failures,

ErrorBTC was also larger in Group-SR than in Group-S (p = 0.042, d = 0.56), but not different between

Group-SR and Group-SRR (p = 0.31, d = 0.30) and between Group-SRR and Group-S (p = 0.34, d = 0.44).

This indicates that while subjects of the Group-SR and Group-SRR adjusted the Error depending on the sen-

sory feedback, participants of the Group-S were not able to do so, suggesting that training with reinforce-

ment feedback allowed participants to be more sensitive to the sensory feedback (Galea et al., 2015; Ber-

nardi et al., 2015), regardless of whether they received reward or not. Consistently, we found a GroupTYPE

effect (F(2,76) = 5.05, p = 0.0087, partial h2 = 0.12; Figure 3E) on the magnitude of sensory-based adjust-

ments (ErrorBTCfollowing Large Failures expressed relative to ErrorBTC following Small Failures), which

was driven by differences between Group-S and the two other groups (post-hocs; Group-S vs. Group-SR:

p = 0.0056, d = �0.73, Group-S vs. Group-SRR: p = 0.011, d = �0.85). Importantly, we did not find any dif-

ference between Group-SR and Group-SRR (p = 0.90, d = �0.033). Then, similarly as for the reinforce-

ment-based changes, we found that the magnitude of sensory-based adjustments correlated with the sub-

sequent probability of success (R2 = 0.34, p = 1.8 x 108; Figure 3F), demonstrating that these adjustments

were also relevant in the learning process.

On Day 2, the effect of Outcome persisted (F(1,68) = 15.20, p < 0.001, partial h2 = 0.18) with a trend for a

GroupTYPE effect (F(2,68) = 3.12, p = 0.051, partial h2 = 0.084) but no Outcome 3 GroupTYPE interaction

(F(2,68) = 3.12, p = 0.46, partial h2 = 0.013). Consistently, the magnitude of sensory-based adjustments

was not different between the GroupTYPES (F(2,68) = 0.41, p = 0.67, partial h2 = 0.012, Figure 3G). Note,

though, that similarly to Day 1, sensory-based adjustments significantly correlated with the probability

of success on Day 2 (R2 = 0.13, p = 0.0022; Figure 3H). Hence, the absence of reward effects on sensory-

based adjustments on Day 1 and 2 cannot be explained by the fact that participants did not rely on this

type of feedback.

The single-trial analyses on ErrorBTC revealed significant differences in the way participants of each group

adjusted their motor commands based on the reinforcement and the sensory feedback. However, the dis-

tribution of the Error data could have contributed to these single-trial effects. Indeed, even for random ad-

justments in motor commands (e.g., based on a Gaussian process), adjustments following small or large

Errorn (i.e., in the tails of the Error distribution) would be larger than adjustments following Errorn close

to the mean of the distribution. Hence, to ensure that group differences in Error distribution did not

contribute to our single-trial results, we ran a control analysis in which we shuffled the Error data for

each subject (with 10,000 permutations), and then re-computed reinforcement and sensory-based adjust-

ments exactly as in the main analysis. Importantly, we did not find any GroupTYPE effect on these shuffled

data neither for reinforcement- (Day 1: F(2,84) = 1.6, p = 0.21, partial h2 = 0.04; Day 2: F(2,78) = 0.89, p = 0.41,

partial h2 = 0.02) nor for sensory-based adjustments (Day 1: F(2,76) = 0.02, p = 0.98, partial h2 = 0.0006; Day 2:

F(2,78) = 0.20, p = 0.82, partial h2 = 0.006). This analysis indicates that the differences in single-trial adjust-

ments reported here were not related to a sampling bias.
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Reward boosts reinforcement-based adjustments at a specific level of motor control

As a last step, we asked whether the effect of reward on between-trial adjustments in motor commands con-

cerned all aspects of force control or only some specific motor components. To do so, we investigated how

reinforcement and sensory feedback shaped adjustments in the speed and accuracy of force production in the

three GroupTYPES by dissecting each force profile into three separate components (Figure 1B). To evaluate the

speed at which the force was generated, we computed the time required for force initiation (i.e., the time

required to reach half of the TargetForce: ForceInitiation). To assess the accuracy of the force, we computed

the force difference between the average amplitude of the generated force and the TargetForce (ForceAmplEr-

ror), and the variability (standard deviation/mean) of the maintained force (ForceVariability). Notably, both indi-

cators of force accuracy were computed in the second half of the trial (i.e., the last 1000 ms), well after force

initiation, when participants maintained a stable level of force.

We compared between-trial changes in ForceInitiation (ForceInitiation-BTC), ForceAmplError (ForceAmplError-BTC), and

ForceVariability (ForceVariability-BTC) following Success or Failure trials of similar Errormagnitude in the three groups.

The ANOVA run on the ForceInitiation-BTC data revealed a significant Outcome3 GroupTYPE interaction (F(2,84) =

7.62, p < 0.001, partial h2 = 0.15) that was driven by the fact that post-Success and post-Failure ForceInitiation-BTC
were different in Group-SR andGroup-SRR (p < 0.001, d =�1.04 and p < 0.001, d =�1.59, respectively) but not in

Group-S (p = 0.10, d =�0.27). Moreover, post-Success changes in ForceInitiation were smaller in Group-SRR than in

Group-S (p = 0.023, d = �0.56); it also tended to be smaller in Group-SR than in Group-S (p = 0.071, d = �0.49),

while it was comparable in Group-SR and Group-SRR (p = 0.65, d = 0.14). Corroborating these results, we found

that reinforcement feedback impacted the modulation of initiation speed (expressed as ForceInitiation-BTC
following a Failure in percentage of ForceInitiation-BTC following a Success; F(2,84) = 8.50, p < 0.001, partial h2 =

0.17; post-hocs: Group-S vs. Group-SR: p = 0.0011, d = �0.84, Group-S vs. Group-SRR: p < 0.001, d = �1.09; Fig-

ure 4A). Interestingly though, we did not find any effect of reward on the reinforcement-based adjustment of

speed (Group-SR vs. Group-SRR: p = 0.78, d =�0.072). At the level of ForceAmplError, we found again an Outcome

3 GroupTYPE interaction (F(2,84) = 14.07, p < 0.001, partial h2 = 0.25; Figure 4B) that was driven by the fact that

post-Success and post-Failure ForceAmplError-BTC were different in Group-SR and Group-SRR (p < 0.001, d =

�0.97 and p = 0.0034, d = �1.44, respectively) but not in Group-S (p = 0.99, d = �0.0002). Group comparisons

at post-Success and post-Failure did not evidence any significant difference in ForceAmplError-BTC. Notably

though, there was a trend for the post-Success ForceAmplError-BTC to be smaller in Group-SRR than in Group-S

(p = 0.066, d = �0.42). Interestingly, direct comparison of reinforcement-related changes in ForceAmplError-BTC

(post-Failure vs. post-Success) revealed a significant effect of reward (F(2,84) = 9.54, p < 0.001, partial h2 =

0.19; Figure 4B). As such, participants of the Group-SRRmodulatedmore the ForceAmplError according to the rein-

forcement feedback than subjects of the twoother groups (Group-S vs.Group-SRR: p < 0.001, d =�1.04,Group-SR
vs. Group-SRR: p = 0.018, d = �0.70). Notably, there was also a trend for Group-SR to be different from Group-S
(p = 0.064, d = �0.50). Finally, analysis of ForceVar-BTC did not reveal any Outcome 3 GroupTYPE interaction

(F(2,84) = 0.79, p = 0.46, partial h2 = 0.018; Figure 4C), neither did it show a GroupTYPE effect (F(2,84) = 0.81, p =

0.45, partial h2 = 0.020; Figure 4C) on reinforcement-based adjustments (ForceVar-BTC post-Failure vs. post-Suc-

cess). Hence, while reward strongly influenced reinforcement-based adjustments of force amplitude, it did not

modulate the between-trial regulation of the speed at which the force was initiated or the variability of themain-

tained force. This suggests that the effect of reward on reinforcement-related adjustments was not global (i.e.,

affecting all aspects of the movement) but rather specific to force amplitude.

We also considered the effect of the sensory feedback on between-trial adjustments by comparing

ForceInitiation-BTC, ForceAmplError-BTC, and ForceVariability-BTC following failed trials of different Error magnitudes

(i.e., small or large Failure). Contrary to the global ErrorBTC index, we did not find any Outcome 3GroupTYPE

interaction neither for ForceInitiation-BTC (F(2,76) = 0.54, p = 0.59, partial h2 = 0.014), nor for ForceAmplError-BTC

(F(2,76) = 2.80, p = 0.067, partial h2 = 0.069) or ForceVariability-BTC (F(2,76) = 1.25, p = 0.29, partial h2 = 0.032).

Consistently, we did not find any significant difference in the way participants from the different groups

adjusted individual motor components depending on the size of the preceding Failure (Large vs. Small Failure

on Figures 4D–4F; ForceInitiation-BTC: F(2,76) = 0.10, p = 0.90, partial h2 = 0.0026; ForceAmplError-BTC: F(2,76) = 2.57,

p = 0.083, partialh2 = 0.063; ForceVariability-BTC: F(2,76) = 2.46, p = 0.092, partialh2 = 0.061). This analysis supports

the idea that reward did not increase the sensitivity to the sensory feedback, but rather boosted specific

adjustments in motor commands in response to the reinforcement feedback.

Finally, as a control analysis, we characterized the respective influence of each motor component in the Er-

ror, which determined task success. As such, in addition to representing different levels of force control
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(i.e., initiation, amplitude and variability), the motor components evaluated here may also bear different

relevance for task success (van der Kooij et al., 2021). For each participant, we ran separate partial linear

regressions on the Error data with ForceInitiation, ForceAmplError or ForceVariability as predictors. Notably,

we used partial regressions here to assess the relationship between the Error and each motor component,

while controlling for the effect of the other motor components in the correlation. Interestingly, we found

that ForceAmplError explained the largest part of variance in the Error (r = 0.96G 0.003; p<0.05 in 90/90 sub-

jects). ForceInitiation also explained a large part of variance in the Error (r = 0.81G 0.01; p<0.05 in 90/90 sub-

jects), while ForceVariability explained a smaller, yet significant in most subjects, part of variance (r = 0.22 G

A

B

C F

E

D

Figure 4. Between-trial adjustments in initiation time, amplitude error and variability

Reinforcement-based adjustments in the ForceInitiation (A), ForceAmplError (B) and ForceVariability (C). Absolute between-trial changes (BTC) for each motor

component (ForceBTC = |Forcen+1-Forcen|) according to the reinforcement feedback (i.e., Success or Failure) encountered at trialn in the three GroupTYPES

(gray: Group-S, light green: Group-SR, dark green: Group-SRR). Notably, these bins of trials were constituted based on the success threshold-normalized Error

at trialn. Stars denote significant group differences in ErrorBTC for a given outcome (left panel). Reinforcement-based adjustments (ForceBTC after Failure in

percentage of ForceBTC after Success) in the three GroupTYPES (right panel). Sensory-based adjustments in the ForceInitiation (D), ForceAmplError (E) and

ForceVariability (F). ForceBTC following trialsn with Failures of different Error magnitudes (left panel). Sensory-based adjustments (ForceBTC after Large Failure

in percentage of ForceBTC after Small Failure) in the three GroupTYPES (right panel). *: p < 0.05. Data are represented as mean G SE.
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0.03; p<0.05 in 68/90 subjects). Hence, although all motor parameters were relevant for task success, the

ForceAmplError was the most influential factor.

Altogether, our results demonstrate that reward potentiates reinforcement-based adjustments in motor

commands and that this effect persists even after reward removal on the subsequent day. The data also

show that this effect does not concern all components of the movement, but specifically the amplitude

of the force which was the most relevant factor for task success.

DISCUSSION

In this study, we investigated the net effect of reward on motor learning while controlling for the reinforcement

feedback received by the participants. Our results provide evidence that reward can improvemotor skill learning

and that this effect is related to a specific potentiation of reinforcement-related adjustments in motor com-

mands. Strikingly, the potentiation of such adjustments persisted on a subsequent day in the absence of reward.

Moreover, such boosting of reinforcement-based adjustments did not concern all components of force produc-

tion but only the amplitude, which was the most relevant one for task success. These findings shed light on the

mechanisms through which reward can durably enhance motor performance. They also lay the groundwork for

future rehabilitation strategies involving optimized sensory and reinforcement feedbacks.

A main goal of the present study was to explore the net effect of reward on motor skill learning by exper-

imentally dissociating it from the reinforcement feedback. As such, previous motor learning studies have

often coupled reinforcement and reward (e.g., Abe et al., 2011; Steel et al., 2019, 2016; Wachter et al.,

2009;Wilkinson et al., 2015), based on the underlying assumption that receiving knowledge of performance

(e.g., points or binary feedback) provides a form of intrinsic reward that can by itself increase motivation to

perform well (Leow et al., 2018). However, in addition to providing some form of intrinsic reward, reinforce-

ment feedback also provides a learning signal to the motor system that can influence motor learning (Ber-

nardi et al., 2015; Galea et al., 2015; Huang et al., 2011; Kim et al., 2019; Leow et al., 2018; Mawase et al.,

2017; Nikooyan et al., 2015; Shmuelof et al., 2012; Therrien et al., 2016; Uehara et al., 2018). In order to

assess the net effect of motivation on motor learning, we therefore compared groups of participants

trained with different monetary rewards but with the exact same reinforcement feedback. We found that

motivation by reward allowed marked improvements in motor performance that were maintained after

reward removal and even 24 h later (Figure 2). Notably, this was the case despite the fact that reinforcement

alone was not sufficient to influence motor learning in our task. This demonstrates that the motivational

context experienced during training can by itself strongly influence motor skill learning beyond perfor-

mance-based reinforcement feedback.

The prospect of obtaining rewards for good performance enhances motivation but does not provide any addi-

tional learning signal to the motor system (Berke, 2018). Yet, it may boost the reliance on sensory and/or rein-

forcement feedbacks (Kim et al., 2019). To explore this possibility, we developed an analysis allowing us to inves-

tigate how participants adjusted their motor commands based on sensory or reinforcement feedbacks while

controlling for differences in performance between the groups (see STAR Methods for more details). Interest-

ingly, we found that reward specifically boosted reinforcement-based adjustments, following both positive

and negative feedbacks, while sensory-based adjustments remained unaffected by reward (Figure 3). This sug-

gests that reward boosted both the reproduction of successful behavior (exploitation) and correction of motor

commands after failure (exploration; Dhawale et al., 2017). This was the case despite the fact that both types of

feedbackwere relevant to improvemotor performance at the single-trial level (Figures 3B, 3D, 3F, 3H). This result

suggests that reward increases the reliance on reinforcement information during the learning process, with less

effect on sensory-based adjustments. Interestingly, this finding may explain why tasks that strongly emphasize

sensory-based learning (over reinforcement-based learning; Cashaback et al., 2017; Izawa and Shadmehr,

2011), often show less sensitivity to motivation. Accordingly, monetary reward shows little impact on sensori-

motor adaptation (Galea et al., 2015; Hill et al., 2020) and on motor skill acquisition in tasks that strongly rely

on sensory feedback (e.g.,Abeet al., 2011; Steel et al., 2016;Widmeret al., 2016). The differential effect of reward

on sensory and reinforcement-based adjustments may be due to the qualitatively different learning processes

that are driven by these two types of feedbacks (Cashaback et al., 2017; Uehara et al., 2018). As such, while sen-

sory feedback promotes error correction by providing directional feedback (Shadmehr et al., 2010), reinforce-

ment can guide motor exploration based on binary feedback about task success (Therrien et al., 2016). Our re-

sults, alongwith the observation thatmonetary rewards are less effective in tasks where learning is dominated by

sensory feedback, suggest that the potential of reward to improve motor learning relies on the boosting of a
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reinforcement learning mechanism. Based on this, we propose that the susceptibility of a given motor learning

task to reward may depend on the relative contribution of sensory and reinforcement feedbacks in the learning

process. Characterizing what type of motor tasks can benefit frommotivational interventions is an important line

of future work to translate fundamental motor control research into innovative rehabilitation procedures.

The finding of a reward-dependent boosting of reinforcement-based adjustments is in line with previous neuro-

imaging results showing that reward increases reinforcement-related activity in the striatum in the context ofmo-

tor learning (Widmer et al., 2016). This reward-driven increase in striatal activity is reduced after a stroke (even

when the striatum is unlesioned), a process that may contribute to the motor learning deficits observed in these

patients (Widmer et al., 2019). Moreover, such reward-dependent modulation of motor adjustments has been

shown to rely on dopamine (Galea et al., 2013; Pekny et al., 2015), a key neurotransmitter of the striatal circuitry.

Based on these elements and on the causal role of the striatum in reinforcement-based adjustments in motor

commands (Nakamura and Hikosaka, 2006; Williams and Eskandar, 2006), we suspect that this region may be

crucial for the beneficial effect of reward observed in the present study. Notably, the cerebellum (Carta et al.,

2019; Heffley et al., 2018; Sendhilnathan et al., 2020; Vassiliadis et al., 2019;Wagner et al., 2017) and frontal areas

(Dayan et al, 2014, 2018; Hamel et al., 2018; Palidis et al., 2019; Ramakrishnan et al., 2017; Sidarta et al., 2016) are

also likely to contribute to reward-based motor learning. Further investigations are required to better delineate

the neurophysiological bases of reward-related improvements in motor learning.

The beneficial effect of reward on single-trial adjustments was maintained on Day 2, even after reward removal.

As in Day 1 training, reinforcement-based adjustments were boosted while sensory-based adjustments re-

mained unchanged by reward. This persistent change in the specific reaction to the reinforcement feedback af-

ter reward removal is suggestive of an associative learning process. In associative learning, presentation of a

neutral stimulus (i.e., a conditioned stimulus) that has been consistently paired with a rewarding stimulus (i.e.,

an unconditioned stimulus) during a training period elicits a behavior that was initially only generated in reaction

to the reward (Pavlov, 1927; Rescorla and Wagner, 1972). Following this framework, it is possible that the repet-

itive pairing of the reinforcement feedback with the reward during training induced an implicit association be-

tween the two events that remained evident when the reward was removed. This could explain why strong rein-

forcement-specific adjustments weremaintained onDay 2 in the reward group, even though no rewards were at

stake anymore. Such associative learning processes are known to strongly influence autonomic responses (Pool

et al., 2019), inhibitory control (Avraham et al., 2020; Lindström et al., 2019; Verbruggen et al., 2014), decision

making (Lindströmet al., 2019), andeven sensorimotor adaptation (Avrahamet al., 2020) in humans.Wepropose

that associative learningmay also contribute to the durable influence of motivation on motor skill learning (Abe

et al., 2011; Sporn et al., 2020).

In order to better characterize the effect of reward on motor learning, we considered separately the different

components of the movement and found that force amplitude was the most strongly affected, while the speed

of initiation and force variability remained largely insensitive to reward. This suggests that reward can have a se-

lective influence on the regulation of a specific component of motor control. Importantly, an estimation of the

respective influence of each motor component on task success also showed that force amplitude was the most

relevant component for the task. Notably, the specificity of the effect of reward on the regulation of one motor

component is in accordance with the idea that multidimensional motor tasks (i.e., requiring the control of mul-

tiplemotor components) canbedecomposed in subtasks that are learned separately in themotor system (Ghah-

ramani and Wolpert, 1997) In this framework, learning of the different motor components may depend on their

respective relevance for task success (Ghahramani andWolpert, 1997; van der Kooij et al., 2021). Such task rele-

vance may be estimated based on a priori knowledge of the task (e.g., following instructions; Popp et al., 2020)

and through the reliance on a credit assignment system allowing to estimate the particular influence of eachmo-

tor component on task success through trial and error (McDougle et al., 2016; Parvin et al., 2018). Based on this

idea, we believe that the strong relationship between the amplitude of the force and task success in the present

task pushed participants of the reward group to largely modulate this component based on the reinforcement

feedback. If this is the case, thiswould suggest that it is possible to affect the training of specificmotor abilities by

modulating the weight of individual motor components in the computation of the reinforcement feedback, an

aspect that could be exploited in future rehabilitation protocols. Alternatively, reward might have specifically

modulated the amplitude of the force independently of the relevance of this parameter. Although the present

study cannot rule out this hypothesis, we believe that such interpretation is unlikely given previous demonstra-

tion that reward can improve several aspects of motor control concomitantly (Codol et al., 2020; Manohar et al.,

2015). Another possibility is that reinforcement feedback alone was sufficient to maximally modulate initiation
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time and variability in this task, precluding us from observing a difference with the reward-based training

because of some form of ceiling effect. Further studies are required to disentangle these potentially co-existing

interpretations to guide the development of component-specific rehabilitation therapies (Norman et al., 2017).

Limitations of the study

Our findings suggest that extrinsic reward can improve the acquisition and maintenance of a motor skill by

boosting reinforcement-based adjustments in motor commands. However, it should be noted that here we

focused on a very simple unimanual task in which performance relied on the ability to modulate a 1-degree

of freedom force. While our analysis of the different motor components suggests that reward may also

improve the learning of more complex tasks (by selectively boosting the adjustment of the most relevant

dimensions for task success), future studies should address the generalizability of our results by using tasks

engaging more complex skills.

Besides, our single-trial analysis suggests that reward affects differently sensory and reinforcement-based

adjustments in motor commands. Yet, sensory and reinforcement feedbacks were always coupled in the

present task. We did so on purpose to avoid inducing conflict in the learning process, yet the reward effect

we report here could be influenced by the relationship between these feedbacks. Hence, follow-up inves-

tigations should assess the effect of reward on sensory and reinforcement-based adjustments in situations

where both feedback types are dissociated (Cashaback et al., 2017).
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Lead contact

Further information and requests should be directed to the lead contact, Pierre Vassiliadis (pierre.

vassiliadis@uclouvain.be).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� Motor learning data (’All_Variables.mat’) and de-identified subjects characteristics (’Subjects_

characteristics.xlsx’) are freely available via an open-access data sharing repository (https://osf.io/

5pjem/).

� This paper does not report original code.

� Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

A total of 90 right-handed healthy volunteers participated in the present study (58 women, 23.7G 0.3 years

old; mean G SE). Handedness was determined via a shortened version of the Edinburgh Handedness In-

ventory (Oldfield, 1971). None of the participants suffered from any neurological or psychiatric disorder,

nor were they taking any centrally-acting medication. All participants gave their written informed consent

in accordance with the Ethics Committee of the Université Catholique de Louvain (approval number: 2018/

22MAI/219) and the principles of the Declaration of Helsinki. Subjects were financially compensated for

their participation. Finally, all participants were asked to fill out a French adaptation of the Sensitivity to

Punishment and Sensitivity to Reward Questionnaire (SPSRQ; Lardi et al., 2008; Torrubia et al., 2001).

METHOD DETAILS

General aspects

Participants were seated approximately 60 cm in front of a computer screen (refresh rate = 100 Hz) with their

right forearm positioned at a right angle on the table. The task was developed on Matlab 7.5 (the Math-

works, Natick, Massachusetts, USA) exploiting the Psychophysics Toolbox extensions (Brainard, 1997; Pelli,

1997) and consisted in an adaptation of previously used motor learning tasks (Abe et al., 2011; Mawase

et al., 2017; Steel et al., 2016). The task required participants to squeeze a force transducer (Arsalis,

Belgium) between the index and the thumb to control the one-dimension motion of a cursor displayed

on the screen. Increasing force resulted in the cursor moving vertically and upward. Each trial started

with a preparatory phase in which a sidebar appeared at the bottom of the screen and a target at the

top (Figure 1A). After a variable time interval, a cursor popped up in the sidebar and participants had to

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Motor learning data (’All_Variables.mat’) This paper https://osf.io/5pjem/

Subjects characteristics (’Subjects_characteristics.xlsx’) This paper https://osf.io/5pjem/

Software and Algorithms

Matlab vR2007 7.5 and R2018a Mathworks www.mathworks.com/products/matlab.html

Statistica 10 StatSoft Inc. https://www.statsoft.de/en/software/tibco-statisticatm

Psychophysics Toolbox Psychtoolox.org http://psychtoolbox.org/
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pinch the transducer to move the cursor as quickly as possible from the sidebar to the target andmaintain it

there for the rest of the task. The level of force required to reach the target (TargetForce) was individualized

for each participant and set at 10% of maximum voluntary contraction (MVC). Notably, squeezing the

transducer before the appearance of the cursor was considered as anticipation and therefore led to an

interruption of the trial. Such trials were discarded from further analyses. At the end of each trial, a binary

reinforcement feedback represented by a colored circle was provided to the subject followed by a

reminder of the color/feedback association and potential monetary reward associated with good perfor-

mance (see Reinforcement feedback section below).

Sensory feedback

We provided only limited visual feedback to the participants (Mawase et al., 2017). As such, on most trials

(90%), the cursor disappeared shortly after the subject started to squeeze the force transducer (partial

vision trials); it became invisible as soon as the generated force became larger than half of the TargetForce
(i.e., 5% of MVC). Conversely, the remaining trials (10%) provided a continuous vision of the cursor (full

vision trials). Therefore, onmost trials, participants had limited visual information and had to rely exclusively

on somatosensory feedback to generate the TargetForce. Importantly, full vision trials were not considered

in the analyses.

Reinforcement feedback

At the end of each trial, subjects were presented with a binary reinforcement feedback indicating perfor-

mance. Success on the task was determined based on the Error; that is, the absolute force difference be-

tween the TargetForce and the exerted force (Figure 1B; Abe et al., 2011; Steel et al., 2016). The Error was

computed for each frame refresh (i.e., at 100Hz) from 150 ms to the end of the trial and then averaged for

each trial (Steel et al., 2016) and expressed in percentage of MVC. This indicator of performance allowed us

to classify a trial as successful or not based on an individualized success threshold (see below). When the

Error on a given trial was below the threshold (negative normalized Error), the trial was considered as suc-

cessful, and when it was above the threshold (positive normalized Error), the trial was considered as failed.

Hence, task success depended on the ability to reduce the Error by approximating the TargetForce as

quickly and accurately as possible. Importantly, participants were told explicitly that both speed and accu-

racy were taken into account to determine task success. In summary, to be successful, participants knew

that they had to quickly initiate the force and be as accurate as possible in reproducing the TargetForce.

In different blocks of trials, we manipulated the reinforcement feedback and reward provided during

training. In Block-S, the reinforcement feedback was non-informative (magenta circle regardless of perfor-

mance), and participants could only rely on somatosensory feedback to perform the task. In Block-SR, the

reinforcement feedback consisted of a yellow (representing a successful trial) or blue circle (representing a

failed trial), providing knowledge of performance (Figure 1A). In Block-SRR, this knowledge of performance

was associated with a monetary reward (+8 cents or 0 cent for Success or Failure, respectively). Therefore,

contrarily to Block-S, Block-SR and Block-SRR provided knowledge of performance and this feedback was

associated with a monetary reward in Block-SRR.

Experimental procedure

Subjects’ performance was tested for two consecutive days (Day 1 and Day 2; Figure 1C). On Day 1, we first

measured the individual MVC to calculate the TargetForce. Notably, MVC was measured before and after

both sessions to assess potential muscle fatigue related to the training (see 4.4.3). Participants then per-

formed 2 blocks of Familiarization. In the first block, participants performed 20 full vision trials; it served

to familiarize the subjects with the task in a Block-SR setting (Full vision block). Subsequently, all blocks

were composed of amixture of full vision trials (10% of total trials) and partial vision trials (90% of total trials).

The second Familiarization block consisted of 20 trials and allowed us to determine baseline performance

to individualize the difficulty of the task for the rest of the experiment (Calibration block). For every subject,

each partial vision trial of the Calibration block was classified in terms of Error from the lowest to the great-

est in percentage of MVC. We took the 35th percentile of the Error to determine the individual success

threshold. Success thresholds were constrained between 2 and 3.5% of MVC by asking participants to

repeat the Calibration block when the computed threshold was outside these boundaries. Those param-

eters were determined based on pilot data to obtain coherent learning curves among individuals.
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After the Familiarization and Calibration blocks, the first experimental session consisted of 280 trials

divided in 8 blocks. All subjects started with a Block-SR of 20 trials to evaluate the performance at Pre-

training and similarly ended the session with a Post-training assessment of 20 trials. In between, 6 Training

blocks of 40 trials were performed by the participants (Figure 1B). During this Training period, individuals

were split into 3 separate groups (GroupTYPE: Group-S, Group-SR or Group-SRR) depending on the type of

blocks they performed during training. As such, Group-S completed Block-S, Group-SR performed Block-

SR and Group-SRR trained under Block-SRR condition. Contrasting performance in the Pre- and Post-training

blocks allowed us to evaluate learning of the skill under the three training conditions. 24h later, subjects

performed the task again with the same TargetForce and success threshold. After a 20 trial Familiarization

used to remind the task to participants, they performed 140 trials split in 4 blocks; all were performed in a

Block-SR setting. This Re-test session allowed us to assess skill maintenance 24h after training.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were carried out with Matlab 2018a (the Mathworks, Natick, Massachusetts, USA) and

Statistica 10 (StatSoft Inc., Tulsa, Oklahoma, USA). Post-hoc comparisons were always conducted using

the Fisher’s LSD procedure. The significance level was set at p % 0.05, except in the case of correction

for multiple comparisons (see below).

Motor skill learning and maintenance

The main aim of the present study was to evaluate the effect of reward on motor skill learning and main-

tenance. To assess skill learning, we expressed the median Error at Post-training in percentage of the value

obtained at Pre-training. To evaluate skill maintenance, we expressed the median Error during the Re-test

session in percentage of Pre-training. First, we compared skill learning and maintenance between the

groups through one-way ANOVAs with the factor GroupTYPE. Then, we explored the significance of skill

learning and maintenance within each group by conducting Bonferroni-corrected single sample t-tests

on these percentage data against a constant value of 100% (i.e., corresponding to the Pre-training level).

As explained above, task performance depended on both the speed and the accuracy of the produced force

(Figure 1B).We characterized the effect of reward on these different levels of force control, by evaluating sepa-

rately the speed of force initiation and the accuracy of the maintained force. To evaluate the speed of force

initiation, we measured the force initiation time (ForceInitiation) which was defined as the delay between the

appearance of the cursor and the moment where the applied force reached 5% of MVC (i.e., corresponding

to half of the TargetForce). Force accuracy was evaluated in the second half of the trial (i.e., the last 1000 ms),

through two different parameters. First, we computed the Amplitude Error of the force (ForceAmplError),

defined as the absolute difference between the mean force exerted in the last 1000 ms of the trial and the

TargetForce. It reflected how much the amplitude of the maintained force differed from the TargetForce. Sec-

ond, force accuracy was also characterized by considering the variability of the maintained force, with high

levels of variability causing increases in the Error. To assess force variability (ForceVariability), we computed

the coefficient of variation of the force in the second half of the trial (i.e., standard deviation of force/mean

force). In summary, to be successful, participants had to quickly initiate the force (i.e., low ForceInitiation) and

be as accurate as possible (i.e., low ForceAmplError and ForceVariability).

As a control, we verified that the three motor components described above (i.e., ForceInitiation, ForceAmplError,

and ForceVariability) were closely related to the Error, and therefore were relevant for task success. To do so, we

ran partial linear regressions on the Error data with ForceInitiation, ForceAmplError and ForceVariability as predictors

to estimate the respective influence of each motor component on the Error, while controlling for the effect of

the other components. Interestingly, we found that ForceAmplError explained the largest part of variance in the

Error (r = 0.96 G 0.003; p<0.05 in 90/90 subjects). ForceInitiation also explained a large part of variance in the

Error (r = 0.81 G 0.01; p<0.05 in 90/90 subjects), while ForceVariability explained a smaller, yet significant in

most subjects, part of variance (r = 0.22 G 0.03; p<0.05 in 68/90 subjects). Hence, although all motor param-

eters were relevant for task success, the ForceAmplError was the most influential factor.

Between-trial adjustments in motor commands

A second goal of the present study was to assess the effect of reward on between-trial adjustments inmotor

commands. Specifically, we aimed at evaluating how motor commands were adjusted based on reinforce-

ment and sensory feedback in our three experimental groups.

ll
OPEN ACCESS

iScience 24, 102821, July 23, 2021 19

iScience
Article



To do so, for each trialn we computed the absolute between-trial change (BTC) in Error (ErrorBTC; see (Pekny

et al., 2015; Uehara et al., 2019) for similar approaches in reaching tasks).

BTC Error = jErrorðn + 1Þ � ErrorðnÞj
In order to study how much motor commands were adjusted based on previous experience, we compared

adjustments inmotor commands following trials of different Error magnitudes. To do so, we first subtracted

each subject’s individual success threshold to the Error data. Hence, normalized Errors below 0 corre-

sponded to successful trials and normalized Errors above 0 corresponded to failed trials. Then, we split

the Error data in consecutive bins of 1% of MVC and averaged the corresponding ErrorBTC. This allowed

us to compare ErrorBTC following trials of similar Errorn across the groups.

As a first step, to better understand howmotor commands were adjusted based on the reinforcement feed-

back, we compared ErrorBTC following bins of Success or Failure trials of neighboring Error magnitudes

(BinSuccess:-1% < Errorn< 0% MVC; BinFailure: 0% < Errorn< 1% MVC). Fixing the boundaries of BinSuccess
and BinFailure allowed us to compare reinforcement-related adjustments between the groups while control-

ling for the magnitude of Errorn; an aspect that might directly influence between-trial adjustments. First, we

performed a two-way ANOVA with the factors Outcome (Success or Failure) and GroupTYPE. We then

computed reinforcement-based adjustments as the percentage change in ErrorBTC in BinFailure compared

to BinSuccess. This index allowed us to determine in a single measure how participants from the different

groups adjusted their behavior based on the reinforcement obtained in the previous trial.

Reinforcement � based adjustments in ErrorBTC = 1003
ErrorBTC ðBinFailureÞ
ErrorBTC ðBinSuccessÞ

These analyses were conducted separately on the Day 1 and Day 2 data. We had to exclude 3 and 9 par-

ticipants for Day 1 and Day 2 analyses, respectively, because they had less than 7 trials in at least one of the

two bins (remaining subjects on Day 1: Group-S = 29; Group-SR = 28; Group-SRR = 30; Day 2: Group-S = 26;

Group-SR = 27; Group-SRR = 28). For the remaining participants, an average of 56G 3 and 39G 2 trials were

included for each bin for Day 1 and Day 2 analyses, respectively. Reinforcement-based changes in ErrorBTC
were compared between the groups through one-way ANOVAs with the factor GroupTYPE.

As a second step, we evaluated how participants adjusted movements when they could only rely on the

sensory feedback. We compared ErrorBTC following bins of Failure trials of different Error magnitudes

(BinSmall-Failure: 0% < Errorn< 1%MVC; BinLarge-Failure: 1% < Errorn< 2%MVC). In this case, the reinforcement

feedback was the same in the two bins and the only difference between the trials consisted in the magni-

tude of the Error experienced at trialn. Again, we first performed a two-way ANOVA with the factors

Outcome (Small or Large Failure) and GroupTYPE. We then computed sensory-based adjustments as the

percentage change in ErrorBTC in BinLarge-Failure compared to BinSmall-Failure. This index allowed us to deter-

mine how participants adjusted their behavior based on the previous somatosensory experience, in the

absence of any difference in the reinforcement feedback obtained.

Sensory � based adjustments in ErrorBTC = 1003
ErrorBTC ðBinLarge � FailureÞ
ErrorBTC ðBinSmall � FailureÞ

This analysis was first run on the Day 1 data. We had to exclude 12 participants because they had less than 7

trials in at least one of the two bins (remaining subjects: Group-S = 27; Group-SR = 28; Group-SRR = 24). For

Day 2, applying the same procedure led to the exclusion of 29 subjects with a lower number of participants

in the Group-SRR (15 subjects). For this reason, we ran another analysis where we exceptionally excluded

participants only if they had less than 5 trials in one bin. This allowed us to keep a reasonable number of

participants in each group (19 subjects excluded; remaining subjects: Group-S = 24; Group-SR = 26;

Group-SRR = 21). Notably, both analyses (i.e., with 7-trials or 5-trials cutoff) gave similar results and we

only present the latter in the Results section. For the remaining participants, an average of 47 G 3 and

29G 2 trials were included for each bin for Day 1 and Day 2 analyses, respectively. Sensory-based changes

in ErrorBTC were compared between the groups through a one-way ANOVA with the factor GroupTYPE.

As a last step, we asked whether the effect of reward on between-trial adjustments in motor commands

concerned all aspects of force control, or only specific motor components. To do so, we investigated rein-

forcement-based and sensory-based adjustments in ForceInitiation, ForceAmplError and ForceVariability, using

the same method described above for the average Error. We first performed two-way ANOVAs with the
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factors Outcome (reinforcement-based analysis: Success or Failure sensory-based analysis: Small or

Large Failure) and GroupTYPE. Then, to assess reinforcement-based adjustments, we contrasted

between-trial changes in ForceInitiation (ForceInitiation-BTC), ForceAmplError (ForceAmplError-BTC) and in

ForceVariability (ForceVariability-BTC) following BinSuccess and BinFailure. Sensory-based adjustments were

computed by contrasting ForceInitiation-BTC, ForceAmplError-BTC and ForceVariability-BTC following BinSmall-Failure

and Bin
Large-Failure

. These data were compared between the groups through one-way ANOVAs with the factor

GroupTYPE.

Group features, muscle fatigue and monetary gains

As a control, we verified that our 3 groups were comparable in terms of age, success threshold, TargetForce,

and Sensitivity to Reward and to Punishment (i.e., as assessed by the SPSRQ questionnaire). As displayed in

Table 1, one-way ANOVAs on these data did not reveal any significant differences between the groups.

We also assessed muscle fatigue on Day 1 and Day 2 (Derosière et al., 2014; Derosiere and Perrey, 2012) by

expressing the MVC obtained after each session (MVCPOST) in percentage of the MVC measured initially

(MVCPRE). The relative change of MVC was not different according to the GroupTYPE (Day 1, F(2,87) =

0.51, p = 0.60; Day 2, F(2,87) = 0.60, p = 0.55; Table 1). As an additional safety check, we wanted to make

sure that the decrements in MVC caused by the training period of Day 1 could not impair performance.

To test this, we compared MVCPOST (expressed in % of MVCPRE) with a fixed value of 10% of MVCPRE

(i.e., corresponding to the TargetForce) through Bonferroni-corrected single sample t-tests. This analysis re-

vealed that MVCPOST levels were always significantly above the TargetForce (Group-S: t(29) = 35.84, p < 0.001;

Group-SR: t(29) = 34.14, p < 0.001 and Group-SRR: t(29) = 34.44, p < 0.001). Hence, force decrements caused by

the training were comparable between groups and are unlikely to have limited task performance.

In a final step, we checked that the monetary gains obtained at the end of the experiment were similar be-

tween groups. Subjects received a fixed show-up fee corresponding to 10 euros/hour of experiment. In

addition, participants also gained a monetary bonus. This bonus was set at 10 euros for subjects in

Group-SR and Group-S while it was variable from 0 to 20 euros according to the Group-SRR performance

(gain of 8 cents per successful trial in Block-SRR). Importantly, this bonus procedure in Block-SRR was deter-

mined to match that obtained in the other groups; it corresponded to 10.4 G 0.67 euros. A t-test revealed

that the total ending remuneration was similar across the different GroupTYPES (t(29) = 0.57; p = 0.57).
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