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Abstract: Polymer materials offer several advantages as supports of biosensing platforms in
terms of flexibility, weight, conformability, portability, cost, disposability and scope for integration.
The present study reviews the field of electrochemical biosensors fabricated on modified plastics
and polymers, focusing the attention, in the first part, on modified conducting polymers to improve
sensitivity, selectivity, biocompatibility and mechanical properties, whereas the second part is
dedicated to modified “environmentally friendly” polymers to improve the electrical properties.
These ecofriendly polymers are divided into three main classes: bioplastics made from natural sources,
biodegradable plastics made from traditional petrochemicals and eco/recycled plastics, which are
made from recycled plastic materials rather than from raw petrochemicals. Finally, flexible and
wearable lab-on-a-chip (LOC) biosensing devices, based on plastic supports, are also discussed.
This review is timely due to the significant advances achieved over the last few years in the area of
electrochemical biosensors based on modified polymers and aims to direct the readers to emerging
trends in this field.

Keywords: conducting polymers; modified biopolymers; modified bioplastics; recyclable plastics;
flexible electrochemical biosensors

1. Introduction

Owing to their potential usefulness in personal healthcare and disease diagnosis, medical
biosensors widely attract the attention of the research community [1,2]. These devices can diagnose a
wealth of diseases and health conditions, such as diabetes, cardiovascular issues, infectious diseases
and cancer [3–5]. An interesting report of IDTechEx, recently published, predicts that the market for
biomedical diagnostics is expected to grow steadily, reaching $43 billion by 2029 [6], due to a growing
and aging global population increasing health expenditure and more prevalent lifestyle such as obesity,
cancer and cardiovascular diseases. This report presents a list of new technologies and devices which
are likely to be highly disruptive to the in vitro diagnostics market, including microfluidic lab-on-a-chip,
lateral flow assays, electrochemical test strips, molecular diagnostics and DNA sequencing [6].

Typical medical biosensors rely on the coupling of (i) a biological recognition element (enzyme,
antibody, oligonucleotide, aptamer) interacting selectively with the target biomolecules, and, (ii) a
suitable transducer that monitors the degree of this interaction, providing qualitative and quantitative
information [1]. The versatility of these devices can be enhanced through layered construction by
combining two or more materials of different properties. In this review we focus our attention
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on biosensors which employ electrochemical circuits to detect biomolecules. The electrochemical
modes of detection (amperometric, voltammetric, field effect transistor (FET)-based potentiometric
or impedimetric) are perfectly suited and enable high selectivity and sensitivity in biosensing
devices [7–11]. In contrast to other techniques such as microdialysis and nuclear magnetic resonance
(NMR) spectroscopy, electrochemical sensors can rapidly and precisely measure extracellular low
analyte concentrations, if used, for example, within the tissue in near real time. Amperometric
electrochemical sensors are based on the application of an electric potential and the measurement of
an electrical output signal (the measured current) that is proportional to the analyte concentration.
One of the most important class is represented by the enzyme-based, amperometric, electrochemical
biosensing able to highly selective and sensitive response in a complex environment [12]. These chemical
sensors are called biosensors because enzymes with their very specific interaction with a substrate
are immobilized as biological recognition elements onto electrodes. The most widely studied in vivo
sensors are continuous glucose monitoring systems aimed at patients with metabolic disorders
(e.g., diabetes) [13,14]. The other main driving force behind the development of sensors is the
neurosciences. Many sensors have been developed for short-term brain application in animal models,
mostly for neurotransmitters (e.g., glutamate or choline) and energy metabolites (e.g., lactate) [15–19].

Previous reviews have widely discussed general fabrication aspects and other technical issues
associated with biosensors [20–23]. Different materials can be used in the fabrication of these
devices, but very interestingly, in the last decades, a great attention has been addressed to polymers
and study based sensors [24,25]. Polymer materials have several intriguing advantages when
considered as support platforms for biosensors: they are lightweight, ultra-conformable (bendable,
stretchable, foldable), portable, disposable and inexpensive. Furthermore, they offer extended scope
for a high degree of functional integration and, thus, can accommodate additional functionalities
(i.e., wireless transmission modules, control and data acquisition instrumentation, in-built power units,
etc.) and have advantages over metallic and ceramic materials, such as mild synthetic conditions,
scalable and large-area processing, low operating temperature and biocompatibility [26].

Finally, polymers could be easily modified in order to improve key requirements, necessary to
expand their applications. The most important parameters for sensing performance are sensitivity,
response/recovery time and reversibility/reproducibility of response, which are strongly dependent on
the chemical structure and size of the polymers. From both an engineering point of view and a sensor
development point of view, we consider that is very useful to make a review related to the emerging
field of biomedical sensors based on electrochemical detection and produced by using polymeric
material subjected to surface and structural modification.

This review focuses on significant works over the last 10 years that could potentially determine
future trends in the area of biosensors. Figure 1a presents the evolution of the number of papers
published, showing an increased attention of the research community in the last 10 years (works
published in 2020 have been considered and discussed in the review, but not visualized in Figure 1a
because the current number does not represent the entire year). The research is related to sensors
based on electrochemical detection and compare them with those produced with polymer material and
employed in the biomedical field. The last decade was selected taking into account the huge amount
of works encountered and to chiefly update the advances of the topic under study. From this research
study, it is possible to realize that over 22,860 papers were published on electrochemical based sensors
from 2010, which 3855 (~17%) of them are related to devices composed by polymers. Even the range of
time explored is quite short, the number of scientific investigations found is elevate and an exponential
growth has been detected, envisaging for continuous growing in the future. Among them, the devices
composed by polymers represent the ~14% (536 works found), almost equally divided into modified
and not modified polymers, as reported in Figure 1b.

Selected papers and corresponding important parameters as polymer materials employed, type of
modification and biomolecules detected, are listed in Table 1.
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electrochemical detection and composed by common plastics is reported. 

Figure 1. (a) Comparison between the evolution of electrochemical-based sensors published research
papers per year in the last decade, based on polymer materials and employed in the biomedical field
and (b) percentage of biosensors based on electrochemical detection composed made of unmodified
and modified polymers. Source: Web of Science (WOS).

Prompted by the noteworthy and growing interest registered in the last decade and by the need
to explore the potential utilization of modified polymers as electrochemical biosensors, this review
compiles and discusses selected highlighted papers of this period. Previous reviews [27–31] have
focused the attention on the modification modes, molecules detected. Herein the authors report a
review centered on the polymers and plastics employed in the more important sensing system used
in the biomedical field, with the aim to direct the readers from sophisticated conducting polymers
to emerging trends represented by cheap “environmentally friendly” recyclable plastics as well as
bioplastics and biodegradable plastics, modified to be converted into conducting materials.

Therefore, the first part discusses sensors employing electrochemical methods for the detection
(electro-BIOsensors) based on conducting polymers, where the modification is carried out to improve
the sensing mechanisms, altering both the surface and the entire structure of the polymer material
(surface and structural modification).The second part is focused on the description of non-conducting
polymers surface modified by means of immobilization of agents responsible for sensing. Finally, a brief
discussion about outstanding prototype of biosensors based on electrochemical detection and composed
by common plastics is reported.
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Table 1. Overview of some relevant publications on electrochemical detection based biosensors composed by polymers and on its type of modification, over the past 10 years.

Authors (Year) Polymer Material 1) Molecules Detected
(EC Technique Used) 2)

Polymer Modified
(Type of Modification) 3)

Limit of Detection 4)

(Detection Range)
Improvements

Poletti Papi et al. [32] (2017) PPy Glucose, bioproduct (CA) PPy-AgNPs (Structural, reverse
microemulsion method)

3.6 µM
(25–2500 µmol L−1) Sensitivity

Ansari et al. [33] (2019) PAB Glucose, bioproduct (CV) PAB/AuNPs (Superficial, seed-assisted
growth method)

0.4 µM
(2–250 µM) Sensitivity

Sha et al. [34] (2017) PAni Urea, bioproduct (CA) PAni/Gr (Superficial, electrodeposition) 5.88 µM
(10–200 mM) Sensitivity

Weaver et al. [35] (2014) PEDOT Dopamine, neurotransmitters (CV) PEDOT-GO (Structural, electropolymerization) 83 nM
(1–40 mM) Sensitivity and selectivity

Sun et al. [36] (2013) PPy Quercetin, flavonoid (DPV) MIP PPy-Gr (Structural, MIT-
electropolymerization)

4.8 × 10−8 mol/L
(6.0 × 10−4–1.5 × 10−2 mM )

Sensitivity and selectivity

Radhakrishnan et al. [37] (2013) PPy/PANi DNA, biomolecule (DPV) PPy/PANi/GA/ssDNA (Superficial, oxidative
polymerization and biologic immobilization)

50 fM
(10−6–10−10 mM) Sensitivity and selectivity

Avelino et al. [38] (2016) PAni
BCR/ABL (breakpoint cluster

region- Abelson tyrosine kinase
gene), oncogene (CV, EIS)

PAni-AuNPs/ssDNA (Structural and superficial,
oxidative polymerization and biologic

immobilization)

69.4 aM
(10−5–10−12 mM) Sensitivity and selectivity

Bayram and Akyilmaz [39] (2016) PAni Paracetamol, drug (CA)
PAni-cMWCNTs/ Bacillus sp./GA (Structural

and superficial,
electropolymerization and dip-coated)

2.9 µM
(5–630 µM) Sensitivity and selectivity

Molina et al. [40] (2018) PPy Serotonin, neurotransmitters (DPV) PPy-g-PEG (Structural,
“grafting through” technique)

0.07 µM
(0.5–20 µM) Biocompatibility

Cui et al. [41] (2016) PEDOT Alpha fetoprotein, tumor marker
(EIS)

PEDOT-PEG/AuNPs (Structural and superficial,
electropolymerization and
biologic immobilization)

0.0003 fg/mL
(0.001–10 fg/mL)

Hydrophilicity and
selectivity

Devnani et al. [42] (2016) CS Noradrenaline (CV, SWV, EIS) Graphene-chitosan (Structural, drop casting) 19.7 nM
(200–1400 nM.)

Sensitivity and
biocompatibility

Xia et al.[43] (2016) CS Bovine serum albumin (CV) Chitosan/ionic liquid–graphene (Structural,
molecular imprinting)

2 × 10−11 g/L
(1.0 × 10−10–0 × 10−4 g/L)

Selectivity, sensitivity
and biocompatibility

Ben-Yoav et al. [44] (2014) CS Clozapine (CV, SWV) Catechol-modified chitosan (Structural,
microfabrication technology)

0.1 µg/mL
(0.1–10 µg/mL) Sensitivity
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Table 1. Cont.

Authors (Year) Polymer Material 1) Molecules Detected
(EC Technique Used) 2)

Polymer Modified
(Type of Modification) 3)

Limit of Detection 4)

(Detection Range)
Improvements

Nordin et al. [45] (2016) PLA DNA (CV) PLA-AuNPs (Superficial, Drop casting) N.R. Biocompatibility,
mechanical properties,

Manzanares et al. [46] (2019) PLA Picric acid and Ascorbic acid (SWV) Gr/PLA/proteinase K (Structural, Enzymatically
sculptured 3D-printed electrode) N.R. Sensitivity

Das et al. [47] (2018) PVA Vitamin C, ascorbic acid (SWV) Gr-iron oxide-polyvinyl alcohol (Structural) 0.234 µM
(40–4100 µM) Sensitivity and stability

Fabregat et al. [48] (2017) PEDOT-, PNCPy, LDPE,
PP, PCL, PS, LDPE Dopamine (CV, CA)

PEDOT-, PNCPy, LDPE, PP, PCL, PS plasma
treated (Superficial, cold plasma

surface functionalization)

140 for PEDOT
750 nM for PNCPy

(0.5–5 µM)

Sensitivity, selectivity,
electric conductivity

Buendía et al. [49] (2017) LDPE Glucose (CA, CV) LDPE-GOx (Superficial)
1.7 mM for PT-LDPE/GOx

plasma treated 2 min
(0–20 mM)

Sensitivity, selectivity,
electric conductivity

Oliveira et al. [50] (2020) Bio-PET sheets Dopamine & Anti-PARK7/DJ-1
protein (SWV)

Pt electrode on Bio-PET
(Superficial, microfabrication)

5.1 × 10−3 mM
(3.5 ×10−2–8.0 × 10−1 mM)

Sensitivity and selectivity

1) polypyrrole (PPy), poly(aniline blue) (PAB), polyaniline (PAni), poly(3,4-ethylenedioxythiophene) (PEDOT), polylactic acid, Chitosan(CS), (PLA), polyvinyl alcohol (PVA),
poly(N-cyanoethylpyrrole) (PNCPy), low density polyethylene (LDPE), polypropylene (PP), polycarbonate (PC), polystyrene (PS) and polyethylene terephthalate (PET); 2) EC
technique (electrochemical technique used): cyclic voltammetry (CV), chronoamperometry (CA), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS) and
square wave voltammetry (SWV); 3) Silver nanoparticles (AgNPs), gold nanoparticles (AuNPs), graphene (Gr), graphene oxide (GO), glutaraldehyde (GA), single strand deoxyribonucleic
acid (ssDNA), carboxylated multiwalled carbon nanotubes (cMWCNTs), poly(ethylene glycol) (PEG) and glucose oxidase (GOx); 4) Not reported (N.R.).
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2. Electro-BIOsensors Based on Modified Conducting Polymers

This section will expose selected works in which intrinsically conducting polymers (ICPs) were
modified to improve their properties with the aim to maximize the performance as electro-BIOsensors.

The unique structure of ICPs is the responsible of the electrical conductivity that resemble metals,
of the low ionization potentials and of the high electron affinity. Their π-orbital system allows
electrons mobility through the polymer chain, either by n-type doping (reduction), where an electron is
introduced or by the opposite mechanism p-type doping (oxidation), where an electron is removed from
the valence band creating a “hole charge carrier” [51]. The electron mobility in ICPs, permit a direct
route of electron-transfer between the environment and the electrodes surface, acting as an electron
promoter and avoiding the need of an electronic mediator [52–54]. Therefore, ICPs are highly sensitive
to oxidation/reduction reactions thus, in the presence of a redox analytes, their electronic structure
manifest changes that activate a sensing mechanism detected by electrochemical methods [53,55],
such as chronoamperometry (CA), cyclic voltammetry (CV), differential pulse voltammetry (DPV),
electrochemical impedance spectroscopy (EIS), etc.

Among ICPs, those that were employed as materials for sensing devices are polypyrrole
(PPy), polyaniline (PAni) and poly(3,4-ethylenedioxythiophene) (PEDOT). Their biocompatibility,
i.e., ability to interact with biologic systems without any adverse response and the possibility to
be tailored with inorganic and/or organic elements, such as metals, metal oxide nanoparticles,
graphene, graphene oxide, carbon nanotubes, biotargets and others polymers, make them ideal
biomaterials for several biomolecules recognition [52,55]. including dopamine (DA), serotonin and
acetylcholine neurotransmitters, nicotinamide adenine dinucleotide (NADH), glucose, drugs,
flavonoids, bioproducts, biomarkers, among others.

2.1. ICPs Modified with Metals

Metal and metal oxide nanoparticles offer unique characteristics that can be used to modify
polymers and develop high-performance hybrids. Particularly, metal nanoparticles (NPs) show
exceptional optoelectrical properties, fast kinetics and easy absorption, behaviors associated to their
high ratio between surface area and volume [56–58]. However, NPs have the tendency to aggregate,
reducing their surface area to volume ratio and, therefore, their effectiveness [58]. In order to overcome
this limitation, polymeric materials have been used as supporting matrix leading to a new class of
polymer/metal hybrids which exhibit benefits that cannot be obtained by the materials separately.

Metal NPs in electrochemical (bio)sensors have been used to modify conducting polymers,
employing structural or surface methods that amplify ICP-sensitivity toward a specific analyte.
Poletti Papi and coworkers, merged silver nanoparticles (AgNPs) and PPy through a reversed
microemulsion [32]. The structural changes in the conducting matrix ascribed to the metal NPs
incorporation, allowed to successfully use this hybrid for a simple and direct electrochemical
determination of glucose, reporting a limit of detection (LOD) of 3.6 µM (signal-to-noise ratio
of 3), which permitted an accuracy of 99% to 105% in studies with human saliva samples, proposing a
new tool for the treatment of diabetes through a glucose levels control.

Sangamithirai et al. reported a different method for the structural reinforcement of an ICP
matrix, by means of an in situ chemical oxidative polymerization of o-anisidine monomer in the
presence of silver nanoparticles [59]. Poly(o-anisidine) (POA), which is a PAni derivative, modified
with AgNPs exhibited good electrocatalytic activity due the synergistic effects of both materials.
The POA-AgNPs hybrid was able to distinguish between nicotinamide adenine dinucleotide (NADH)
and 3,4-dihydroxyphenethylamine (DA) with a LOD = 6.0 nM and 52 nM for NADH and DA,
respectively. The precise recognitions of DA neurotransmitter, known to be responsible of several
neurological diseases [60] and NADH, metabolic coenzyme involved in cellular energy production [61],
plays an important role for the early diagnosis of diseases, for this reason is essential their detection
in water samples, human urine or pharmaceutical injections as was proposed by the authors.



Molecules 2020, 25, 2446 7 of 37

Figure 2a shows the AgNPs dispersed in POA matrix, while, Figure 2b demonstrates the simultaneously
detection of NADH and DA by the hybrid.
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Figure 2. (a) TEM micrographs of poly(o-anisidine) (POA)-silver nanoparticles (AgNPs) hybrid
(ratio 3:1); (b) differential pulse voltammograms of POA-AgNPs in 0.1-M PBS (pH 7.0) containing
different concentrations of dopamine (DA) and nicotinamide adenine dinucleotide NADH (from inner
to outer). Adapted with permission from reference [59]. Copyright© 2017 Elsevier B.V.

Gold nanoparticles (AuNPs), represent another metallic nanomaterial of great scientific
interest due to their high catalytic activity and stability [62–64]. In fact, it has been
reported that AuNPs exhibit a relevant stability for non-enzymatic oxidation of glucose [65–67].
Ansari et al. modified poly(aniline blue) (PAB), using it as surface for the seed-mediated growth
of AuNPs [33]. As was expected, PAB/AuNPs displayed a good sensitivity detection of glucose
(LOD = 0.4 µM), the results were associated to the improvement of electron transport properties
induced by the synergistic effect of AuNPs and PAB.

Fabregat and coworkers studied the sensing abilities of two PPy derivatives, also modified
superficially with AuNPs [68]. Poly[N-(2-cyanoethyl)pyrrole] (PNCPy) and poly(N-methylpyrrole)
(PNMPy) were electropolymerized on a glassy carbon electrode (GCE) and coated with a drop of
AuNPs colloidal solution. Their results indicated that AuNPs enhance the electronic transference and
the charge migration processes of the DA oxidation, although it was only a slight improvement
because of the powerful sensing abilities showed by both conducting polymers without NPs.
This behavior can be perceived comparing Figure 3a,b, which present cyclic voltammograms of
PNMPy without (Figure 3a) and with (Figure 3b) gold nanoparticles, at different concentrations of
DA. Following the same research line, the same authors reported the combination of two different
conducting polymers and gold nanoparticles [69]. A three-layered sensor was obtained from an
electrochemical polymerization, layer-by-layer, of PEDOT and PNMPy, followed by AuNPs colloidal
solution dropping onto the external layer of the film. Similar to their previous results, the sensitivity
of PEDOT/PNMPy/PEDOT film increased from 5.3 to 6.1 µA/mM DA after the coating with AuNPs
(Figure 3c). Nevertheless, Figure 3d exhibits a difference in the current response of the sensor with and
without metals NPs against different concentration of DA, proving that AuNPs not only increase the
(bio)sensor sensitivity, but, also, the selectivity toward the neurotransmitter in presence of common
interferents agents, i.e., ascorbic acid (AA) and uric acid (UA).
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acid, acting as interferents at ), poly(3,4-ethylenedioxythiophene) (PEDOT)/PNMPy/PEDOT (3l-5s) 
and PEDOT/PNMPy/PEDOT/AuNPs (3l-5s/AuNP-4) electrodes. (a,b) Adapted with permission from 
reference [68], Copyright © 2011 American Chemical Society and (c,d) from reference [69], Copyright 
© 2014 American Chemical Society. 

A good interaction between the ICP matrix and metal NPs is essential for an optimum 
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linkers between AuNPs and polypyrrole nanotubes (PPyNTs), the main steps of the procedure are 
presented in Figure 4 [70]. The PPyNTs modified surface, displayed excellent electrocatalytic activity 
towards the human hormone epinephrine (EP). Hormone is not only involved in cardiac activity, 
also is used as a medication for the treatment of hypersensitivity reactions including anaphylaxis 
and hypotension derived from septic shock [71]. The EP electrochemical (bio)sensor reported a 
linear response in a range from 35 to 960 μM and LOD of 298.9 nM, this behavior was attributed to 
the PILs which promoted a high-density and uniform distribution of AuNPs on the polymer surface. 

Figure 3. Cyclic voltammograms for the oxidation of (a) poly(N-methylpyrrole) (PNMPy)- and
(b) PNMPy/ gold nanoparticles (AuNPs)-modified carbon electrodes (GCEs) in the absence and
presence of different dopamine (DA) concentrations (from 1 to 10 mM). Scan rate: 100 mV/s; initial
and final potential: −0.40 V; reversal potential: +0.80 V. For each graphic, labels a-e refer to DA
concentrations of 0, 1, 3, 6 and 10 mM, respectively; (c) calibration curve for DA concentrations
ranging from 1 to 100 µM (inset: from 1 to 10 µM) in 0.1-M PBS and (d) calibration curve for DA
concentrations ranging from 1 to 100 µM in 0.1-M PBS with 200-µM ascorbic acid and 100-µM uric
acid, acting as interferents at), poly(3,4-ethylenedioxythiophene) (PEDOT)/PNMPy/PEDOT (3l-5s)
and PEDOT/PNMPy/PEDOT/AuNPs (3l-5s/AuNP-4) electrodes. (a,b) Adapted with permission from
reference [68], Copyright© 2011 American Chemical Society and (c,d) from reference [69], Copyright©
2014 American Chemical Society.

A good interaction between the ICP matrix and metal NPs is essential for an optimum modification.
Within this context, the study of Mao et al. evaluated poly(ionic liquids) (PILs) as linkers between
AuNPs and polypyrrole nanotubes (PPyNTs), the main steps of the procedure are presented in
Figure 4 [70]. The PPyNTs modified surface, displayed excellent electrocatalytic activity towards the
human hormone epinephrine (EP). Hormone is not only involved in cardiac activity, also is used as
a medication for the treatment of hypersensitivity reactions including anaphylaxis and hypotension
derived from septic shock [71]. The EP electrochemical (bio)sensor reported a linear response in a range
from 35 to 960 µM and LOD of 298.9 nM, this behavior was attributed to the PILs which promoted a
high-density and uniform distribution of AuNPs on the polymer surface.

Other metals employed to increase PPy sensitive properties as electrochemical (bio)sensors
are nickel and cobalt. Yang and coworkers modified the surface of over-oxidized polypyrrole
nanowires (oPPyNW) with nickel hydroxide nanoflakes Ni(OH)2NF [72]. The electrodeposited
oPPyNW on graphite electrode, were used as platform for the growth of Ni(OH)2NF by chemical bath
method. As consequence, the hybrid oPPyNW/Ni(OH)2NF demonstrated an excellent performance
for non-enzymatic glucose detection (LOD = 0.3 µM), associated with the efficient electrocatalytic
activity and stability of both materials. Özcan et al. also fashioned a non-enzymatic glucose (bio)sensor
based on an overoxidized PPy nanofibers (oPPyNFs). The ICP surface was modified with cobalt(II)
phthalocyanine tetrasulfonate (CoPcTS) [73]. oPPyNFs/ CoPcTS limit of detection was 0.1 mM, within
the likely glucose level in a diabetic person.
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2.2. ICPs Modified with Carbon

Carbonaceous materials like graphene (Gr), reduced graphene oxide (rGO), graphene oxide
(GO) and carbon nanotubes (CNTs) have been widely studied in the past, as result, several review
papers have been published reporting different methodologies for the synthesis, processing and
applications [74–78]. The combination of their unique characteristics with other materials, has been
also explored due their promising role to enhance structural and functional properties with low
manufacturing cost.

Awarded with the Nobel Prize in Physics 2010, Andre Geim and Konstantin Novoselov were the
pioneers to isolate graphene [79,80]. Since then, the two-dimensional carbon allotrope, has attracted
tremendous attention due to its extraordinary electrical, chemical, optical and mechanical properties,
which make it a perfect candidate for the reinforcement of high-performance hybrids.

In the field of electrochemical (bio)sensors, graphene has been employed to increase the detection
signal. More specifically, in 2014, Li et al. modified the structure of PPy by the incorporation of Gr,
expecting a higher sensitivity in the detection of the neurotransmitters dopamine [81]. The hybrid
PPy/graphene (PPy-Gr) was obtained via electrodeposition onto platinum (Pt) micro-electrodes,
components of a planar microelectrode array (pMEA) fabricated by a standard micromachining process.
The current response of the modified hybrid PPy-Gr and bare Pt in DA solution is displayed different
behaviors. If compared with PPy-Gr, the bare Pt did not present obvious changes during the addition
of DA, while the ICP hybrid recorded a well-defined stepwise curve, permitting the detection of ten
times lower concentrations of DA. The LOD collected for PPy-Gr was 0.3 µM against 3 µM of DA for Pt.

Similar results were reported by Sha and coworkers who, through the surface modification of
PAni with Gr, designed a non-enzymatic electrochemical (bio)sensor of urea [34]. This bioproduct is
excreted by the kidneys in urine, so, kidney diseases are associated with a reduction or increase of urea
concentrations in urine and in blood, respectively. Within this context, the urea sensor PAni/Gr was
synthesized by electrodeposition of PAni on the surface of a glassy carbon electrode (GCE), which was
previously coated with Gr via drop casting. The optimized sensor reported a LOD of 5.88 µM of urea,
confirming that the modification with a carbonaceous material improved the current response of the
electrochemical (bio)sensor ~4.74-fold over the unmodified PAni sensor.

A promising method for the graphene production is represented by the chemical oxidation of
graphite, followed by an exfoliation and reduction processes. Taking into account that graphite is a
layered material, as result of the exfoliation are obtained graphene oxide (GO) sheets with oxygen
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functional groups on their basal planes and edges [75]. Then, as final step, GO product is de-doped
and, therefore, reconverted to its reduced state as graphene, also known as reduced graphene oxide
(rGO). A work published by Wang et al. [82] proposed to convert GO to rGO by an electrochemical
reduction process. For that, PEDOT was doped with graphene oxide during the ICP electrochemical
polymerization, then the new hybrid was exposed to an electrochemical reduction applying a negative
potential (−0.9 V for 600 s). The obtained PEDOT-rGO was used as dopamine electrochemical
(bio)sensor. As was expected, the modification of PEDOT with rGO improved the electron transfer
kinetics in the hybrid, leading to a highly sensitive detection of DA, with a LOD of 39 nM, even in the
presence of common interferences such as uric acid and ascorbic acid. Although rGO shows better
conductivity than its unreduced state, GO, some authors have taken advantages from the benefits
associated to the oxidative form of graphene; for example, it can be easily dispersed in aqueous
solution and the negatively charged carboxyl group in its structure acts as an excellent dopant for
polymerization of conducting polymers [82,83]. In 2014, Weaver and coworkers altered a PEDOT
matrix with unreduced GO, employing a electrodeposition on a GCE [35]. Results demonstrated that
the electrostatic interactions between DA molecules and PEDOT-GO surface, selectively amplified the
DA oxidation signal, however the LOD achieved was higher than the reported before, 83 nM.

The structural modification of PEDOT with GO was also employed by Huang et al. to develop
a paper-based analytical device, capable of detect uric acid (UA) in real human saliva, without any
dilution or adjustment of the samples [83]. The modification of PEDOT was carried out during an
electrochemical deposition of a mixture containing the ICP monomer and GO dispersion. A piece of
paper was used as a solid electrolyte to connect the three electrodes (i.e., working, counter and reference
electrode), either during the PEDOT-GO synthesis or in the UA measurements. Figure 5a reports the
mentioned procedure. The benefits of the PEDOT tailored with GO and the clever idea to combine it
with a paper-based analytical device, were applied for the salivary UA analysis. Figure 5b,c shows
the response signal of UA oxidation in human saliva, while, the additions of UA standard solution to
undiluted saliva samples in Figure 5c, confirm a linear response of the peak currents as a function
of concentrations.

In order to design a material that gathers all characteristics required for an electrochemical
(bio)sensor, several authors explored more than one material or modification technique at the same time.
Kalloor et al. combined reduced graphene oxide and silver to modify poly (3,4-ethylenedioxythiophene)
nanotubes (PEDOTNTs) [84]. The improved ICP showed better charge transfer properties,
sensitivity with a LOD of 0.1 nM and selectivity to serotonin oxidation, even in the presence of
ascorbic acid, uric acid and tyrosine.

Another method employed to enhance an electrochemical (bio)sensor is the molecular imprinting
technique (MIT), a system for the preparation of polymers with selective receptor sites, resulting in
platforms with predetermined attraction to a specific target. For this technology, the selected monomers
are polymerized around a template molecule, then, the molecule is removed from the polymer matrix
leaving a stereo configuration which is used by the resulting polymer for the molecule selective
recognition [36,85–87]. Sun and coworkers utilized MIT combined with the structural modification
of PPy by graphene oxide and molecularly printed quercetin [36]. The double modification in the
molecularly imprinted polymer (MIP) Ppy-Gr was designed to improve its behavior as electrochemical
(bio)sensor of quercetin, a flavonoid capable of modulate enzymes activity. On one side, the GO
enhanced its electrochemical sensitivity until a LOD of 4.8 × 10−8 M of quercetin and, on the other side,
the imprinted template increased the (bio)sensor selectivity to quercetin, even in the presence of other
similar flavonoids (rutin and morin). MIT technology was also used by Qian et al., but, in this case,
carbon nanotubes (CNTs) were selected to increase Ppy sensitivity to DA, which was imprinted in
the ICP matrix for a better selectivity (Figure 6) [87]. The modified polymer was proposed for in vivo
detection of DA due its remarkable selectivity and sensitivity, achieving a LOD of 1 × 10−11 M.
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2.3. ICPs Biomodified

The modification of a material by bioactive agents, such as DNA, antibodies, enzymes or
microorganism, is a biomimetic approach that was studied to enhance the biochemistry of an
electrochemical sensor and, consequently, improve its detection selectivity. This kind of modification is
produced by common methods like physical or chemical adsorption, covalent bonding, cross-linking or
entrapment of bioagents on a transducer [39,88]. Several authors have reported biomodifications
in conducting polymers, which act as abiotic electroactive materials, to increase their selectivity
toward bio-species.
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Wei and coworkers reported a Ppy surface biomodified with the attachment of DNA-dendrimer
(DDPPy) [89]. The bio-abiotic interface prevented the protein conformation change, reducing the
denaturation of three salivary bio-markers for oral cancer, IL-8 protein, IL-1β protein and IL-8 mRNA.
In addition, the biomodification also improved the biosensor amperometric signal, achieving a
salivary bio-markers detection three orders of magnitude better than PPy without the DNA-dendrimer
(LODDDPPy = 100–200 fg/mL).

In the same way, Avelino et al. utilized DNA to develop a selective biosensor of the Philadelphia
chromosome associated to leukemia patients [38]. PAni was structurally modified with gold
nanoparticles entrapped in its matrix for a better sensitivity. A single strand DNA (ssDNA) was
captured on the PAni-AuNPs surface through electrostatic interactions. Figure 7a illustrates the
biosensor synthesis route and the recognition sites by BRC/ABL fusion gene (breakpoint cluster
region- Abelson tyrosine kinase gene) in leukemia (Philadelphia chromosome) as a result of their
hybridization with DNA. The hybridization process leads to a gradual reduction of the amperometric
response when the sensor was exposed to different concentrations of plasmodial DNA containing
the BCR/ABL fusion gene, while opposite effect was collected for non-complementary plasmodial
DNA. The LOD achieved was 69.4 fM of BCR/ABL fusion gene in leukemia patient samples (Figure 7b).
Radhakrishnan and coworkers took advantage of the hybridization process as well, but this time,
for the electrochemical recognition of DNA [37]. A PPy nanostructure was coated with PAni through an
oxidative polymerization, followed by a second coating of glutaraldehyde (GA) for the immobilization
of 5’-amine modified ssDNA. Detection performance was evaluated after a hybridization reaction of
PPy/PANi/GA/ssDNA in the presence of methylene blue (MB) which responded to hybridized and
unhybridized surfaces. The biomodified composite exhibited sensitivity and selectivity attributed to
the nanostructure of PPy/PAni, a conductivity 472 times greater than conventional PPy/PAni composite
and a LOD of 50 fM.Molecules 2020, 25, x 14 of 39 
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Figure 7. (a) Schematic representation of the PAni-AuNPs/DNA construction and (b) cyclic
voltammograms or the biosensor exposed to different concentrations of recombinant plasmid containing
the BCR/ABL fusion gene breakpoint cluster region- Abelson tyrosine kinase gene (DNA target: 0.0694,
0.694, 6.94, 69.4, 694 fM) and nonspecific plasmid (negative control). Adapted with permission from
reference [38]. Copyright© 2016 Elsevier B.V.

A biosensor for the electrochemical detection of acetylcholine (Ach) neuromodulator was
developed by Chauhan et al. [90]. The design included a dual modification of PEDOT by a
structural reinforcement with electrochemical reduced graphene oxide (rGO) and the adhesion
of immobilized enzymes, acetylcholinesterase (ACh) and choline oxidase (ChO), on the surface of iron
oxide nanoparticles (Fe2O3NPs). The hybrid sensor PEDOT-rGO/ACh- Fe2O3NPs exhibited a LOD and
sensitivity of 4.0 nM and 0.39 µA/µM, respectively, while the average detection of ACh concentrations
in the serum of healthy volunteers (n = 10) was 9.26 ± 2.19 nM (within the normal levels of a healthy
person (i.e., 8.66 ± 1.02 nM). A similar approach was used by Bayram and Akyilmaz [39] who modified
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an ICP with a carbonaceous material and a bioagent. The aim of this work was the development of
a microbial biosensor for the sensitive determination of paracetamol. The PAni structure was first
modified by carboxylated multiwalled carbon nanotubes (cMWCNTs) during their electrodeposition
on a gold working electrode, and, subsequently, the microorganism Bacillus subtilis was adhered
on the PAni-cMWCNTs surface. In order to efficiently transform the biochemical response into a
physical signal, GA was used as cross-linking agent between the recognition element (Bacillus sp.) and
the abiotic electroactive surface, PAni-cMWCNTs. Paracetamol detection assay by PAni-cMWCNTs/
Bacillus sp./GA was carried out with amperometric experiments that displayed a LOD of 2.9 µM and an
efficient selectivity toward paracetamol in a medium containing epinephrine, L-dopa, L-ascorbic acid,
uric acid and D-glucose.

2.4. ICPs Modified with Other Polymers

In previous sub-sections, different modification strategies to maximize the sensitivity and selectivity
of conducting polymers as Electro-BIOsensors were described. However, other properties of interest
can be enhanced through the combination of ICPs with other polymers or biopolymers. An example
is the work reported by Adeosun and coworkers, where the biocompatibility and conductivity of
polydopamine (PDA) where complemented with PPy [91]. The outstanding biocompatibility of PDA
homopolymer [92,93] and PPy-PDA copolymer [94] was previously proved, while, for the first time,
in this work was studied its electrochemical response towards uric acid (UA). The biocompatibility,
high conductivity and electrochemical capacitive behavior of the copolymer PPy-PDA allowed to the
recognition of low concentrations of UA, with 0.1µM as limit of detection. In addition, the biocompatible
composite was used to detect UA in human serum and urine, demonstrating its potentiality in the real
sample analysis.

Aleman’s group [40,95] took advantage of the “grafting through” technique to structurally modify
and, consequently, enhance ICPs biocompatibility through electropolymerization of polypyrrole (PPy)
and a polythiophene derivative, poly(hydroxymethyl 3,4-ethylenedioxythiophene) (PHMeEDOT),
with the biocompatible poly(ethylene glycol) (PEG) or the biopolymer polycaprolactone (PCL),
respectively. In both cases, PPy-g-PEG and PHMeEDOT-g-PCL, cell viability assays demonstrated that
the cytotoxicity of the graft copolymers was considerably reduced, if compared with the unmodified
polymer. In addition, with the incorporation of non-conducting polymers that may affect negatively the
electroactivity of the copolymers, the electrochemical recognition of neurotransmitters (i.e., serotonin
or dopamine) was efficient, the LOD reported for PPy-g-PEG was 0.5 µM for serotonin and the same
LOD was achieved for the detection of DA by PHMeEDOT-g-PCL. Employing the same technique
(“grafting through”), the effects of randomly grafted PCL and PEG chains with polythiophene (PTh)
were evaluated [96]. The amphiphilic character of the side chains produced a microphase separation
in solution, which resulted in a PTh-g-(PEG-r-PCL) composite with two types of supramolecular
structures, Figure 8 displays a TEM micrograph of the composite, where a porous spherical particles
and rod-like structures were identified. Although porous PEG and/or PCL side chains growth around
PTh, the biocompatible composite showed good abilities for the electrochemical recognition of NADH,
with a LOD of 0.2 mM and selectivity in the presence of ascorbic acid. The graft copolymer exhibited
two well defined oxidation peaks at 300 and 580 mV, corresponding to the oxidation of AA and NADH,
respectively, the peak separation of 280 mV indicates that PTh grafted copolymer can be successfully
used for selective detection of NADH even in the presence of AA.



Molecules 2020, 25, 2446 14 of 37

Molecules 2020, 25, x 15 of 39 

 

3,4-ethylenedioxythiophene) (PHMeEDOT), with the biocompatible poly(ethylene glycol) (PEG) or 
the biopolymer polycaprolactone (PCL), respectively. In both cases, PPy-g-PEG and 
PHMeEDOT-g-PCL, cell viability assays demonstrated that the cytotoxicity of the graft copolymers 
was considerably reduced, if compared with the unmodified polymer. In addition, with the 
incorporation of non-conducting polymers that may affect negatively the electroactivity of the 
copolymers, the electrochemical recognition of neurotransmitters (i.e., serotonin or dopamine) was 
efficient, the LOD reported for PPy-g-PEG was 0.5 μM for serotonin and the same LOD was 
achieved for the detection of DA by PHMeEDOT-g-PCL. Employing the same technique (“grafting 
through”), the effects of randomly grafted PCL and PEG chains with polythiophene (PTh) were 
evaluated [96]. The amphiphilic character of the side chains produced a microphase separation in 
solution, which resulted in a PTh-g-(PEG-r-PCL) composite with two types of supramolecular 
structures, Figure 8 displays a TEM micrograph of the composite, where a porous spherical 
particles and rod-like structures were identified. Although porous PEG and/or PCL side chains 
growth around PTh, the biocompatible composite showed good abilities for the electrochemical 
recognition of NADH, with a LOD of 0.2 mM and selectivity in the presence of ascorbic acid. The 
graft copolymer exhibited two well defined oxidation peaks at 300 and 580 mV, corresponding to 
the oxidation of AA and NADH, respectively, the peak separation of 280 mV indicates that PTh 
grafted copolymer can be successfully used for selective detection of NADH even in the presence of 
AA. 

 
Figure 8. TEM micrograph of polythiophene (PTh)-g-(poly(ethylene glycol) (PEG)-r-biopolymer 
polycaprolactone (PCL) at (a) low magnification and (b) high magnifications. Porous spherical 
particles were highlighted with red circles while, rod-like structures are marked with rectangular 
forms and yellow arrows. Reprinted with permission from reference [96]. Copyright © The Royal 
Society of Chemistry 2019. 

Piro et al. modified the surface of the electropolymerized PEDOT with carboxylic acid PEG, 
employing the non-conducting polymer as a cross-linker between the PEDOT and the enzyme 
glucose oxidase (GOD) [97]. The enzyme was attached to carboxylic acid PEG forming peptide 
bonds between the amine groups of GOD and the carboxylic acid groups of PEG. Afterwards, 
PEG-GOD was entrapped within PEDOT films electrogenerated on glassy carbon electrodes (GCE). 
Amperometric assay in the presence of glucose and ferrocene as mediator, indicated that the 
biosensor PEDOT/PEG-GOD possessed good sensitivity up to 22 mM, quite similar to the 
unmodified GOD electrode (i.e., PEDOT/GOD). However, opposites results were obtained from 
stability assays indicating that the PEG incorporation in PEDOT surface increased the biosensor 
stability against time. 

Another example of the benefits associated to the combination of PEDOT and PEG is 
represented by the work published by Cui and coworkers in 2016 [41]. In this case, PEDOT matrix 
was structurally modified with a PEG derivative, 4-arm PEG terminated with thiol groups. A 
second modification was carried out with AuNPs introduced to the copolymer surface through 

Figure 8. TEM micrograph of polythiophene (PTh)-g-(poly(ethylene glycol) (PEG)-r-biopolymer
polycaprolactone (PCL) at (a) low magnification and (b) high magnifications. Porous spherical particles
were highlighted with red circles while, rod-like structures are marked with rectangular forms and
yellow arrows. Reprinted with permission from reference [96]. Copyright © The Royal Society of
Chemistry 2019.

Piro et al. modified the surface of the electropolymerized PEDOT with carboxylic acid PEG,
employing the non-conducting polymer as a cross-linker between the PEDOT and the enzyme glucose
oxidase (GOD) [97]. The enzyme was attached to carboxylic acid PEG forming peptide bonds between
the amine groups of GOD and the carboxylic acid groups of PEG. Afterwards, PEG-GOD was entrapped
within PEDOT films electrogenerated on glassy carbon electrodes (GCE). Amperometric assay in the
presence of glucose and ferrocene as mediator, indicated that the biosensor PEDOT/PEG-GOD possessed
good sensitivity up to 22 mM, quite similar to the unmodified GOD electrode (i.e., PEDOT/GOD).
However, opposites results were obtained from stability assays indicating that the PEG incorporation
in PEDOT surface increased the biosensor stability against time.

Another example of the benefits associated to the combination of PEDOT and PEG is represented
by the work published by Cui and coworkers in 2016 [41]. In this case, PEDOT matrix was structurally
modified with a PEG derivative, 4-arm PEG terminated with thiol groups. A second modification
was carried out with AuNPs introduced to the copolymer surface through their interaction with the
thiol groups. AuNPs provided support for the immobilization of α-fetoprotein (AFP) antibody, a vital
tumor biomarker for liver cancer. The synthesis route of PEDOT-PEG/AuNPs-AFP is displayed in
Figure 9a. EIS was employed to examine hybrid’s biosensing performance after its incubation in target
AFP antigen solution at different times, as can be observed in Figure 9b. EIS experiments proved that
PEDOT electroactivity in the hybrid, provided high sensitivity to AFP antigen. Higher the antigen
concentration, lower the charger transfer resistance, with a LOD of 0.0003 fg/mL (S/N = 3). On the
other hand, antibody immobilization on AuNPs permitted an excellent selectivity toward AFP antigen,
results displayed in Figure 9c compare the signal response of the hybrid in solutions containing
bovine serum albumin (BSA), human serum albumin (HSA), hemoglobin (HGB) or single strand DNA
sequence. As can be observed, the hybrid showed a negligible signal response in all cases with the
exception of solution containing the target AFP antigen, either separated or combined with the other
substances. Besides cross-linked PEDOT and AnNPs-AFP, 4-arm PEG apported hydrophilicity to the
hybrid and, therefore, it exhibited good anti-fouling ability which allowed the detection of target AFP
in 10% (v/v) human serum samples.
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Figure 9. (a) Schematic illustration of of α-fetoprotein (AFP) biosensor synthesis; (b) impedance
spectra corresponding to the biosensor with different antigen concentrations (0.01-M PBS, pH 7.4),
curves from inner to outer represent 10 fg/mL, 1 fg/mL, 10−1 fg/mL, 10−2 fg/mL, 10−3 fg/mL AFP antigen,
respectively; (c) responses of the AFP biosensor to bovine serum albumin (BSA) (1.0 nM), human serum
albumin (HSA) (1.0 nM), hemoglobin (HGB) (1.0 nM), DNA sequence (1.0 nM), AFP antigen (1.0 fg/mL)
and a mixture of all the above substances, respectively. Adapted with permission from reference [41].
Copyright© 2016 Elsevier B.V.

Although ICPs have a remarkable sensitivity towards several biomolecules due their structure,
their rigid backbone also causes their man handicap, a limited processability as result from the lack of
mechanical properties, an essential quality for polymers been employed in biomedical implants or
devices [98,99]. Hence, fashioning a conducting biomaterial with acceptable processability represent
one of the major challenges in the biosensing field. Aleman’s group fashioned a strategy to overcome
this limitation [100]. PEDOT NPs where reinforced by isotactic polypropylene (i-PP), which added
mechanical integrity to the composite, with a copolymer ratio of 40:60 i-PP:PEDOT. However, in the
same work the null electroactivity of i-PP was introduced by its structural modification trough PEDOT
NPs with a copolymer ratio of 60:40 i-PP:PEDOT. The composites iPP-PEDOT 60% and i-PP-PEDOT 40%
reveled new and better mechanical or electrochemical properties, respectively, in both cases affected
by the interfacial adhesion between their components. As electrochemical (bio)sensor, iPP-PEDOT
sensed the growth of Gram-negative and Gram-positive bacteria through the extracellular oxidation of
nicotinamide adenine dinucleotide (NADH) produce by prokaryotic cells.

A detailed description of non-conducting polymer modified for its used as Electro-BIOsensors
will be explain in the following section.

3. Electro-BIOsensors Including Non-Conducting Polymers

Plastics are engineered to last! Plastics manufacturers generally introduce extra stabilizing chemicals
to give their products longer life, which unfortunately decrease their compatibility with the environment
and the human health. With society’s ever-increasing focus on protecting the environment, there is a
new emphasis on designing plastics that will disappear much more quickly or that are directly coming
from nature. The so-called “environmentally friendly” plastics fall into three types: bioplastics made
from natural materials such as corn starch, biodegradable plastics made from traditional petrochemicals,
which are engineered to break down more quickly and eco/recycled plastics, which are simply plastics
made from recycled plastic materials rather than raw petrochemicals. We examine each of these in
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their newest utilization in biosensors based on electrochemical detection, mainly as matrix modified to
improve conductive properties.

3.1. Bioplastics and Biodegradable Plastics

Chitosan (CS) is a biopolymer (a polysaccharide) obtained by the partial deacetylation of
chitin [101,102], with excellent nontoxicity, biocompatibility, biodegradability, multiple functional
groups, pH-dependent solubility in aqueous media, cheapness and a susceptibility to chemical
modification [103–106]. One of the most innovative application of chitosan and its derivatives is
the development of specific sensors and electrochemical devices due to the chemical and electrical
features, the interesting mechanical and biologic properties of the chitosan-based materials [107].
Although chitosan may present useful characteristics alone, many applications explore its use through
chemical modifications or in composites, leading to materials that may present mixed characteristics or,
in some cases, better performance due to synergic effects. Kuralay et al. [108] reported an interesting
work on the development of single walled carbon nanotube (SWCNT)–chitosan modified disposable
pencil graphite electrode (PGE) for the electrochemical monitoring of vitamin B12. The device
aimed to achieve a signal enhancement of the analyte in comparison to chitosan modified disposable
pencil graphite electrode. The selected molecule (vitamin B12) is a corrin based cobalt complex
which is important in human physiology because its deficiency causes pernicious anemia and
neuropathy [109,110]. It can be detected by electrochemical techniques [111] due to the redox chemistry
centered on the cobalt atom: vitamin B12a (with Co(III)) can be reduced reversibly to vitamin B12r
(with Co(II)), and be further reduced to vitamin B12 s (with Co(I)), all in aqueous media [111].
The SWCNT–chitosan modified PGE was prepared in a one-step procedure: the incorporation of
SWCNTs into the positively charged polymer matrix was carried out by immersion of PGE in
SWCNT–chitosan mixture and chitosan solution. The electrochemical response of SWCNT–chitosan
modified PGE was compared with the references response of chitosan modified PGE for vitamin B12
analysis. A signal enhancement was obtained for the reduction of cobalt redox couples in the structure
of vitamin B12, using SWCNT–chitosan modified PGE at low potentials due to the catalytic activity of
SWCNT [108]. Different values of LOD were found by changing the pH of the solution. In particular
the LOD increased from 0.89 nM at pH 2.0 (concentration range interval of 5nM and 100 nM, Figure 10a)
to 2.1 nM at pH 5.0 (concentration range interval of 5nM and 80 nM, Figure 10b) [108].Molecules 2020, 25, x 18 of 39 
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Figure 10. (a) Effect of vitamin B12 concentration on reduction peak currents of Co(II) to Co(I) using
(A) single walled carbon nanotube (SWCNT)–chitosan modified PGE, (B) chitosan modified PGE at pH
2.0; (b) The effect of vitamin B12 concentration on reduction peak currents of Co(II) to Co(I) using (A)
SWCNT–chitosan modified PGE; (B) chitosan modified PGE at pH 5.0. Adapted with permission from
reference [108]. Copyright© 2011 Elsevier B.V.

Devnani et al. synthesized graphene-chitosan (GRP-CHIT) glassy carbon electrode (GCE) for the
sensitive and selective electrochemical determination of Noradrenaline (NA), using cyclic voltammetry
(CV) and square wave voltammetry (SWV) as electrochemical techniques [42]. NA is a catecholamine
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derivative, secreted and released by adrenal glands, critically linked to mental diseases, heart failure,
diabetes [112,113]. NA is an electroactive compound, but, unfortunately, ascorbic acid and uric acid
share similar redox potential and thus interfere with its analysis [114]. In order to improve sensitivity
and achieve selectivity, a chemically modified electrodes using nanomaterials as electron transfer
mediators were fabricated in this work. Various nanocomposites consisting of either metal-metal
oxide, mixed metal oxides, polymers mixed with metal or metal oxides or carbon nanotubes mixed
with polymers, metals or metal oxides have attracted attention as active materials for electrochemical
sensing [115]. In this study, the easily fabricated GRP- CHIT/GCE (drop-casting of GRP-CHIT solution
over the surface of GC modified), showed enhancement in current response, while electrochemical
impedance spectroscopy (EIS) showed reduction in charge transfer resistance at the modified sensor,
whose applicability was tested in human blood serum. Limit of detection (LOD) and limit of
quantification (LOQ) were obtained as 19.7 nM and 65.8 nM. Ascorbic acid and uric acid were found
not to pose interference to the NA detection.

In a novel study, Xia et al. [43] have prepared an efficient molecularly imprinted chitosan/ionic
liquid–graphene modified glassy carbon electrode (MIPs/CS/IL–GR/GCE) using bovine serum albumin
as the template molecule and PPy electropolymerized onto the surface of CS/IL–GR/GCE as substrate
material. The idea of the authors is very interesting because combines molecular imprinting and
electrochemical sensor into molecularly imprinted electrochemical sensor (MIECS), characterized by
high selectivity and sensitivity. The authors, for the first time, used MIECS for the imprinting of
protein. CS has been used as an immobilization matrix in order to improve the biocompatibility of the
interface [116], while graphene (GR) and ionic liquid (IL) have been selected to construct the sensing
interface. The unique physicochemical properties of GR [117,118] and the high ionic conductivity,
wide electrochemical windows and good chemical stability [119,120] of IL allows to achieve excellent
electrochemical catalytic ability for electrochemical detection [121,122]. Moreover, ILs can interact with
protein, in order to facilitate the transfer of protein into the liquid phase and optimize the imprinted
amount, and also can improve the dispersibility of graphene, which is favorable for the improvement of
the electrochemical performance [123]. The detailed preparation procedure of the MIPs/CS/IL–GR/GCE
was illustrated in Figure 11.Molecules 2020, 25, x 19 of 39 
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Figure 11. Schematic diagram of the preparation procedure of the molecular imprinted electrochemical
sensor. Adapted with permission from reference [43]. Copyright© 2015 Elsevier.

As shown in Figure 12a (insert), the DPV peak currents of the MIPs/CS/IL–GR/GCE decreased with
the increment of BSA concentrations and a linear relationship between the changes of current response
(∆I) and the logarithms of BSA concentrations has been observed. The detection limit (2 × 10−11 g/L)
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was smaller than those obtained from other molecularly imprinted sensors [124–126]. Human serum
albumin and Bovine hemoglobin (BHb) were used as control proteins as shown in Figure 12b where it
can be observed that the ∆I on MIPs/CS/IL–GR/GCE toward BSA was the highest, which was 10.6 and
14.2 times of that toward HSA and BHb, respectively.
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Another interesting work based on chitosan polymer utilization and related to the employment
of electrochemical detection in the neuroscience field was published from Ben-Yoav et al. [44].
They studied the functionality and detection limit of clozapine (CLZ) (a second-line antipsychotic for
schizophrenia treatment, for patients who are unresponsive to other antipsychotics) and characterized
the selectivity with respect to the CLZ principal metabolite norclozapine (NorCLZ). The goal of this
study is the utilization of microfabrication technology for the development of on-chip electrochemical
microsystems, where the sensing electrodes are integrated directly onto the microchip. Figure 13 shows
the biofabricated catechol-modified chitosan redox cycling system. CLZ (E0 = +0.4 V) can diffuse
within the chitosan film and the grafted catechol moieties can be interconverted between oxidized
(Q) and reduced (QH2) forms (E0 = +0.2 V). CLZ is reduced by the grafted QH2 moieties and it is
electrochemically re-oxidized at the electrode (Figure 13a–c). A continuous cycle of CLZ reduction in
the presence of catechol followed by CLZ re-oxidation results from this use of CLZ as an oxidizing
mediator (Figure 13b) and it is responsible of the increase of the total charge transferred by CLZ
oxidation, amplifying the generated electrochemical current and improving the signal-to-noise ratio.
To recover the redox cycling system to the reduced state, negative potential is applied in the of the
presence of a reducing mediator, HARu (Ru2+/3+, E0 = −0.2 V).

Electrochemical investigations, carried out with CLZ in the presence and in the absence of the
catechol-modified chitosan amplification system, showed that CLZ oxidation peak recorded with the
modified electrode was 3-fold higher than the peak current density with the unmodified bare electrode.
The modified electrode yielded a measured detection of 0.1 µg/mL CLZ, compared to 3.26 µg/mL for
the unmodified electrode.
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(a) Schematic of the system with the diffusing CLZ; (b) continuous oxidation of CLZ in the presence of
catechol (Q) reduction; (c) CLZ acts as an oxidizing mediator of QH2 and Ru2+ as a reducing mediator
regenerating the Q. Electrochemical potential bar represents standard reduction potential of Ru2+,
Q and CLZ. Reprinted with permission from reference [44]. Copyright © 2015© 2014 Elsevier, Ltd.

Polylactic acid (PLA) is one of the biodegradable biopolymers that have recently gained attention
in bioanalysis areas due to its special characteristics, including biocompatibility and sustained
release properties [127,128]. Recently, highly stable PLA-AuNPs were proven to significantly
improve both surface area and particle size of modified electrodes [45]. Taking into account the
possibility to obtain a stabilization of AuNPs between the carboxylic groups of the PLA polymer
matrix [129], Hajian’s group [45] fabricated a PLA-stabilized AuNPs-based electrochemical sensor.
In particular, a screen-printed carbon electrode (SPCE) acting as a disposable sensor for detection of
DNA hybridization was modified by drop cast with homogenous AuNPs and PLA-stabilized AuNPs
solution (AuNPs/SPCE and PLA-AuNPs/SPCE, respectively. Self-assembled monolayer technique
based on thiol-AuNPs bonding process was used for bonding probe single-stranded DNA (ssDNA)
on the surface of AuNPs and PLA-AuNPs modified electrode by linking AuNPs to thiol groups
(DNA-AuNPs/SPCE and DNA/PLA-AuNPs/SPCE, respectively). The performance of the developed
biosensor was investigated by CV analysis in the presence of methylene blue (MB) redox indicator,
incorporated at DNA surface.

3-D printing has entered the field of electrochemistry with the advent of conductive printable
materials and the fabrication of 3D-printed electrodes for sensors [46,130]. Recently, Pumera´s group [46]
reported 3D-printed electrodes made from commercial graphene/polylactic acid (PLA) composite,
to detect picric acid and ascorbic acid [131]. The major disadvantage of this composite is connected with
the high bulk content of the thermoplastic polymer in the final electrodes after 3D printing that hinders
the conducting and electroactive carbon-based part from exposition to the electrolyte. These composites
need to be activated by the organic solvent method or electrochemical pretreatment without disrupting
their structural and mechanical properties. In a novel work of the same group, they proposed an
ecofriendly solution of the before commented drawback, by using a highly controllable biocatalytic
process. The biodegradability property of the PLA was suited to conduct a partial digestion of the
3D-printed electrodes [130]. The abiotic hydrolysis of PLA is significantly accelerated by extracellular
enzymes such as proteinase K produced by microorganisms naturally occurring in a soil environment.
The authors achieved a controlled patterning of the 3D printed electrode and also explored the
application of the digested surfaces as biosensors, showing that these enzymatically sculptured
3D-printed objects can serve as immobilization platforms for biomolecules and electro- chemical
transducers (Figure 14a). More in details, they evaluated the biosensing capabilities by immobilizing an
enzyme via physical adsorption and utilizing 1-naphthol as an enzymatic redox product. The enzyme,
alkaline phosphatase (ALP) whose activity, in routine clinical laboratory tests, is usually monitored
for the diagnosis and therapeutic observation of bone and hepatobiliary diseases [132], can convert a
specific electroinactive substrate, 1-naphthyl phosphate, into the electroactive 1-naphthol. The CVs
performed on the activated 3D-printed electrodes and glassy carbon electrode (GCE) in the presence of
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60-µM 1-naphthol and the progression of maximum current density (jp) and peak potential (Ep) with
the number of scans, on activated 3D-printed surfaces are reported in Figure 14b,c.
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Figure 14. (a) Representation of the 3D-printed graphene/PLA electrodes’ fabrication,
digestion/activation and application: first, coin-shaped electrodes from the graphene/PLA composite
filament are 3D-printed with a fused deposition modeling printer. After proteinase K-mediated PLA
digestion, the electrodes’ surface becomes eroded and electroactive. The resulting activated surface is
used to immobilize alkaline phosphatase (ALP) enzyme via adsorption. ALP catalyzes the conversion of
1-naphthyl phosphate into 1-naphthol, which is electrochemically oxidized at the surface of 3D-printed
electrodes. Electrooxidation of 1-naphthol at the digested 3D-printed sur- faces; (b) CVs performed on
the activated 3D-printed electrodes and glassy carbon electrode (GCE) in the presence of 1-naphthol
(60 µM); (c) progression of maximum current density ( jp) and peak potential (Ep) with the number of
scans, on activated 3D-printed surfaces. Reprinted with permission from reference [46]. Copyright©
The Royal Society of Chemistry 2019.

Polyvinyl alcohol (PVA) is a synthetic water-soluble biopolymer, a hydrogel frequently used in
biomedical applications which possesses good mechanical and thermal properties, good transparency
and resistance to oxygen permeation and it is an ideal material for enzyme immobilization because of
its nontoxic nature and good bio-compatibility [133]. PVA also offers unique characteristics such as
excellent gel-forming properties and good film-forming ability, which make it an excellent candidate
for enzyme immobilization. The entrapment of glucose oxidase (GOD) employed for the detection of
glucose, was carried out on silica sol−gel/PVA composite films [134], endowed with a great amount of
hydroxyl groups and providing a bio-compatible microenvironment for the encapsulation of GOD or
on a PVA-based support chemically cross-linked with glutaraldehyde, prepared with silicate sol−gel
and alumina sol−gel [135]. Both types of sol−gel methods were brittle, but with the addition of PVA
increased the mechanical strength. The main drawback associated is due to the compaction and
low-conductivity of such polymer membranes that make difficult for the substrate to infiltrate into the
enzyme membrane and for the electrons to effectively transfer between the enzyme membrane and
the electrode. To improve on this, research groups have employed PVA and other polymers to form
composite matrices with NPs to enhance the electron transport to the electrode surface while retaining
their original beneficial physical properties.

Lad et al. [136] developed an amperometric glucose enzyme electrode by the immobilization of
glucose oxidase (GOD) in a PVA composite material based on PVA and partially prehydrolyzed
tetraethyl orthosilicate (pphTEOS) on the surface of “in-house” fabricated graphite electrodes.
For comparison, silver and gold nanoparticles (Ag/AuNPs) embedded in the PVA-pphTEOS matrix
was prepared through a novel method via sol−gel process based on the in situ chemical reduction
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of Ag or Au ions using PVA as a reducing agent and stabilizer. The successful incorporation of Ag
and AuNPs ranging from 5 to 7.5 and 4.5−11 nm, respectively. The limit of detection for the enzyme
electrode was estimated to be 0.35 mM at a signal-to-noise ratio (S/N) of 3.

In a recent work [47], nanocomposites of graphene-iron oxide-polyvinyl alcohol (PIG) were
synthesized via simple one-pot hydrothermal method and were used in the modification of pencil
graphite electrode, for developing an electrochemical sensor for ascorbic acid, i.e., vitamin C detection.
The presence of PVA polymer brings improvements as increased electrocatalytic activity and large
surface area. The excess presence of hydroxyl group provides a large number of electrons during the
process. PVA also supports the composite for uniform coating on the electrode surface and also acts
as a mediator for facilitating electron transfer. Figure 15 reports the schematic representation of the
detection of vitamin C shows: i) the oxidation of ascorbic acid by releasing electron at the PIG modified
electrode, ii) a current flows through the external circuit which corresponds to oxidation current and,
finally, iii) the increase in the concentration of the analyte that gradually increases the current response
obtained for every spike. At optimized condition, the PIG modified electrode shows a high linear range
(40 µM–4100 µM), low limit of detection (0.234 µM) and higher sensitivity (1597.03 µA cm−2 mM−1).
The PIG material also provides a good stability towards detection of vitamin C.
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3.2. Eco/Recyclable Plastics

The practice of medicine has entered an age of rapid progress, and plastics are at the core of
medical innovation because they are flexible enough to fit into the smallest places, and they are
durable enough to withstand decades of wear and tear. Plastics are the primary choice for prostheses,
for long-term implanted medical devices and plastic packaging helps keep medicine and medical
devices safe and free of contamination. The drawback connected with the utilization of plastic is the
environmental contamination which they are responsible of. Many industrial and academic efforts
are devoted to increase the acceptance of all plastic products at all recycling facilities and continue to
innovate to make it easier.

Very recently, some scientist are focusing their attention to the study of advanced materials
based on recyclable polymers used as biosensor and employing an electrochemical detection [48,49].
Fabregat et al. [48] reported on the application of cold plasma technologies as a very simple and
effective modification technique for the preparation of dopamine electrochemical sensors, fabricated
using not only electrochemically active CPs, as for example poly(3,4-ethylenedioxythiophene) (PEDOT)
and poly(N-cyanoethylpyrrole) (PNCPy), but also conventional insulating and electrochemical inert
plastics, as polypropylene (PP) and polystyrene (PS). They modified the surface of the polymers
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in a room-temperature air-discharge plasma and showed that the electrochemical response of the
plasma-functionalized materials was strongly enhanced. The application of air–plasma to polymeric
films coating glassy carbon electrodes (GCEs) during only 1–2 min was enough to fabricate sensors
with resolution and sensitivity similar to those achieved through sophisticated chemical modifications.
The plasma exposure induced functionalization of the polymeric surface, due to hydrogen separation
from polymeric chains, free radical creation and, finally, interaction of the radicals with oxygen and
nitrogen. New functional groups were incorporated into the polymer surface and it was found that
the nature of reactive species formed strongly depends on the chemical structure of the polymer.
The presence of reactive species at the surface is responsible of the transformation of DA to its oxidized
form DA-o-quinone (DQ) and their nature affects the capacity of the surface to exchange electrons
with the surrounding environment. Figure 16c evidences a linear behavior in the whole interval
of examined DA concentration (from 0.5 to 100-µM DA). The detection limit expressed as 3.3 σ/S,
where σ and S is the standard deviation of the response and the slope of the calibration curve for
DA concentrations ranging from 0.5 to 5 µM (inset of Figure 16c) is 140 and 750 nM for PEDOT and
PNCPy, respectively. These values are significantly lower than those obtained for non-functionalized
samples [68,69], evidencing an improvement not only in the resolution (especially for PNCPy), but also
in the sensitivity.

Molecules 2020, 25, x 23 of 39 

 

The practice of medicine has entered an age of rapid progress, and plastics are at the core of 
medical innovation because they are flexible enough to fit into the smallest places, and they are 
durable enough to withstand decades of wear and tear. Plastics are the primary choice for 
prostheses, for long-term implanted medical devices and plastic packaging helps keep medicine and 
medical devices safe and free of contamination. The drawback connected with the utilization of 
plastic is the environmental contamination which they are responsible of. Many industrial and 
academic efforts are devoted to increase the acceptance of all plastic products at all recycling 
facilities and continue to innovate to make it easier. 

Very recently, some scientist are focusing their attention to the study of advanced materials 
based on recyclable polymers used as biosensor and employing an electrochemical detection [48,49]. 
Fabregat et al. [48] reported on the application of cold plasma technologies as a very simple and 
effective modification technique for the preparation of dopamine electrochemical sensors, fabricated 
using not only electrochemically active CPs, as for example poly(3,4-ethylenedioxythiophene) 
(PEDOT) and poly(N-cyanoethylpyrrole) (PNCPy), but also conventional insulating and 
electrochemical inert plastics, as polypropylene (PP) and polystyrene (PS). They modified the 
surface of the polymers in a room-temperature air-discharge plasma and showed that the 
electrochemical response of the plasma-functionalized materials was strongly enhanced. The 
application of air–plasma to polymeric films coating glassy carbon electrodes (GCEs) during only 
1–2 min was enough to fabricate sensors with resolution and sensitivity similar to those achieved 
through sophisticated chemical modifications. The plasma exposure induced functionalization of 
the polymeric surface, due to hydrogen separation from polymeric chains, free radical creation and, 
finally, interaction of the radicals with oxygen and nitrogen. New functional groups were 
incorporated into the polymer surface and it was found that the nature of reactive species formed 
strongly depends on the chemical structure of the polymer. The presence of reactive species at the 
surface is responsible of the transformation of DA to its oxidized form DA-o-quinone (DQ) and their 
nature affects the capacity of the surface to exchange electrons with the surrounding environment. 
Figure 16c evidences a linear behavior in the whole interval of examined DA concentration (from 0.5 
to 100-μM DA). The detection limit expressed as 3.3 σ/S, where σ and S is the standard deviation of 
the response and the slope of the calibration curve for DA concentrations ranging from 0.5 to 5 μM 
(inset of Figure 16c) is 140 and 750 nM for PEDOT and PNCPy, respectively. These values are 
significantly lower than those obtained for non-functionalized samples [68,69], evidencing an 
improvement not only in the resolution (especially for PNCPy), but also in the sensitivity. 

 
Figure 16. SEM micrographs of (a) poly(3,4-ethylenedioxythiophene) (PEDOT) and (b) 
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(c) DA detection limit of PEDOT- and PNCPy-modified glassy carbon electrodes (GCEs) with cold- 

Figure 16. SEM micrographs of (a) poly(3,4-ethylenedioxythiophene) (PEDOT) and (b)
poly(N-cyanoethylpyrrole) (PNCPy) before (left) and after (right) plasma treatment using tcp = 2 min.
(c) DA detection limit of PEDOT- and PNCPy-modified glassy carbon electrodes (GCEs) with cold-
plasma treatment, as obtained from the standard addition of 10 µL of DA to 10 mL of 0.1-M PBS.
Anodic peak intensity (ip) was determined by CV using a scan rate of 50 mV s−1; (d) control
voltammograms of 100 µ-M DA in 0.1-M PBS at cold-plasma treated PEDOT-modified GCE prepared
using different tcp values. Scan rate: 100 mV/s. Reprinted with permission from reference [48].
Copyright© 2016 Elsevier B.V.

As shown by SEM micrographs (Figure 16a), the compact morphology of PEDOT and
PNCPy untreated by plasma, was transformed into porous networks after plasma application
(Figure 16a,b, right). In the case of PEDOT (Figure 16a), abundant pores were created which
facilitates the diffusion of DA molecules and, therefore, the effectivity of the electron transfer process.
For PNCPy, the extremely compact surface becomes porous after plasma treatment, which is consistent
with enhancement of the electrochemical response. As a probe of concept, the authors applied the
same physical treatment onto the surface of an electrochemically inactive polymer, such as low density
polyethylene (LDPE), transforming it into an electroactive material suitable for the fabrication of
very cheap electrochemical sensors. For this purpose, LDPE sensors were manufactured by solvent
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casting onto GCE substrate and electrochemical assays (CV) showed that LDPE is not able to detect
such neurotransmitter without cold plasma treatment, but, in contrast, the voltammogram recorded
using an identically fabricated electrode, but applying a cold-plasma treatment during only 1 min,
shows a sharp oxidation peak corresponding to the DA peak. By comparing the sensitivity and
resolution obtained for the determination of dopamine, ascorbic acid and uric acid using plasma
treated LDPE-modified electrodes with those achieved using PEDOT- and PNCPy-modified electrodes,
the authors found that the electrochemical peaks of the three analytes are similarly for the three plasma
treated polymer-modified electrodes. Thus, the performances of the treated LPDE is similar to that of
treated conductive polymers

A step forward in the functionalization of a such LDPE-CGE electrode was presented by the same
group in another work [49], where the applicability of the plasma-treated low-density polyethylene
(LDPE) as an insulating and electrochemically inert polymer acting as mediator for the fabrication of
enzymatic glucose sensors was explored. The LDPE based biosensor was compared with a PEDOT
based, significantly more expensive and sophisticated than LDPE. The goal of this study was the
investigation of the effectiveness of plasma-functionalized polymers as mediators in glucose sensors,
by promoting the electrochemical communication between the Glucose oxidase (GOx) and the substrate,
and also the evaluation of the oxidation of interferents like DA, UA and AA, affecting the glucose
detection. Thus, such coupling has been used to propose a bifunctional biosensing platform to detect
simultaneously glucose and DA.

The authors found a correlation between the time of the plasma treatment and the electrochemical
response. In details, as reported by Figure 17a,b, they compared electrodes untreated (U-LDPE/GOx)
and treated (PT-LDPE/GOx) by plasma at different time (tcp = 30 s, 1 and 2 min), confirming that LDPE
electrode is not able to detect the oxidation of the glucose to gluconolactone, being an electrical insulator
and hindering the transfer of electrons from GOx to the GC substrate. On the other hand, the samples
treated by plasma detected the glucose with a LOD and a sensitivity increased from 0.9 to 1.7 mM
and from 0.54 to 1.31 µA· cm−2 mM−1, respectively, when tcp grows from 30 s to 2 min. An opposite
behavior was found for PEDOT- based electrodes, in which the electron transfer was more efficient for
U-PEDOT/GOx than for PT-PEDOT/GOx, the efficiency of the latter decreasing with increasing tcp.
It suggests that because of the modification coming from the plasma treatment, the reactive species affect
the electron delocalization decreasing the electronic conduction for PT- PEDOT (impeded π-electron
delocalization) and increasing the electronic performance of PT-LDPE. The role of the polymers in
enzymatic glucose sensors is crucial for an of efficient electrical communication between the GOx
and the GC surface. The chronoamperometric response to the glucose and interferents injection of
PT-LDPE/GOx sensors was also investigated for systems with mediators based PT-LDPE films produced
using tcp = 1 min (Figure 17c,d). The peaks associated to the injection of glucose, DA, UA and AA are
clear resolved and exhibit very different current densities, evidencing that PT-LDPE/GOx with tcp = 1
min act as efficient bifunctional sensors for the selective detection of glucose and DA.

In a fascinating investigation [50], a flexible platinum electrode was fabricated onto Bio-PET
surfaces, with the aim to detect biomarkers related to Parkinson’s disease. This work is of particular
interest because it tried to solve a problems connected with this critical disease affecting slightly more
than 1% of the population over 65 years old and approximately 0.3% of the world population [137],
whose diagnosis is quite difficult due to the fact that the exact causes of the disease are still unknown.
Early identification of this disease is a challenge and strongly linked to the need to detect specific
biomarkers as protein deglycase DJ-1, encoded by the gene PARK7 (PARK7/DJ-1). DJ-1 was reported
as a potential biomarker playing a significant role in antioxidative defense, protecting neurons from
oxidative stress [137] and preventing from Parkinson’s disease. It is also essential to notice that the
decrease of DA is one of the leading causes of Parkinson’s disease symptoms [138].

The microfabrication of platinum electrodes was carried out by conventional photolithography
and the main steps are reported in Figure 18. Bio-PET represents an eco-friendly alternative to
traditional PET because its production comes from biomass, different from petroleum derivatives of
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the conventional version of PET. However, this bio-based polymer presents similar characteristics of
flexibility and malleability.Molecules 2020, 25, x 25 of 39 
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Figure 17. (a) Current–time plots for the untreated low-density polyethylene (U-LDPE)/glucose
oxidase (GOx) and treated low-density polyethylene (PT- LDPE)/GOx (tcp = 30 s, 1 and 2 min) upon
the successive addition in 0.1-M PBS of 1 mM glucose; (b) current–density response versus glucose
concentration for the three sensors mentioned above. Error bars indicate standard deviations for
five measurements using independent electrodes. The calibration curve equation is also displayed.
Current–time plots for the PT-LDPE/GOx sensors (tcp = 1 and 2 min in red and blue, respectively) upon
the successive addition in 0.1-M PBS of: (c) 1 mM glucose, 1 mM uric acid (UA), 1 mM ascorbic acid (AA)
and 1 mM dopamine (DA); (d) 1 mM glucose, 0.1 mM UA, 0.1 mM AA and 0.1 mM DA. Polarization
potential: 0.50 V versus Ag|AgCl. Reprinted with permission from reference [49]. Copyright© 2017
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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formation of the antigen- antibody complex. After the initial electrode modification with cysteamine, 
the system impedance decreased. This behavior is due to the protonation of the amine in solution, 
which provides the formation of a positively charged layer and consequent attraction of the 
electrochemical probe, causing a decrease in the impedance. On the other hand, with the presence of 
glutaraldehyde, the Rct increases. In other words, the glutaraldehyde layer blocks the charge transfer 
between the solution and the surface of the flexible platinum electrode. As expected, when the 
antibodies are immobilized and interaction with the antigen (PARK7/DJ-1 protein) occurs, the 
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Figure 18. (1) Bio-polyethylene terephthalate (PET) pretreatment; (2) photoresist deposition on substrate;
(3) exposure to ultraviolet radiation for electrode delimitation; (4) removal of the sensitized photoresist
with the developer solution, followed by washing and drying; (5) patterned substrate treatment with
O2 plasma; (6) substrate treatment with O2 plasma; (7) removal of excess coating and washing material;
(8) individually cut flexible platinum electrodes. Reprinted with permission from reference [50].
Copyright© 2020 Elsevier B.V.
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By means of square-wave voltammograms and EIS, the authors evaluated the electrochemical
performance of the biosensor. The LOD obtained was 5.1 µmol L−1 and the sensitivity value was
0.016 µA mmol L−1. Figure 19a–b shows the preparation scheme of the biosensor and the increased
resistance to electron transfer as further modifications were conducted. Second, EIS technique was
used to evaluate the charge transfer resistance (Rct) response after each step of working electrode
modification: (i) working electrode modification with cysteamine, (ii) binding of glutaraldehyde with
cysteamine; (iii) antibodies immobilization by the interaction with glutaraldehyde and (iv) formation
of the antigen- antibody complex. After the initial electrode modification with cysteamine, the system
impedance decreased. This behavior is due to the protonation of the amine in solution, which provides
the formation of a positively charged layer and consequent attraction of the electrochemical probe,
causing a decrease in the impedance. On the other hand, with the presence of glutaraldehyde, the Rct

increases. In other words, the glutaraldehyde layer blocks the charge transfer between the solution
and the surface of the flexible platinum electrode. As expected, when the antibodies are immobilized
and interaction with the antigen (PARK7/DJ-1 protein) occurs, the system becomes more resistive.Molecules 2020, 25, x 27 of 39 
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Figure 19. (a) Preparation scheme of the biosensor showing the steps of construction of
the self-assembled monolayer, immobilization of the antibody and immunocomplex formation;
(b) scheme showing increased resistance to electron transfer as further modifications are made
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Copyright© 2020 Elsevier B.V.

4. Lab on a Chip (LOC), Electro-BIOsensors Fabricated with Common Plastics

In the last section of this review, a brief discussion about outstanding and complete electrochemical
biosensors fabricated on flexible common plastics which are used as functional base substrates is
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reported. Flexible biosensors can be directly attached to the tissue surface and are designed in
such a way as to withstand intense mechanical deformations, while maintaining stable performance.
This class of sensors, also known as lab-on-a-chip (LOC) devices, is based on different materials
employed as support, but here the attention is focused on plastic supports arranged in a single or
layered configuration. Common thermoplastics as polyethylene (PE), polystyrene (PS), polyethylene
terephthalate (PET), polypropylene (PP), polycarbonate (PC), thermoset (polyimide (PI, Kapton) are
well employed for flexible biosensors because they can be easily turned into thin films and present
low cost, inherent plasticity, hydrophobicity, good insulative properties, sufficient thermal stability,
low coefficient of thermal expansion, structural resiliency against deformation and compatibility with
fabrication processes.

Wearable Biosensing Platforms

Among flexible biosensors, wearable devices are surely the ones which express the flexibility
concept in the best way [139,140]. Herein, some examples of very innovative and challenging flexible
biosensors composed by modified common thermoplastic and based on electrochemical detection
methods is discussed. These electrochemical biosensors have been classified depending on the
biologic biofluid analyzed. Sweat, saliva and tears are three main biofluids containing multiple
physiologically relevant chemical constituents that be easily monitored in a continuous non-invasive
real-time fashion [141–143].

Wang’s group have fabricated a wearable device that can simultaneously measure biochemical
(lactate) and electrophysiological parameters in the form of a single epidermal patch (Chem–Phys
patch) and that comprises a screen-printed three-electrode amperometric lactate biosensor and two
electrocardiogram electrodes [144]. The biosensors were fabricated via conventional low-cost screen-
printing technique (Figure 20a–d) carried out on a 50-µm thin and highly flexible polyester substrate
able to well adhere to the human skin. The working electrodes were first, printed using Prussian blue
ink (high selective towards hydrogen peroxide, a byproduct of the enzymatic oxidation of lactate) and
then functionalized and coated with a biocompatible biocatalytic layer (lactate oxidase (LOx)-modified
Prussian blue). The reference electrode was printed using Ag/AgCl and, in order to avoid alternate
electrically conductive pathway of the sweat, a printed hydrophobic layer of Ecoflex was used to
separate the amperometric biosensor from the electrocardiogram electrodes.

The in vitro characterization of the lactate was carried out taking into account the typical range
of concentration in sweat (0 to 25 mM) [145]. When the biosensor comes in contact with lactate,
the immobilized LOx enzyme catalyzes the oxidation of lactate to generate pyruvate and H2O2.
The Prussian blue transducer then selectively reduces the H2O2 to generate electrons to quantify the
lactate concentration (Figure 20e). The biosensor responds linearly to the lactate concentrations in the
desired range with a sensitivity of 96 nA/mM.

An impressive and advanced “smart wristband” or “smart headband” sensors designed for
multiplexed in situ analysis using a wearable flexible integrated sensing array (FISA) enables real-time
perspiration monitoring on the wrist and forehead during physical exercise was fabricated by
Gao et al. [146]. Measurement of glucose and lactate was realized by chitosan entrapped glucose
and lactate oxidase enzymes, respectively and amperometric measurements of the Prussian blue
mediated reduction of the enzymatically produced hydrogen peroxide The sensor array incorporates
the amperometric biosensors, a resistance-based temperature sensor and a flexible printed circuit
board, all attached to a mechanically flexible polyethylene terephthalate (PET) substrate. The biosensor
simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes
(such as Na+ and K+), as well as the skin temperature (to calibrate the response of the sensors).
The sensor array was fabricated using microengineering approaches as photolithography, electron beam
evaporation, lift-off and oxygen plasma etching.
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Figure 20. Fabrication and function of the Chem–Phys hybrid sensor patch. (a) Schematic showing the
screen-printing process; (b) image of the Chem–Phys printing stencil; (c) An array of printed Chem–Phys
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diagram of the wireless readout circuit. Reprinted with permission from reference [144]. Copyright©
Springer Nature Limited.

The first version of a mouthguard biosensor, a wearable salivary metabolite biosensor,
was presented by Kim et al. [147] and it was based on the integration of a printable enzyme electrode.
The authors monitored lactate by combining a lactate oxidase-modified biosensor and an amperometric
detection of the enzymatically generated hydrogen peroxide Mouthguard biosensors were fabricated
by screen-printing three separate layers on a flexible PET substrate. An Ag/AgCl conductive ink
was printed first, to provide the reference electrode, second, the layer serving as the working and
auxiliary electrodes was printed from a Prussian blue–graphite ink, and, finally, the third (insulator)
layer, was printed by using the DuPont 5036 Dielectric paste. Subsequently, the printed electrode
system was attached to the mouthguard body. The working electrode was subsequently modified
in order to immobilize the enzyme (lactate oxidase (LOx)) by electropolymeric entrapment in a
poly(o- phenylenediamine) (PPD) film. The last step consisted in the immersion of the mouthguard
printable transducer in the polymerization solution to grow the LOx-entrapped PPD film. An improved
version of this mouthguard biosensor was developed by the same group for the monitoring of salivary
uric acid levels [148]. The enzyme (uricase)-modified screen printed electrode system was integrated
onto a mouthguard platform along with anatomically miniaturized instrumentation electronics
featuring a potentiostat, microcontroller and a Bluetooth low energy (BLE) transceiver enabling real
time wireless transmission of the readings to remote electronic devices (Figure 21). The three separate
layers on a flexible PET substrate were prepared using the same approach of the previous work [147].

New achievements on the non-invasive determination of glucose in tears by using suitably
engineered contact lens biosensors has originated from Parviz’s team [149–151]. This group fabricated
sensing devices based on flexible flat plastic supports, such as transparent PET thin films, shaped into
a contact lens. At the point where irritation to the eye is minimal (that is, the periphery of a contact
lens), PET surfaces were engineered to perform biosensing and sometimes wireless signal transduction,
power supplying and transmittance of readings to a remote electronic device [151]. In a first attempt,
a 3-electrode electrochemical cell along with three pads (used to make electrical connections between
an external potentiostat and the sensor), were fabricated by evaporating Ti/Pd/Pt [149]. Glucose oxidase
was immobilized on the working electrode using titania sol–gel film and Nafion was used to alleviate
several potential interferences (ascorbic acid, lactate and urea). By using a similar fabrication process
(Figure 22a) and glutaraldehyde cross-linked bovine serum albumin and lactate oxidase overcoated
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with medical grade polyurethane for biocompatibility, Thomas et al. demonstrated the monitoring of
lactate in artificial tear fluid [150]. The device retained a stable current response for at least 24 h at room
temperature, while an additional Nafion coating was applied for interference rejection. However, only
a dual sensor configuration was found to be adequate for the rejection of ascorbic acid interference.
The flat substrate with sensing structure, interconnects and electrode pads and the completed contact
lens sensor is shown in Figure 22b,c. The same sensor-based contact lens biosensing concept was
further elaborated for tear glucose monitoring with the addition of sensor read-out circuit, antenna and
telecommunication circuit into a small chip [151].
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5. Brief Conclusions and Future Outlooks

Herein, we wish to express our concluding thoughts and the outline future tasks for the different
topics discussed in the present review, including various aspects related with the modification,
application, sensor integration or the performance of polymers employed as electrochemical biosensors.
By means of polymer modifications, new platforms for sensors suitable in biomedical application
have emerged with a multitude of new and optimized properties. The electrochemical (amperometric,
potentiometric,...) biosensors discussed in this review are fabricated by means of traditional and
innovative modification techniques based on conducting polymers, as sensing material or based on
inert polymers, modified to act as surface for the immobilization of the biosensing agent.

In the first part, a meticulous study about the different routes to optimize ICPs capacities for the
electrochemical recognition of a wide range of biomolecules was performed. The collected information
revealed that structural or superficial modifications with other materials, like metallic nanoparticles,
graphene or its derivatives, improved the sensitivity of ICPs, achieving the ability to detect biomolecules
with an important role in the diagnostics or treatments of diseases. Biomodifications also contribute to
enhance the ICPs sensibility, in addition to the selectivity of the material toward specific bio-species,
such as oncogenes or tumor marker. On the other hand, assemblies between ICPs and non-conducting
polymers or biopolymers were employed to enhance other important qualities in a medical sensor,
biocompatibility and hydrophilicity. These modifications are not limited to its individual use, in fact,
several authors showed that more than one material or modification techniques could be merged to
maximize the ICP behavior as an electro-biosensor. Based on the collected information new strategic
modifications that combine the benefits of ICPs and conventional insulating polymers or biopolymers
for their use in the biosensing field are required for efficient devices.

The second part of the review discusses “environmentally friendly” plastics, which represent a class
of polymer in line with future trend of the scientific community as well of the polymer manufactures.
The biocompatibility of polymer as chitosan can be suited to fabricate a new generation of biosensors
exhibiting high electro-catalytic properties and it is also applicable for the estimation of biomolecules
directly in human fluid samples. The synergistic effect of biopolymers and conducting materials,
as graphene for example, can be achieved by means of traditional modification as drop casting or
more advanced technique as molecular imprinting in the presence of ionic liquid. Another natural
polymer of interest in biosensors is the polylactic acid (PLA), its biocompatibility was exploited for the
immobilization of sensing agents, while, its biodegradability and good processability by 3D printing
offer a suitable bioplatform for implantable sensing devices.

Eco/recycled plastics as LDPE, PET, PP are increasing utilized as support for the immobilization of
enzymes and constitute powerful tools, even with a number of inherent disadvantages. Pioneer works
based on LDPE modified with plasma technique or drop casting methodologies, previously discussed,
proved that these modified plastics are a remarkable option for biosensors with good sensitivity and
selectivity. They represent a new generation of biosensors, as demonstrated from the low number
of scientific works published till now. There is often a trade-off between sensitivity and quick
response and long-term stability and to achieve these goals an appropriate enzyme (or enzyme system)
immobilization has to be investigated. Future trends may go in this direction. Taking into account that
in such biosensors the plastic simultaneously act as support and mediator, the mechanical properties
of the polymers as flexibility and resistance of the polymers are relevant and crucial to fabricate
non-invasive sensors devices, as well the ease chemical modification of their surface to immobilize
the biomolecules responsible of the sensing. The challenge is the fabrication of highly sensitive,
stable, flexible and cheap biosensors, which may be employed in underdeveloped regions.

Finally, flexible devices based on recyclable plastics and characterized by a complex and complete
electrochemical system were reported. In our opinion flexibility of the devices is an underrepresented
aspect regarding structural biocompatibility that is fundamental in the process of insertion and that
represent a challenge for scientist working with flexible devices.
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