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Cardiac surgery was developed thanks to the introduction of hypothermia and car-
diopulmonary bypass in the early 1950s. The deep hypothermia protective effect 
has been essential to circulatory arrest complex cases repair. During the early times 
of open-heart surgery, a major concern was to decrease mortality and to improve 
short-term outcomes. Both mortality and morbidity dramatically decreased over a few 
decades. As a consequence, the drawbacks of deep hypothermia, with or without 
circulatory arrest, became more and more apparent. The limitation of hypothermia 
was particularly evident for the brain and regional perfusion was introduced as a 
response to this problem. Despite a gain in popularity, the results of regional perfu-
sion were not fully convincing. In the 1990s, warm surgery was introduced in adults 
and proved to be safe and reliable. This option eliminates the deleterious effect of 
ischemia–reperfusion injuries through a continuous, systemic coronary perfusion with 
warm oxygenated blood. Intermittent warm blood cardioplegia was introduced later, 
with impressive results. We were convinced by the easiness, safety, and efficiency 
of warm surgery and shifted to warm pediatric surgery in a two-step program. This 
article outlines the limitations of hypothermic protection and the basic reasons that led 
us to implement pediatric warm surgery. After tens of thousands of cases performed 
across several centers, this reproducible technique proved a valuable alternative to 
hypothermic surgery.

Keywords: cardiopulmonary bypass, warm perfusion, warm blood cardioplegia, microplegia, pediatric cardiac 
surgery

introdUCtion

Perfusion is a typical case of experience-based medicine, and there is no agreement on even such 
basic factors as priming volume and composition, temperature on bypass, type of cardioplegia and 
re-dosing intervals, non-pulsatile or pulsatile perfusion. The dogma on the imperative need for 
hypothermic protection in pediatric cardiac surgery should be discussed in the light of modern 
anesthesia cardiac surgery and recent cardiopulmonary bypass components. This article aims to 
present the limitations of hypothermic perfusion and the reasons that led us to implement warm 
pediatric cardiac surgery.

eVoLUtion oF tHe doGMa on HypotHerMia proteCtiVe 
eFFeCt dUrinG CardiaC sUrGery

In the 1950s, two major breakthroughs led to the initiation and development of open-heart sur-
gery: systemic hypothermia and cardiopulmonary bypass. In 1950, Bigelow introduced systemic 
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hypothermia with the goal of lowering oxygen requirements, 
allowing organs exclusion from the circulation for the period 
necessary for surgery (1, 2). Systemic hypothermia was the only 
way to obtain a bloodless operating field, allowing intracardiac 
repair under direct vision. In 1952, Lewis first applied systemic 
hypothermia (28°C) and a 5.5 min inflow occlusion to close an 
atrial septal defect. At the same time, the technology of extracor-
poreal circulation reached the stage of clinical application, and in 
1953, Gibbon used the Gibbon-IBM heart–lung machine to close 
an atrial septal defect. This was the first open-heart surgery with 
cardiopulmonary bypass. Initially, the two techniques were used 
separately. In the 1960s, topical hypothermia around 28–29°C 
with circulatory arrest was mainly used in Novosibirsk in the 
treatment of ventricular septal defect, atrioventricular canal, 
and tetralogy of Fallot (3), while cardiopulmonary bypass with 
normothermia was mainly used in North America (4, 5).

The two innovations were soon combined, and the alteration 
in systemic temperature was simplified by the addition of a heat 
exchanger on the bypass circuit (6). Systemic hypothermia was 
enhanced by topical hypothermia for myocardial protection (7), 
and by cold cardioplegia in the 1970s (8, 9). There was no real 
consensus on the optimal temperature needed for the treatment 
of simple and complex cardiopathies. Moderate hypothermia 
(30°C) was used very successfully in 337 patients with tetralogy 
of Fallot (10), but more severe hypothermia was regarded as 
superior for organs protection allowing an optimal safety margin. 
Deep hypothermia with circulatory arrest was introduced in the 
1960s and later popularized in complex pediatric cases (11–14).

It was commonly admitted that the benefits of hypothermia 
outweighed its drawbacks, and brain protection during circula-
tory arrest was indeed a major concern.

The physiology of brain is unique: while this organ accounts 
for about 2% of the body weight, its blood flow is 13% of the 
cardiac output, and its oxygen consumption is 20% of the total 
body oxygen consumption at rest (15). There is no doubt that 
hypothermia decreases brain oxygen consumption, and it 
is commonly admitted that this decrease is 6–7% for every 
degree below 37°C. Consequently, safe periods of circulatory 
arrest were estimated, but without agreement on the predicted 
safe duration. From one study to another, it varied from 40 to 
60 min for systemic temperature of 20–22°C, to 29 min at 15°C 
(16–18). This lack of precision was made even worse by the 
inconsistency of temperatures recorded at various sites. In a 
study using electroencephalogram assessment of electrocerebral 
silence as an objective measure of brain function, the authors 
demonstrated that temperatures from nasopharynx, esophagus, 
and rectum were inaccurate in predicting the cessation of brain 
electrical activity. Electrocerebral silence was observed with 
nasopharyngeal temperatures varying from 10.1 to 24.1°C and 
rectal temperatures varying from 12.8 to 28.6°C (19). The safe 
duration of circulatory arrest is not the only uncertainty in the 
management of deep hypothermia and the choice between pH-
stat versus α-stat strategy is an endless debate (20–26). In the past, 
despite hypothermic brain protection, neurologic complications 
were frequent. Postpump chorea was strongly associated with 
deep hypothermia and circulatory arrest and the prognosis was 
guarded (27, 28). Much more frequent were post circulatory 

arrest clinical seizures, with an incidence of around 6–10% 
(29, 30) but three times more when seizures were diagnosed via 
continuous electroencephalographic monitoring (31). There is 
some evidence that neonatal seizures are a good surrogate marker 
of long-term neurologic outcome (32). As survival rate improved 
for congenital heart surgery, long-term neurodevelopment delays 
were observed in patients treated with deep hypothermia. The 
dogma of brain hypothermic protection during circulatory arrest 
became progressively discussed, and antegrade selective cerebral 
perfusion was introduced to overcome the side effects of circula-
tory arrest with profound body hypothermia (33–35). The term 
cerebroplegia was used for cerebral perfusion with 6–10°C blood, 
while the body was perfused with moderate systemic cooling of 
around 26°C. Pediatric surgeons accepted to implement this 
technique for hypoplastic left heart syndrome first stage palliation 
or aortic arch surgery (36, 37). The benefits were disappointing 
compared to circulatory arrest, and several works failed to find 
any positive effect of antegrade cerebral perfusion (38–41). The 
appropriate hypothermic brain perfusion rate and pressure for 
neonates remain unknown. Many studies assessed hypothermic 
perfusion using oxygen delivery or oxygen saturation as a marker 
of perfusion quality. In fact, high oxygen saturation during 
hypothermic perfusion may indicate impaired oxygen transfer 
from blood to tissue rather than normal or over-perfusion (42). 
Besides, optimizing oxygenation does not mean “the more, the 
better,” and any excessive blood flow can be detrimental, carrying 
the risk of cerebral edema and intracranial hemorrhage (43).

The mechanisms of hypothermic brain protection are still to 
be elucidated and decades after its implementation, the manage-
ment of patients during hypothermia and rewarming is far from 
uniform. This is, at least in part, due to the lack of clear evidence 
about the optimal management.

The physiology of the heart is quite unique too. Being a 
muscle, its myocardial oxygen consumption is mainly related 
to its activity. At rest, the coronary blood flow represents 5% of 
cardiac output, while its oxygen consumption is 11% of the total 
consumption (15). Hypothermic myocardial protection during 
cardiac surgery is more questionable, as hypothermia increases 
oxygen consumption per beat, the decrease in oxygen consump-
tion observed being due to bradycardia. It has been estimated 
that myocardial oxygen consumption, normalized for heart rate, 
more than doubles when temperature decreases from 37 to 22°C 
(44, 45). Furthermore, the decrease of myocardial oxygen con-
sumption of an arrested heart is little influenced by temperature 
and, in dogs, there is an overlapping between myocardial oxygen 
consumption of a normothermic contracting empty heart and a 
heart during hypothermic (11°C) arrest (46).

Hypothermic protection of other organs including kidney, 
liver, gut, lungs, muscle, skin, and endocrine glands is even more 
questionable. Hypothermia depresses renal blood flow, glomeru-
lar filtration, osmolar clearance, and maximum tubular excretory 
capacity (47, 48). Glomerular filtration rate and renal plasma 
flow decrease by 40% at 32°C and 70% at 27°C (49). The blood 
flow of liver, gut, and pancreas is reduced during hypothermia, 
with a decrease in liver metabolic and excretory functions. There 
is some concern about the role of hypothermia in the increase 
in gut permeability and loss of mucosal integrity observed 

http://www.frontiersin.org/Pediatrics
http://www.frontiersin.org
http://www.frontiersin.org/Pediatrics/archive


3

Durandy Pediatric Warm Cardiac Surgery

Frontiers in Pediatrics | www.frontiersin.org May 2016 | Volume 4 | Article 43

following cardiopulmonary bypass. These gastrointestinal 
changes  underline the risk of endotoxin or bacteria translocation 
from the gut to the blood (50, 51). The mechanical effects of 
hypothermia on lungs have been studied in sheep. A significant 
decrease in compliance was observed in animals subjected to 
hypothermia, while compliance was stable in animals subjected 
to anesthesia alone or normothermic bypass (52). The effects 
on soft tissue were rapidly established, as the first case of lethal 
subcutaneous fat necrosis was published in 1953 in a four-and-
a-half-month-old boy operated on for a tetralogy of Fallot (53). 
A few cases of this rare complication have been published with 
a more favorable evolution (54). Endocrine function is altered 
during hypothermia, the most frequent manifestation being a 
decrease in insulin production with hyperglycemia (55).

Apart from organ dysfunction, reversible platelet dysfunction 
(56), depressed immune system (57), and pH and PCO2 modi-
fications (58) have been related to hypothermia. There is also 
reasonable suspicion that increased endothelial permeability and 
edema may contribute to organ malperfusion during cooling and 
rewarming (59, 60).

The side effects of hypothermia are all reversible, and there is 
no doubt that hypothermic perfusion has been essential to the 
development and success of cardiac surgery. However, following 
hypothermia, the delay between normalization of temperature 
and normalization of organ function and metabolic drawbacks is 
likely to vary from one case to the other. This is particularly true 
for neurologic impairment, which may even persist in grown-up 
children (61), but possibly also for immune function, contributing 
to a higher risk of postoperative infection (62), and coagulation 
impairment, with its consequences (bleeding and transfusion) 
carrying their own risk (63, 64).

Brain WarM isCHeMia:  
a MisUnderstood risK

A common opinion is that during normothermic, 5- to 10-min 
circulatory arrest, brain changes and neuronal death are irrevers-
ible. This is not totally in agreement with the observations in 
dogs, which can stand up to 30 min of circulatory arrest without 
permanent brain damage, provided blood is removed from the 
brain before the arrest (65), nor with observations made on 
humans following prolonged circulatory arrest. In such cases, 
hypoxia should affect all the brain with symmetrical destruction 
while, in fact, the destruction of large areas on one side co-occurs 
with unaffected corresponding areas on the opposite side (65). 
This is not in agreement with a recent experimental work on 
pigs, demonstrating that brain recovery following 30-min warm 
ischemia depends on the quality of reperfusion. The poorest 
outcomes, including brain edema and extensive cerebral infarct, 
were observed with “uncontrolled reperfusion,” while pulsatile 
“controlled reperfusion” resulted in minimal brain edema and no 
brain infarction. Uncontrolled reperfusion was defined as normal 
blood reperfusion by the pig heart, and controlled perfusion was 
performed via a mechanical pump with a high flow (66). This 
experimental work could contribute to explain the superior 
results observed with extracorporeal membrane oxygenation 

rescue versus conventional cardiopulmonary resuscitation. In 
one work on in-hospital cardiac arrest in pediatric patients, 11/27 
patients (41%) were survivors, 10 of them having good neurologic 
outcomes (67).

There is, of course, no study establishing the safe limit of brain 
warm ischemia in man, and data have only been gathered from 
experience. Unexpected recoveries were observed following 
treatment of massive hemorrhage with deliberate circulatory 
arrest using induced ventricular fibrillation. Normothermic 
arrests up to 14 min were observed without sequelae (68). There 
is some evidence that the time to irreversible brain damage fol-
lowing normothermic brain ischemia is not necessarily as short 
as commonly admitted. Ischemia–reperfusion effects could be 
influenced by the quality of reperfusion and anticoagulation 
avoiding thrombosis in small brain vessels during circulatory 
arrest.

During full flow warm oxygenated blood perfusion, brain 
perfusion is controlled by auto-regulation. In case of an incident 
requiring circulatory arrest longer than the “classical” safe limit, 
controlled reperfusion should be used to obtain full recovery 
of the neurologic function. The new challenge is therefore to 
compare the inherent risks of hypothermic brain perfusion or 
hypothermic circulatory arrest against the inherent risks of warm 
perfusion.

WarM CardiaC sUrGery, tHe adULt 
eXperienCe

Continuous whole body warm perfusion with oxygenated blood 
is one way to avoid the deleterious effects related to ischemia– 
reperfusion. This option, used in the early years of cardiac surgery 
(4, 5), was then abandoned until 1989, when a 64-year-old woman 
was operated on for mitral valve surgery with 33°C perfusion and 
37°C continuous cardioplegia infusion. Due to cardiac rupture, 
the cross clamp time was 393 min. This patient was easily weaned 
off bypass without inotropic support or intra-aortic balloon 
pump, but died 17 h later from recurrence of arterio-ventricular 
separation (69). Following this impressive result, a randomized 
study on 1,732 coronary bypass surgery patients, classified into 
warm group (n = 860) and cold group (n = 872), failed to demon-
strate any advantage of hypothermic brain protection, and serial 
creatine kinase MB fraction levels were significantly lower in the 
warm group (70, 71).

The constraint imposed by continuous cardioplegia infusion, 
be it antegrade or retrograde, was overcome in 1995. Intermittent 
antegrade warm blood was compared to cold blood cardioplegia 
in two groups of coronary artery bypass graft patients. The warm 
group showed improved outcomes in term of immediate hemo-
dynamics and peak concentration of creatine kinase myocardial-
specific isoenzyme. The incidence of myocardial infarction and 
stroke was lower in the warm group, albeit not reaching sig-
nificance (72, 73). Warm perfusion and intermittent warm blood 
cardioplegia was implemented by other groups, confirming the 
feasibility, safety, and benefits of the technique (74–77). A meta-
analysis failed to demonstrate any difference related to perfusion 
temperature in the incidence of stroke and deterioration of the 
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neuropsychological function following cardiopulmonary bypass 
(78). The lack of difference between cold and warm perfusion 
could be due to the fact that the period at higher risk of embo-
lization occurred at the beginning and the end of bypass, when 
patients of both groups were normothermic. It is noteworthy that 
warm adult surgery, introduced 20 years ago, is used worldwide 
and that the risk of bypass circuit mechanical incident-related 
brain ischemia is more than exceptional. Intermittent warm 
blood cardioplegia was mainly used in coronary artery bypass 
graft and re-dosing intervals of 15 min or less were more than 
sufficient to perform a distal anastomosis. However, there was 
some concern regarding the maximum safe time to re-dosing. In 
the literature, the safe time to re-dosing increases progressively 
with increased experience in warm surgery. It was 5 min in 1992 
(79), 10–15 min in 1995 (73–75), 30 min in 2000 (80), or even 
more. Single shot warm blood cardioplegia was used for aortic 
clamp time between 29 and 47 min (81).

iMpLeMentation oF WarM pediatriC 
sUrGery a tWo-step sHiFt

We found several aspects attractive in warm perfusion and with 
recent oxygenators circuits and cannula, in experienced hands, 
the need for circulatory arrest was no longer essential. In the early 
1990s, we thus shifted from cold to warm perfusion. Continuous 
warm blood cardioplegia being unrealistic in pediatric patients, 
the first step of our protocol combined warm perfusion with 
cold blood cardioplegia. The prime was heated to 37°C and the 
heater–cooler unit was set to 37.5°C during the whole bypass 
time. Such a protocol was not totally satisfactory, but we learned 
that warm perfusion was feasible and safe and observed a number 
of positive outcomes. As expected, time on bypass, a classical risk 
factor in pediatric cardiac surgery, decreased. The endless debate 
on the best pH management during hypothermic perfusion was 
avoided, as well as the risk of hyperthermic brain injury during 
rewarming (82). Convulsion, a manifestation usually related to 
deep hypothermia, was no longer observed, preventing long-
term neurological impairment (32, 83, 84), and myocardium 
rewarming between cardioplegia re-dosing was limited by the 
interposition of a mattress perfused with cold water.

When intermittent warm blood cardioplegia was proved to be 
reproducible, efficient, and safe in the adult population, we imple-
mented this technique in pediatrics. The second step combining 
warm perfusion and cardioplegia started in April 2001. Warm 
blood cardioplegia was in fact microplegia. Warm oxygenated 
blood was diverted from the oxygenator or from the origin of 
the arterial line via a roller pump. Downstream the roller pump, 
the arresting agent was added via an electrical syringe pump. The 
ratio of blood to arresting agent was 60:1 and the cardioplegia was 
sucked back into the circuit. The hydric balance of microplegia 
was negligible, limited to the few milliliters of arresting agent 
(85). The arresting agent was similar to St. Thomas I, which is 
composed of potassium, magnesium, and procaine. The re-dosing 
interval was 15 min, and we did not observe any hyperkaliemia. 
Our initial experience with this new protocol was satisfactory. 
We compared retrospectively the last 950 patients operated on 

with warm perfusion and cold blood cardioplegia and 1,400 
patients operated on with warm perfusion and intermittent warm 
blood microplegia. Spontaneous resumption of sinus rhythm 
was 99% in the warm group versus 77% in the cold group, and 
intensive care length of stay was under 48 h in 86 versus 75%. 
Four groups of frequent cardiopathies were selected to compare 
time to extubation and postoperative troponin levels: ventricular 
septal defect, tetralogy of Fallot, complete atrioventricular septal 
defect, and arterial switch operation. In each group, the results 
were significantly enhanced following warm surgery. Among 
the selected patients, mortality was comparable: 5 out of 364 
(1.4%) in the warm group versus 5 out of 255 (1.9%) in the cold 
group. Following this study, we compared risk stratification in 
our unit to risk assessment from the Aristotle basic complexity 
score. Patients under 10 kg were included in the study, 38 had 
prolonged aortic cross-clamp time defined as a cross clamping 
time exceeding 90 min (group 1), and 196 had shorter cross clamp 
time (group 2). In terms of mortality and prolonged hospital 
length of stay, our results compared favorably to the data from 
the Society of Thoracic Surgeons and European Association for 
Cardio-Thoracic Surgery database. Interestingly, blood lactate 
level, a biomarker of perfusion quality, was at 2.5 mmol during 
bypass, peaked at 2.6 mmol/L on arrival to ICU in group 1 and 
reached 1.4  mmol/L 20  h later (86). This level was far lower 
than those associated with complicated postoperative courses 
described in the literature (87, 88).

The results obtained with warm surgery in our unit proved 
reproducible. The benefits of warm perfusion on immediate 
outcomes were confirmed through low requirement for inotropic 
and short time to extubation, low lactate production, adequate 
urine output, minimal drainage from the chest drains, short ICU 
and hospital stay (89). When compared to hypothermic perfu-
sion, warm perfusion was associated with reduced oxidative stress 
(90). A study comparing arterial switch operation with either cold 
or warm surgery confirmed the benefits of warm perfusion on 
postoperative lactate blood levels, time to extubation and length 
of stay in ICU (91). Myocardial protection assessed on myocardial 
biopsies confirmed the superiority of warm blood microplegia, 
while early and late neurodevelopmental status, following warm 
perfusion, were equivalent to those observed during mild hypo-
thermia (92). The absence of benefits of low temperature over 
warm perfusion on brain protection became ever more evident. 
Of note, several European units switched from cold to warm 
surgery, and none decided to shift back to hypothermia (89–94).

The growing experience in intermittent warm blood micro-
plegia consolidated a significant body of evidence to support the 
good tolerance of warm myocardial ischemia. The issue was, as 
it has been for adults, to determine the maximal safe time to re-
dosing. We progressively increased time to re-dosing from 15 to 
35–40 min without any drawbacks (95–97). This slow drift was 
done over 10 years and was due to the frequent “2 min” delay 
requested by the surgeon. In a study assessing Troponin T fol-
lowing 35–40  min re-dosing intervals, we compared 4 groups 
of patients: 46 patients had cardiac surgery without aortic cross 
clamping (group 0), 81 patients had one cardioplegia injection 
(group 1), 31 patients had two injections (group 2), and 7 had 
3 injections (group 3). There was no significant difference in 
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Troponin T levels between group 0 without myocardial ischemia 
and group 1 with 28.30 ± 8.84 min cross clamp time. In group 2 
(65.71 ± 9.70 min cross clamp time), troponin was 2.17 ± 2.29 
μg/L and in group 3 (114 ± 13.71 min cross clamp time), the level 
was 3.79 ±  3.00 μg/L. These blood levels of troponin compare 
favorably to those from patients receiving cold crystalloid cardio-
plegia (87, 88, 98). The main limitation of our study is the small 
number of long-term aortic cross clamp time.

Twenty years from the implementation of warm perfusion, 
and 15 years after we shifted to warm surgery, thousands of cases 
have been performed every year, mainly in Europe. The safety, 
efficiency, and advantages are widely acknowledged by surgeons 
who adopted this approach. We have been using the technique 
for all types of cardiopathies, including interruption of the aortic 
arch without or with transposition of the great arteries or total 
pulmonary anomalous venous return. During aortic arch repair, 
the arterial line was divided in two via a Y-type connector. The 
upper part of the body was perfused through the brachiocephalic 
artery and the lower part through the descending aorta or the 
femoral artery. Small femoral cannulas were specifically designed 
for neonates. We did not experience any of the drawbacks of 
femoral cannulation and immediate postoperative arterial 
Doppler demonstrated the permeability of the femoral artery. 
Many surgeons are less enthusiastic and prefer the comfort of 
circulatory arrest for complex cases. There is no discussion about 
the fact that cardiac surgery is teamwork and that the quality of 
surgical cure is of utmost importance. The final decision in the 
operating room belongs to the surgeon. However, warm surgery 
is not a “point of no return”: in case of need, hypothermia can be 
instituted rapidly, especially in low-weight babies.

When coupled to warm surgery, pulsatile perfusion generates a 
peripheral pulse detectable with an oximeter. As expected, during 
pulsatile warm perfusion, pulse oximetry values were equivalent 
to values measured with a co-oximeter. Several commercially 
available monitors display not only saturation but also a numeri-
cal value known as the perfusion index, a relative assessment of 
the pulse strength. This index is influenced mainly by the amount 
of blood at the monitoring site and not by the level of oxygenation 
and there is some evidence that it accurately reflects peripheral 
perfusion (99, 100). We routinely monitor peripheral saturation 
and perfusion index, peripheral saturation and perfusion index 
being likely to reflect saturation and perfusion quality of end 
organs. Furthermore, we use peripheral saturation to adjust FIO2 
at the lowest level needed to reach a saturation of 98%, avoiding 
the potential deleterious effect of hyperoxia. In cyanotic patients, 
it was suggested that controlled reoxygenation decreased myocar-
dial damage, oxidative stress, and cerebral and hepatic injury when 
compared to hyperoxic bypass (101). During aortic arch surgery, 
bilateral ear lobe sensor should display identical saturation and 
pulsatile index. Ear-lobe probe measures oximetry of the distal 

part of the external carotid artery and, in young patients, is likely 
to be a strong predictor of brain blood saturation. This simple tool 
could be a valuable alternative to monitoring of regional cerebral 
oxygenation via near-infrared spectroscopy. Studies comparing 
the two techniques are underway.

Beside the medical advantages, warm perfusion and inter-
mittent warm blood microplegia are also cost-effective. The 
microplegia circuit is simple and therefore inexpensive and the 
arresting agent costs but a few euros. Furthermore, the negligi-
ble hydric balance of microplegia is a positive factor for blood 
conservation and contributes to reduce blood transfusion. For 
all these reasons, warm surgery was implemented by European 
teams in many humanitarian surgery missions. During missions, 
warm surgery is the perfect answer to the need for inexpensive 
and simple procedure, short time on bypass, and short intensive 
care length of stay, allowing more cases to be performed.

The main objection raised by opponents to warm surgery is 
the absence of safety margin in case of incident, requiring circula-
tory arrest lasting more than a few minutes. This is true, and if 
a surgeon experienced such incident during cold perfusion, he 
would probably better not implement warm surgery. However, 
after decades of application and tens of thousands of cases per-
formed in numerous centers, we can confirm that the accidental 
risk is not a valuable reason to be afraid of warm surgery.

It is always challenging to choose a way opposite to the “gold 
standard” and the implementation of warm pediatric cardiac 
surgery was initially done against the opinion of the medical 
community. Nowadays, the results of pediatric cardiac surgery 
are so good that the number of patients needed to demonstrate 
the benefit of warm perfusion on mortality makes such a single 
center study utopian. Furthermore, cardiopulmonary bypass 
is only one element in the management of a patient. Cardiac 
surgery is a teamwork, the results of which depend on everyone 
involved in diagnosis, surgery, and intensive care including all the 
doctors, technician, and nurses from the medical staff. However, 
when a technique is simple, reproducible, safe, efficient, and 
cost-effective, and when no one changed his mind after choosing 
to implement it, it suggests that the approach makes sense. We 
can hardly imagine that full flow warm oxygenated blood brain 
perfusion could be worse than circulatory arrest or deep hypo-
thermic regional cerebral perfusion. It is difficult to conceive that 
the good results observed in short-term outcomes on myocardial 
and brain functions could worsen over time, and we do hope that 
longitudinal studies will, in a next future, demonstrate the quality 
of long-term results of warm surgery.
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