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The ability to remember a previous encounter with pathogens was long thought to be a
key feature of the adaptive immune system enabling the host to mount a faster, more
specific and more effective immune response upon the reencounter, reducing the severity
of infectious diseases. Over the last 15 years, an increasing amount of evidence has
accumulated showing that the innate immune system also has features of a memory. In
contrast to the memory of adaptive immunity, innate immune memory is mediated by
restructuration of the active chromatin landscape and imprinted by persisting adaptations
of myelopoiesis. While originally described to occur in response to pathogen-associated
molecular patterns, recent data indicate that host-derived damage-associated molecular
patterns, i.e. alarmins, can also induce an innate immune memory. Potentially this is
mediated by the same pattern recognition receptors and downstream signaling
transduction pathways responsible for pathogen-associated innate immune training.
Here, we summarize the available experimental data underlying innate immune memory
in response to damage-associated molecular patterns. Further, we expound that trained
immunity is a general component of innate immunity and outline several open questions
for the rising field of pathogen-independent trained immunity.
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INTRODUCTION

Monocytes and macrophages (Mj) are professional phagocytotic cells (1), a feature first described
by Elie Metchnikoff almost 150 years ago (2). Circulating monocytes originate from the bone
marrow and can differentiate into monocyte-derived Mj and dendritic cells upon stimulation (3, 4)
and subsequently elicit a robust inflammatory response, which includes the secretion of cytokines.
This qualifies these cells as initiators of inflammation and places them in the first line of defense
against invading pathogens (3, 5). In contrast, tissue resident Mj, derived from the yolk sac or the
fetal liver, are thought to regulate organ development and homeostasis as well as to control
resolution of inflammation (5, 6). However, this is not a fixed dichotomy and under specific
conditions, monocyte-derived Mj can also acquire a phenotype that promotes homeostasis and
tissue repair similar to tissue-resident Mj (5).

In contrast to adaptive immunity that develops antigen-specific memory, the cellular
components of the innate immune system, including monocytes and Mj, were long thought not
to remember previous stimulation. Instead after a transient phase of recovery, it was assumed that
they would react in a similar and repetitive way to inflammatory stimuli (7).
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MEMORY OF THE INNATE
IMMUNE SYSTEM

The above-described perspective was challenged during the last
15 years by several independent discoveries that showed
persistent histone modifications in Mj in response to the
bacterial cell-wall component Lipopolysaccharide (LPS), the
fungal cell wall component b-1,3-D-glucan among others (8–
10). The phenomenon of acquired and persistent alterations of
innate immune responses was coined as innate immune memory
and presents typically as tolerance, referring to a reduced
response or trained immunity (TRIM), referring to an
enhanced response upon restimulation (10).

The first observation that LPS-mediated Toll-like receptor
(TLR)-signaling induced gene-specific chromatin modifications
were made by Foster et al. when aiming to understand
immunotolerance (8). The authors revealed a set of gene-
specific chromatin modifications that are associated with
gene silencing or enhanced response to re-exposure (8).
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In addition, it was established that a subset of genes could
be persistently tolerized while others remained unaffected or
even had enhanced transcription, the latter set being described
as non-tolerizeable genes. Subsequent work by other groups
revealed that the fungal cell wall component b-1,3-D-glucan
and other inflammatory stimuli can also induce specific and
persistent modifications of histone acetylation and methylation,
underlying a long-term modulation of the innate immune
response (Figure 1) (9, 11). Both phenomena share common
characteristics, e.g., exposure to a given stimuli ensues long-term
modulation of the innate immune response to that same or
related stimuli and are associated with long-term modification
of gene transcription (8, 9). TRIM in vivo and in vitro was first
demonstrated using the fungal cell wall component of Candida
albicans b-1,3-D-glucan, a bona fide pathogen-associated
molecular patterns (PAMP) or the Bacille-Calmette Guerin
(BCG) the live-bacteria tuberculosis vaccine (9, 11–13). These
molecules commonly use the mechanistic Target of Rapamycin
(mTOR) pathway to induce TRIM to activate specific
FIGURE 1 | Classical in vitro model of trained immunity. Trained immunity describes a functional, metabolic and epigenetic adaptation of innate immune cells to
previous stimuli with ensuing increased immune response, i.e. cytokine release, to secondary stimulation. (A) The classical model applies the Dectin-1 agonist b-1,3-
D Glucan as the first stimulus and the TLR-4 agonist LPS as the second stimulus. (B) The basis for b-1,3-D Glucan induced trained immunity are metabolic
adaptations, including the mTOR signal-transduction enhanced glycolysis. Interrupted errors indicate that many more proteins are involved in the signaling cascade,
which are not depicted in the figure.
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downstream metabolic adaptations (14, 15). In fact, in myeloid
cells, TRIM relies on alterations of the cellular energy metabolism
involving glycolysis, itaconate synthesis, glutaminolysis and
fumarate metabolism (16–18). While the increase in glycolysis
seems to be a shared mechanism between the different trained
immunity inducers, the regulation of OXPHOS, e.g. repression or
activation, appears to be stimulus-specific. Exposure to b-glucan
also leads to increased abundance of histonemarks H3K4me3 and
H3K27ac especially at promotors of genes encoding proteins
regulating glycolysis. In addition, glutaminolysis, which is
activated during trained immunity fuels the TCA cycle,
accumulating specific metabolites, such as fumarate, which even
further increases histone marks at H3K4me3 and H3K27ac.
Fumarate, can also directly inhibit the activity of histone
demethylases (17) placing it at a central hub to for the
metabolic control of b-glucan induced TRIM. Consistently,
inhibition of glycolysis and glutaminolysis reduced these
histone marks at the promotors of IL6 and TNFA. In addition,
increased amounts of mevalonate, a metabolite involved in
cholesterol synthesis (18, 19) upregulate the IGF-I signaling
pathway, which in turn promotes the activation of the mTOR
pathway and glycolysis. This results most likely in the
accumulation of acetyl-CoA an important donor for acetyl
groups for histone acetylation (20). This data is suggestive for a
strong interaction of metabolic and inflammatory pathways,
underling trained immunity (14, 17, 18, 21).

TRIM can be induced in vivo in mice via a mechanism that is
at least partially based on modified hematopoiesis, favoring
myelopoiesis and potentially increasing host resistance to
infection (22–25).

As described before, LPS tolerance is associated with specific
gene silencing or enhanced response to re-exposure (8). It is
conceivable that the same would occur in TRIM, i.e. that innate
immune training includes not only trainable but also non-trainable
genes probably including tolerizeable genes. This raises the
possibility that training, and tolerance are not unrelated
phenomena but rather dependent on the re-writing of gene
activation and repression programs via specific stimuli-induced
signaling pathways to specify the reaction pattern of the innate
immune cells. This notion is supported by the finding that LPS-
induced histone modifications can be reversed at specific loci by
different secondary stimuli (26).We speculated that this regulation
underlies why training and tolerance are detrimental in some and
protective in other models (14, 22). However, this needs further
experimental evidence, which is why we use the TRIM terminology
to describe memory that induces enhanced responses.
DAMAGE AND DANGER

The prevailing concept since the 1950s that the immune system
evolved to distinguish self from non-self was challenged in a
seminal essay by Polly Matzinger (27). She proposed that the
immune system does not exclusively differentiate between
foreign and self but instead evolved to detect cues indicating
danger. Matzinger´s danger theory was primarily intended to
understand T-cell biology. This theory contains specifically the
Frontiers in Immunology | www.frontiersin.org 3
idea that professional antigen presenting cells are activated “in
the presence of tissue destruction” (27). Whether this is a
completely novel approach or a reappraisal of earlier thoughts
is not the topic of this review (28). According to Matzinger,
immune cells are primarily made for sensing detecting danger
and only sense invading microorganisms for the reason that
infections typically are associated with danger, in the form of
cellular stress and damage (27, 29). In the classical concept of
immune recognition, DAMPs would in fact be considered as
“self”. However, it has become clear that certain host-derived
molecules can activate innate immunity and induce an
inflammatory response regardless whether they are triggered
by infection or by sterile inflammation (30). These molecules
have been designated as damage or danger-associated molecular
pattern (DAMP) and are also referred to as alarmins by some
authors. An overview of the different terminology is shown
in Table 1.

Overall, DAMPs are a rather heterogenous group of
molecules with shared common features. They are a) host-
derived and not pathogen- or environment-derived and
b) induce an innate immune response. In order to
acknowledge their heterogeneity, DAMPs have recently been
further subclassified as continuous DAMPs (cDAMPs),
inducible DAMPs (iDAMPs) (Table 1) (42, 43). In this
classification, cDAMPs are intracellular molecules that are not
present in the circulation under non-pathological conditions and
are set-free without modifications upon cellular damage.
iDAMPs are secreted and/or induced molecules, released from
dying cells and have been proposed to reflect various stress and
damage pathways activated during stress (43). DAMPs are
heterogenous in their origin and function. Yet, they induce a
rather homogenous sterile inflammation that equally involves
cytokine release, neutrophil recruitment and the induction of T-
cell immunity equally to the response elicited by PAMPs (30).
The recently classified group of lifestyles—associated molecular
patterns (LAMP) consist of molecules increased with western
lifestyle hat induce a sterile inflammation. These are distinct
from DAMPs as they cannot be cleared, and if persistent, lead to
a chronic inflammation. This group includes cholesterol,
monosodium urate or oxidized LDL and others (42) (Table 2).
CONSERVED PATTERN RECOGNITION TO
DAMP AND PAMP

Monocytes and Mj express different sets of pattern recognition
receptors (PRRs) that bind to PAMPs (50) and DAMPs (51–53).
There are four distinct classes of PRR that are identified so far:
Toll-like receptors (TLR), nucleotide-binding oligomerization
domain (NOD)- Leucine-rich repeats (LRR)-containing
receptors (NLR), retinoic acid-inducible gene 1 (RIG-1) -like
receptors (RLR), and the C-type lectin receptors (CLR) (54).
Binding of PAMPs and DAMPs by PRRs triggers distinct
signaling transduction pathways which elicit the expression of
immunomodulatory molecules, e.g. cytokines, indispensable for
an appropriate immune reaction against an exogenous or
endogenous threat.
October 2021 | Volume 12 | Article 699563
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TRIM can be induced by different classes of PRRs, as
illustrated by b-glucan, which binds to the C-type lectin
receptor Dectin-1 activating the noncanonical Raf-1 pathway
signaling (12). So far only one intracellular PRR has been
identified to result in TRIM upon engagement, namely, NOD-
2/Rip2 in response to BCG (11). This is fundamentally different
to the immunological tolerance which involves TLR-4 activation
and the NF-kB/MAPK pathway (55). We here posit that DAMP-
induced TRIM shall not involve cytoplasmatic PRR such as NLR
or RIG-1. This is because by definition, a DAMP is an
endogenous, i.e. cytoplasmatic or nucleic, molecule that is
released in the circulation and then bound by extracellular
receptors, with the potential to be endocytosed after ligand-
binding (56). In contrast, cell intrinsic stress responses mount
conserved stress-control pathways that prevent tissue damage
Frontiers in Immunology | www.frontiersin.org 4
(57). the release of DAMPs and as a consequence also the
ensuing activation of the immunes system.
DAMPS AS TRAINERS

Compared to PAMP-induced TRIM, DAMP-induced TRIM is
less well studied and understood. Five years ago, Crisan et al. had
speculated on the existence on DAMP-induced trained
immunity and summarized concepts and early data (58).
During the last years, increasing amounts of evidence shows
that endogenous molecules promote in fact TRIM include the
iron-containing tetrapyrrole heme (22), the intermediate
filament vimentin (45), oxidized low-density-lipoproteins
(oxLDL) (46) and the mineralocorticoid aldosterone (59). An
TABLE 2 | DAMPs for which innate immune training has been shown.

Molecule Applied Models Outcome Pathway REF

Heme human/murine monocytes/ Mf, LPS shock, Polymicrobial
sepsis, in vitro and in vivo

Dual role depending on the second stimulus. Syk/JNK (22)

Vimentin HMGB-1-treated murine Mf Increased release of pro-inflammatory cytokines mTOR (45)
oxLDL Human monotyes/ Mf Increased release of inflammatory cytokines Endothelial cells: TLR2

mTOR/Hif1a
(46)

Endothelial cells: Cytokines and expression ICAM1,
VCAM1, E-selectin

(47–
49)
October 20
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TABLE 1 | Definitions of PAMP, DAMP and defined sub entities.

Molecule Abbreviation Characteristics Examples

Pathogen-associated molecular
pattern (PAMP)*

PAMP Conserved microbial molecules which are sensed by pattern
recognition receptors (31).

Lipopolysaccharid (LPS) (32)
b-Glucan (33)

Damage-associated molecular
pattern

DAMP Any molecule which is exposed during, after, or because of
disrupted cellular homeostasis such as damage or injury (34)

HMGB-1(35)
ATP (36)

Or earlier Heme (37)
Danger-associated molecular
pattern
Alarmin Endogenous molecules, released by damaged cells, during cell

death and degranulation. Constitutively expressed.
Vimentin (38)

Provoke chemotactic and immune activating reactions by
interacting with PRR (39).

Defensins, Cathelicidin, Eosinophil-derived
neurotoxin (40)
Heme (37)

Nematode-associated molecular
patterns (only specifically
described for plants)

NAMP Nematode-derived molecules that initiate an early immune
response/defense in plants.

Ascarosides (nematode pheromones) and
unidentified molecules released from plant
pathogenic nematodes (41).Receptors unknown

Lifestyle-associated molecular
patterns

LAMP Non-PAMP, non-DAMP molecules that induce an inflammatory
response.

Cholesterol; Monosodium urate; Oxidized LDL
(42)

Cannot be cleared. Persistence leads to chronic inflammation
inducible DAMP iDAMP Inflammation-inducing molecules actively produced or modified

during cell death. Proposed to reflect cellular stress response
and cell death pathways

IL1b, IL18 Heat shock proteins (43)

constitutive DAMP cDAMP Inflammation-inducing molecules that are already present
intracellularily before cell death/stress and are released by
dying cells (43).

HMGB-1
mtDNA
ATP
Heme
*Some authors preferentially refer to PAMPs as same molecule as microbe-associated molecular patterns as also commensal bacteria express these genes without exerting pathologies
(42). Other authors have used the same abbreviation to define a subset of DAMP subset as metabolism-associated molecular pattern (44). We consider this nomination confusing and
restrain from using it in this review.
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overview of the studies is provided in Table 2. As aldosterone is a
hormone and not considered a DAMP, it will not be discussed
further in this review.

Both heme and vimentin are alarmins that can activate PRR
signaling either by TLR-4 or Dectin-1, respectively (37, 38).
OxLDLs are a heterogenous group of molecules that, depending
on their oxidation status, bind to different PRR. Minimally
modified LDL can directly bind to cluster of differentiation
(CD)14, TLR-2 and -4 triggering immune activation (48, 60,
61). Further oxidized OxLDL is recognized by a family of
scavenger receptors including the lectin-like oxidized low-
density lipoprotein receptor-1 (LOX-1), CD36 and the
scavenger receptor class B type I (SR-BI) (62). In the following
paragraphs we will briefly summarize the findings for the
individual TRIM-promoting DAMPs.

Heme
Heme is a tetrapyrrole with a central iron atom found in
hemoglobin and other hemoproteins. The reactive central iron,
which is responsible for the biological heme functions can
reversibly change its oxidation state from ferric (Fe3+) to
ferrous (Fe2+) to accept or donate electrons, respectively. This
reactive core makes heme not only an indispensable molecule for
many physiological processes, but it also bears the risk for
cytotoxicity when unbound to proteins. As such, heme is able
to oxidize lipids and proteins and can induce DNA damage (63,
64). Additionally, heme can promote the generation of free
radicals e.g. when reacting with other organic hydroperoxides,
further imposing cellular damage (63, 64). Under homeostatic
conditions heme production and degradation are tightly
controlled processes. Following hemolysis or tissue damage,
heme is passively released into the circulation. There it is
bound non-covalently by serum scavenger proteins and taken
up by Mj (65–70). As far as we know now, there is no active
heme export.

With increasing concentrations, the buffering capacity of
serum protein becomes exhausted result ing in the
accumulation of cell-free, ‘labile’ heme in the plasma (70, 71).
This contributes critically to the pathogenesis of severe acute
infectious disease, as demonstrated for malaria (72) and for
bacterial sepsis (73–75). Labile heme is a pro-type alarmin that
is sensed by TLR-4 but also activates the spleen tyrosine kinase
(Syk) pathway both inducing cytokine expression, including the
cytokines IL-6 and pro-IL-1b in innate immune cells (37, 76). As
heme synergized with LPS with regards to cytokine release, it was
assumed that heme would bind to a distinct pocket of TLR-4 and
specifically induced MyD88 signaling (77). How heme triggers
Syk signaling is currently unknown (37, 76, 78). We have
recently described that heme is a potent inducer of TRIM
which is mediated by the activation of Syk (22). In contrast to
other TRIM inducers this is independent of mTOR. However, in
vivo heme training causes comparable expansion of myeloid
primed long-term hematopoietic stem cells as seen in PAMP-
induced TRIM (19, 79).

In line with the above, Schrum et al. identified that damaged
red blood cells and hemozoin crystals, as a result of a malaria-
inducing Plasmodium falciparum infection, induce TRIM in
Frontiers in Immunology | www.frontiersin.org 5
primary monocytes in vitro (80). Plasmodium spp. replicate in
erythrocytes and regularly disrupt their cell membrane to be
released into the circulation which is accompanied by the release
of the Plasmodium -metabolic byproduct hemozoin (81, 82).
This study perceives the Plasmodium induced TRIM to be a
result of PAMPs and does not consider that damaged red blood
cells as well as hemozoin are major sources of labile heme.
Together with the findings of Jentho et al. (22), TRIM seems to
be an inherent component of innate immune cells considering
the wide range of infections associated to release of labile heme.
Given the human-pathogen co-evolution especially with
Plasmodium spp. these studies raise the question what kind of
evolutionary advantage is achieved by inducing TRIM.

Oxidized LDL
Oxidized LDL encompasses a number of different particles such
as protein and fatty acids with varying oxidation states (83, 84).
Application of in vitro oxLDL induces TRIM in Mj, as well as in
non-hematopoietic lineage cells such as endothelial cells and
human coronary smooth muscle cells (46, 48, 49). OxLDL bind
to a family of scavenger receptors that include CD36 (62) which
in turn can activate TLR-4 and TLR-6 signaling (85).
Mechanistically, as seen in b-glucan, oxLDL-TRIM is
associated with mTOR signaling, H3K4 methylation and
increased glycolysis (46, 86). The same, sensing by TLR and
signaling via mTOR pathways are involved in TRIM in vascular
smooth muscle cells (48). Potentially this explains why training
effects by oxLDL have been shown for non-myeloid tissues that
also express the same receptors. In fact, this should also hold true
for the other mediators of TRIM, but this, to our knowledge, has
not been addressed experimentally

OxLDL may, however, also be considered in light of the
recently suggested concept of LAMPs, which refers to molecules
not associated with pathogens or cellular damage but instead
arising from “failure-to-adapt-disease” such as observed in the
context of atherosclerosis or gout. Key features of LAMPs have
been defined as being persistent and having the ability to induce
chronic disease (42). Furthermore, oxLDL cannot be cleared by
the immune system and consequently induce chronic
inflammation (30). We consider this potentially relevant for
this topic as acute oxLDL exposure induces TRIM (46, 49),
while LAMP-induced TRIM would involve a non-resolved
stimulus and persistent activation, with the associated pro-
inflammatory phenotype in phagocytes. Whether the observed
link between high-fat diet, the predominant factor for the
development of atherosclerosis, NLRP-3 inflammasome-
dependent induction of TRIM in mice (87) is also mediated by
oxLDL signaling is currently unclear.

Vimentin
Vimentin is an intermediate filament protein involved in
inflammatory responses and in Mj endocytosis (88). Vimentin
is a classical alarmin, sensed by Dectin-1 (38). While
investigating donor al lografts in a model of heart
transplantation Braza et al. showed in the ex vivo second hit
model, that isolated Mj exposed to first vimentin and
subsequent to HMGB-1 had an enhanced cytokine release of
October 2021 | Volume 12 | Article 699563
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TNF and IL-6 (45). HMGB-1 is a DNA chaperone that mainly
signals via extracellular receptor for advanced glycation end
products (RAGE), a DAMP-specific receptor that also
recognized S100 members and TLR-4 (89). This experimental
set-up detaches the phenomenon of TRIM from any pathogen
and clearly links it to sterile inflammation (30). However, as a
limitation the authors here only provide direct ex vivo data and
do not show whether each single component or a switched
cadence would equally result in enhanced cytokine release. Of
note, data using isolated splenocytes that were incubated first
with HMGB-1 for eight days and then subsequently stimulated
with LPS had a six-fold increase of TNF release in contrast to
non-HMGB-1 exposed cells (90). While in this setting it is
possible that HMGB-1 provides a continuous stimulation, the
long protocol also could suggest that HMGB-1 can act as
a trainer.

In this review, we describe DAMPs for which it was
experimentally shown that they induce innate immune
training. We also want to highlight, that at least in our hands,
exposure to certain other DAMPs does not lead to trained
immunity. Potentially, this was also observed in other
laboratories but not reported. This could indicate shared
characteristic of those DAMPs that induce TRIM, which still
have to be identified. Exemplarily, we were not able to induce
innate immune training with the short-lived ATP that binds to
P2YR and P2XR and provokes immune activation in other
models (91). The lack of ATP-induced TRIM might be
explained by the fact that ATP does not bind the classical
PRRs in contrast to the TRIM-inducing DAMPs. Furthermore,
it is unclear, at least in the in vitromodels, whether Mj can clear
TRIM-inducing DAMPs or their degradation products, whereas
ATP for example is rapidly used by the cell and cleared (91).
DOES DAMP TRIM FIT INTO THE TWO
SIGNAL FRAMEWORK FOR IMMUNE
ACTIVATION?

In his introduction to the Cold Spring Harbour Symposium in
1989 Charles Janeway introduced the idea of PRR and the
necessity of a two-signal system for immune activation (31). In
subsequent work he proposed that a danger signal from the host
is in fact a co-stimulation for the host that can act additionally to
the classical pathogen-derived co-stimulation providing the
needed signal two (92). While activation of adaptive immunity
requires signals from two cells, in the evolutionarily older innate
immune cell, no such co-stimulation existed and a meaningful
second signal could have come from a different endogenous
source. This could be the evolutionary justification for the
observed phenomenon of innate immune memory. The
changes in the bone marrow might be the reflection of
the long-term consequences as cellular memory might
evolutionarily not have yet been possible due to a lack of
adaptive immunity. Why some DAMPs can act as signal one
while others do not, remains to be established.
Frontiers in Immunology | www.frontiersin.org 6
CONCLUDING REMARKS

Over the last 15 years it has become clear that memory is a
general feature of innate immunity. Strikingly, DAMP- and
PAMP-induced trained immunity show comparable molecular
reaction pattern. Recognition of both induce histone
modifications and long-term persistent alteration of
myelopoiesis that impact on the immune response upon
secondary stimulation. This coherence hints towards an
evolutionary conserved program, with logical advantages and
so far, not understood disadvantages for the host mounting a
secondary inflammatory program. Yet, it remains unclear under
which conditions it is beneficial and when it is deleterious. This
needs to be addressed for future application of the TRIM concept
especially if applied in clinical settings.

Several further questions remain to us. Why are certain
DAMPs worth remembering while others apparently not? How
does DAMP-induced TRIM affect leukocyte trafficking, adaptive
immunity, iNKT cell regulation and repair? Especially as damage
signaling should result in the induction of a repair response. Is
there an intracellular signaling funnel via which this reaction
pattern is transmitted or can only DAMPs that can activate
extracellular PRR-signaling lead to innate immune training? If
intracellular PRR recognize DAMPs and initiate innate immune
training, how would a constant immune activation be prevented?
And ultimately does an epigenetic imprinting in the myeloid
compartment have an evolutionary advantage to defend against
pathogens? We are confident that the next years will shed light
on some of these questions.
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