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Neurofeedback (NF) is a complex learning scenario, as the task consists of trying out
mental strategies while processing a feedback signal that signifies activation in the
brain area to be self-regulated and acts as a potential reward signal. In an attempt
to dissect these subcomponents, we obtained whole-brain networks associated with
efficient self-regulation in two paradigms: parallel, where the task was performed
concurrently, combining feedback with strategy execution; and serial, where the task
was performed consecutively, separating feedback processing from strategy execution.
Twenty participants attempted to control their anterior midcingulate cortex (aMCC) using
functional magnetic resonance imaging (fMRI) NF in 18 sessions over 2 weeks, using
cognitive and emotional mental strategies. We analyzed whole-brain fMRI activations in
the NF training runs with the largest aMCC activation for the serial and parallel paradigms.
The equal length of the strategy execution and the feedback processing periods in
the serial paradigm allows a description of the two task subcomponents with equal
power. The resulting activation maps were spatially correlated with functionally annotated
intrinsic connectivity brain maps (BMs). Brain activation in the parallel condition correlates
with the basal ganglia (BG) network, the cingulo-opercular network (CON), and the
frontoparietal control network (FPCN); brain activation in the serial strategy execution
condition with the default mode network (DMN), the FPCN, and the visual processing
network; while brain activation in the serial feedback processing condition predominantly
with the CON, the DMN, and the FPCN. Additional comparisons indicate that BG
activation is characteristic to the parallel paradigm, while supramarginal gyrus (SMG)
and superior temporal gyrus (STG) activations are characteristic to the serial paradigm.
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The multifaceted view of the subcomponents allows describing the cognitive processes
associated with strategy execution and feedback processing independently in the
serial feedback task and as combined processes in the multitasking scenario of the
conventional parallel feedback task.

Keywords: real-time neurofeedback, anterior midcingulate cortex, cortical and subcortical networks, learning,
multitasking, reward processing

INTRODUCTION

Neurofeedback (NF) is a psychophysiological technique that
enables individuals to learn how to influence the activation
of specific brain areas through executing mental strategies.
It was developed as a therapeutic tool to enable patients to
influence defined brain function, e.g., in clinical conditions
associated with dysfunctional brain processes (Birbaumer et al.,
2013; Linden, 2014). As brain activation cannot consciously be
perceived, NF provides a perceivable feedback signal (usually
visual), which reflects the activation of the targeted brain
area or neural process (Sulzer et al., 2013). The trainee’s
task (i.e., the NF task) is to find a mental strategy that
influences this feedback signal in the expected way, thereby
signifying the desired activation change in the targeted brain
area. In the case of an efficient strategy, the feedback signal
also acts as an operant conditioning reward, resulting in
an increased likelihood of the trainees to re-execute the
mental strategy.

NFwas originally implemented using electroencephalography
(EEG), which measures cortical neural activation at high
temporal resolution. This provides the participants with
immediate feedback on their efficiency in regulating the
targeted brain area, as the two subcomponents of the
NF task—execution of a strategy and processing of the
resulting feedback—occur essentially simultaneously. The close
temporal relationship between executing a strategy and receiving
feedback, the high temporal resolution, and the relative
convenience in practice made EEG NF a favorite tool not
only for clinical therapeutic applications, i.e., stroke (Kober
et al., 2017) or attention-deficit/hyperactivity disorder (Strehl
et al., 2017), but also in the fast-growing field of brain
computer interfaces (BCI) where a continuous signal in real
time is essential, i.e., for the control of a robotic arm
(Edelman et al., 2019).

Parallel to the EEG-based NF, the development of real-time
functional magnetic resonance imaging (fMRI; Posse et al.,
2003; Weiskopf et al., 2003) providing a blood oxygen level-
dependent (BOLD) estimate within the MR image acquisition
time usually within 2 s made fMRI feasible for NF. This is
despite the 6-s latency of the BOLD response, which, together
with the image acquisition and the real-time analysis, can
delay the fMRI feedback signal, relative to the execution of the
strategy by up to 10 s. In an rt-fMRI NF design, this is usually
accounted for by a longer NF period. The drawback of the low
temporal resolution and the BOLD latency in rt-fMRI NF is
counterbalanced by the better spatial resolution and especially
by the availability of whole brain coverage, providing robust

signal not only from cortical but also from subcortical areas.
This allowed to explore the feasibility of successful self-regulation
(Sulzer et al., 2013; Sitaram et al., 2017), but moreover, it adds
a supplementary view on NF: the description of brain areas
and networks associated with the accomplishment of a NF
training, i.e., of the ‘‘learning to self-regulate’’ (Haller et al.,
2013; Emmert et al., 2016; Auer et al., 2018). Meta-analyses
of whole-brain activations associated with the NF task have
already described several brain areas as essential elements of
the ‘‘neural substrates of self-regulation’’ independent of the
targeted brain areas and executed strategies (Emmert et al., 2016;
Sitaram et al., 2017).

Our present work supplements this description of brain areas
and networks associated with the performance of the NF task by
explicitly considering its subcomponents: strategy execution and
feedback processing, performed in parallel as well as separately.
The separation of the subcomponents was accomplished in a
novel serial NF task design that complements the conventional
parallel NF task.We implemented both designs in an fMRI-based
NF study targeting the anterior midcingulate cortex (aMCC),
a brain area generally involved in cognitive control (Shackman
et al., 2011), to investigate the requirements for a successful
NF training targeting a cognitive brain area (Dewiputri et al.,
2013). The approach included shorter NF periods based on the
expectations that cognitive strategies, being briefer in duration
than emotional or motor imagery, would be applied to regulate
the aMCC.

The parallel NF task follows the layout of a conventional
NF of executing a strategy and perceiving the delayed feedback
signal at the same time. Several mental processes have to be
performed: the execution of a strategy, the perception and
interpretation of the feedback signal, and the consideration of
the feedback signal delay. The novel, serial NF task divides the
NF task into distinct, successive periods of strategy execution
without feedback followed by a period of feedback processing
only with the same length as the strategy execution period,
explicitly taking the latency of the NF signal into account. The
feedback processing period thereby reflects the strategy execution
period in full length. This allows to analyze and to describe the
brain areas and networks associated with strategy execution and
feedback processing as two separate subcomponents.

The present data analysis is based on the most efficient
training run (mETR) of each participant, i.e., the run with the
largest increase in the feedback signal. This outcome-oriented
choice was made to limit the variability of the applied strategies
to the most efficient ones. It also ensured that the feedback
signal had a rewarding connotation and that participants
through positive reinforcement will most likely choose the same
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strategy again without involving cognitive processes reflecting
considerations on the next strategy execution.

Ultimately, our approach allows the description of brain
areas and networks associated with efficient self-regulation
from different viewpoints: (i) the multi-tasking perspective
of the parallel condition, where strategy execution and
feedback processing occur at the same time; and (ii) the
single-task perspectives of separated strategy execution and
feedback processing. The additional spatial correlation of
the resulting activation maps with functionally annotated
intrinsic connectivity brain maps (BMs) then permits insight
into the underlying functional processes associated with the
single subcomponents, as well as with the multitasking
combination, and allows a comparison on the functional level.
The direct comparison of the brain activation elicited during
the NF in the parallel condition and the serial condition can
further support the descriptive comparison and give some
insight into the difference between multi-tasking vs. sequential
single tasking.

MATERIALS AND METHODS

Experimental Procedure
Twenty healthy, right-handed volunteers [8 males and
12 females; age, mean (SD): 25.9 years (5.3)] participated in
the study. All participants provided written informed consent
and received compensation for their participation. The study
was approved by the local ethics committee of Georg-Ellias-
Müller-Institute for Psychology at the University of Göttingen,
Germany. Participants were randomly and equally assigned to
either one of the two paradigms.

The study consisted of 10 MRI sessions: one initial, one pre-
training, six NF training, one post-training, and one final session
(Figure 1A). In the initial and the final sessions, a high-resolution
anatomical MRI scan was obtained. In the pre-training session,
two functional measurements were obtained: (1) a functional
localizer to determine the individual target region of interest
(ROI) within the aMCC; and (2) a run of the assigned NF
paradigm without receiving feedback (i.e., pre-training transfer).
The functional localizer employed a continuous performance
task (CPT; Heinrich et al., 2004) with the following parameters:
trial length = 6,000 ms, presentation of visual stimulus
(letter) = 250 ms, interstimulus interval = 5,750 ms, 80 trials,
and total time = 8 min 12 s. The CPT was chosen because
it is reported to elicit strong activation in the aMCC (Lütcke
et al., 2009), as well as to be sensitive to NF training-related
changes in this region (Gevensleben et al., 2014). The NF
target ROI was identified individually based on the first-level
activation map as the largest cluster within the aMCC defined
by the Harvard–Oxford cortical structural probabilistic atlas
thresholded at P = 0.25. Six NF training sessions were conducted
on alternate days within 2 weeks, and each session consisted
of three runs, in which the assigned NF training protocol was
performed (a total of 18 training runs). The post-training session
was scheduled 2 days after the last training session and consisted
of: (1) one run of the assigned NF paradigm without receiving

feedback (i.e., post-training transfer); and (2) the functional
localizer task CPT.

MRI Data Acquisition
All images were acquired on a 3T Tim Trio MRI scanner
(Siemens Healthcare, Erlangen, Germany) using a 32-channel
head coil for signal reception. Structural whole-brain T1-
weighted images were obtained by an inversion-recovery 3D
FLASH sequence (TR = 2,530 ms, TE = 3.26 ms, flip angle = 7◦,
TI = 1,100 ms, and 192 slices per slab) at 1.0 × 1.0 × 1.0 mm3

isotropic resolution. All BOLD fMRI measurements were
obtained with a T2∗-weighted gradient-echo EPI sequence
(TR = 2,000 ms, TE = 36 ms, flip angle = 70◦, acquisition
matrix = 96× 96) at 2.0× 2.0× 4.0mm3 resolution with 22 slices
oriented along the AC-PC line, encompassing the brain from the
top to the level of the mid-brain. Individual slice positions from
the first fMRI scanning session were subsequently re-applied in
the following sessions (AutoAlign Scout, Siemens Healthcare,
Erlangen, Germany) to minimize slice positioning differences.
Motion correction was performed in k-space (online software
of the manufacturer). An additional single EPI image with the
same spatial resolution, but with 36 slices to obtain whole-brain
coverage (TR = 3,250 ms, TE = 36 ms, flip angle = 70◦), was
obtained to optimize the registration of the partial-brain fMRI
scan to the structural whole-brain MRI.

Neurofeedback Training Paradigms
Visual feedback and instructions were given against a white
background on a projection screen in the scanner bore. Visual
feedback was presented as a vertical fluctuating thermometer
scale, consisting of 21 feedback levels as gradations of color
changing from blue (deactivation) to red (activation) with
increasing height of the thermometer column. The feedback
signal was updated at every TR (2 s). Independent of the
paradigm, all participants were instructed to perform a task for
two different periods within the run. For the periods starting
with the word ‘‘THINK’’ projected on the screen, participants
were instructed to use mental strategies that would increase
the feedback signal. Suggestions for strategies were given in the
domain of cognitive control (e.g., making plans and decisions)
and emotions (e.g., think about a negative situation; Shackman
et al., 2011). Participants were advised to keep a strategy constant
within one period but were also encouraged to try various
strategies across the periods. For the period starting with the
word ‘‘COUNT,’’ participants were instructed to execute the
strategy of covert backward-counting, with the goal to decrease
the feedback level. If the attempted strategy did not result in
a decrease, participants were free to search for another mental
strategy to achieve the instructed effect.

Parallel Paradigm
The parallel paradigm started with an initial baseline period of
50 s, followed by six cycles of a 20-s ‘‘think’’ period alternating
with a 30-s ‘‘count’’ control period, and ended with a 20-s
baseline period (Figure 1B). During the 20-s ‘‘think’’ periods, in
which the strategy was executed, continuous feedback was given
in parallel. Similarly, during the 30-s ‘‘count’’ periods, continuous
feedback was given during the execution of the strategy. The total
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FIGURE 1 | Structure of the neurofeedback (NF) training. (A) Overall structure of the NF study. Schedule of stimuli of the (B) parallel paradigm and the (C) serial
paradigm.

length of the run was 6 min 17 s (185 images). Participants were
informed about the 10-s intrinsic delay of the feedback signal.

Serial Paradigm
The serial paradigm started with an initial baseline period of 40 s,
followed by eight cycles of a 10-s ‘‘think’’ strategy execution-only
period, 10-s ‘‘feedback think,’’ 10-s ‘‘count’’ control period,
10-s ‘‘feedback count,’’ and ended with a 10-s baseline period
(Figure 1C). The separation of the two subcomponents of NF
task was implemented to consider the 10-s intrinsic delay of the
feedback signal in the simplest possible way. Participants were
instructed to try out a strategy for increasing the feedback signal
during the 10-s ‘‘think’’ period, with no feedback during strategy
execution, but receiving the feedback immediately afterwards in
the 10-s ‘‘feedback think’’ period. The same principle was applied
for the 10-s ‘‘count’’ period, in which the participants covertly
counted backwards, with no feedback during strategy execution,
but receiving feedback immediately afterwards during the 10-s
‘‘feedback count’’ period. The total length of the run was 6 min
17 s (185 images), identical to the parallel paradigm to ensure
a similar participant fatigue level and compliance, as well as
statistical power.

Real-Time fMRI Neurofeedback
A custom in-house rt-fMRI NF system for rt-fMRI analysis and
feedback presentation inMATLAB (TheMathWorks, Inc., USA)
was implemented (Dewiputri and Auer, 2013; Auer et al., 2015).
Real-time data export from the MRI scanner via FTP allowed
online fMRI analysis. Motion correction with an optimized SPM
Realign algorithm1 was performed as a pre-processing step using
the first volume of the localizer run as a reference.

1http://www.fil.ion.ucl.ac.uk/spm/

The control ROI (bg) was the whole-brain mask; it was used
to cancel out any global unspecific BOLD activation changes,
e.g., general changes in blood flow or respiration. For both the
aMCC target (aMCC) and the background control ROI, a percent
signal change (PSC) was calculated for each time point (t), with
reference to the average of five time points of the preceding
‘‘feedback count’’ period in the serial and 10 time points of the
preceding ‘‘count’’ period in the parallel paradigm, respectively
(bas). The feedback signal given to the participants was the
difference between the PSC of the aMCC and the background,
calculated as follows:

FSt =
aMCCt − aMCCbas

aMCCbas
%−

bgt − bgbas
bgbas

% (1)

Training Efficiency
Although we have collected a large dataset to assess and optimize
the feasibility of aMCC regulation, we have decided to first
investigate the effect of regulation at its maximum. This approach
provides an initial proof of principle, as well as an opportunity
to examine the underlying neural processes with great detail.
Therefore, for each individual, the NF run with the highest
training efficiency (mETR) was selected for analysis, to maximize
the neural signal underlying the efficient self-regulation and to
minimize the within-subject heterogeneity.

To assess the efficiency of the aMCC regulation, the BOLD
signal (i.e., raw fMRI data) from the aMCC and the background
region was extracted and analyzed offline using MATLAB. A
general linear model (GLM) was performed on the extracted
time courses with regressors representing the ‘‘think’’ period
in the parallel paradigm or ‘‘think’’ and ‘‘count’’ periods in
the serial paradigm. The GLM contrast was ‘‘think’’ for the
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parallel and ‘‘think’’ > ‘‘count’’ for the serial paradigms. The
implicit baseline in the parallel paradigm corresponded to the
‘‘count’’ period; therefore, ‘‘think’’ for parallel can be interpreted
as ‘‘think’’ > (baseline = ‘‘count’’), which means that the contrast
estimates from the two paradigms were comparable. Contrast
estimates were converted to PSC, for the aMCC (PSCaMCC) and
the background (PSCbg). The training efficiency TE was defined
as the difference between the PSCaMCC and the PSCbg such that:

TE = PSCaMCC − PSCbg (2)

This estimate matches that of the feedback signal (see ‘‘Real-
Time fMRI Neurofeedback’’ section) as close as possible while
considering the whole data, thus providing a robust assessment of
the overall feedback performance during the corresponding run.

The two paradigms were compared in terms of differences
in NF training efficiency and in the timing of the selected
mETR. Since efficiency values showed a normal distribution
(W = 0.9379, P = 0.2185), we used an independent-sample
t-test. The position of the mETRs among the 18 training runs
showed a non-normal distribution (W = 0.8747, P = 0.0142), so
the Mann–Whitney U test was used to compare run numbers
across the two groups. Statistical analyses were performed with
R version 3.6.1 (2019-07-05).

Whole-Brain fMRI GLM Analyses
Whole-brain analysis of the fMRI data was conducted using
FSL 6.0.12. Data pre-processing included motion correction,
brain extraction, spatial smoothing using a Gaussian kernel
of FWHM 8 mm, and high-pass filtering with a cut-off
frequency of 0.01 Hz. Registration of the partial fMRI
volume to the whole-brain volume, and subsequently to the
anatomical T1-weighted image, was performed using FLIRT
in FSL, followed by non-linear registration (FNIRT) of the
anatomical T1-weighted image to the standard MNI space.
Individual scan-to-scan displacement time courses have been
correlated with the time course of the events, and participants
showing high correlations (larger than Q1 + 1.5 × IQR)
have been excluded from the analysis. Of the 20 participants
that completed the training, one subject from the parallel
group was excluded from subsequent analyses due to excessive
head motion.

First-level GLM models included regressors of interest
accounting for ‘‘count’’ and ‘‘think’’ periods for strategy
execution in both paradigms, as well as for ‘‘feedback think’’
and ‘‘feedback count’’ periods (combined ‘‘feedback’’ regressor)
for feedback processing in the serial paradigm. Repetitions of
‘‘think’’ periods (six for parallel and eight for serial) were
modeled separately using the least-squares all approach to
take the inherently high trial-by-trial variability into account
(Abdulrahman and Henson, 2016). Regressors were convolved
with canonical double-gamma hemodynamic response function,
and the models were completed with temporal derivatives
of the regressors of interest, as well as the standard and
the extended motion parameters. First-level contrasts were as
follows: ‘‘think’’ for the parallel and ‘‘think’’ or ‘‘feedback’’

2www.fmrib.ox.ac.uk/fsl

(i.e., two contrasts) for the serial paradigm. An overall contrast
(i.e., ‘‘think’’ + ‘‘feedback’’) was also generated for the serial
paradigm when the two conditions have been considered
equally. All contrast included ‘‘count’’ as a control condition
(i.e., with a weight of −1). Regressor weights have been
scaled so that all positive weights summed to 1. First-level
contrasts were entered into higher-level analyses, modeling each
group’s mean with a one-sample t-test using mixed-effects
modeling in FSL (FLAME 1). Z (Gaussianized T) statistic
images were thresholded using clusters of Z > 3.1 and a
cluster significance threshold of P = 0.05 FWE corrected for
multiple comparisons.

For an estimation of the overlap between the brain regions
activated during the two paradigms, a conjunction analysis
(Nichols et al., 2005) using the parallel ‘‘think’’ and the serial
overall contrasts was performed. The resulting Z (Gaussianized
T) statistic image was thresholded using clusters of Z > 2.3 and
a cluster significance threshold of P = 0.01 FWE corrected for
multiple comparisons (as defaults). To investigate which brain
regions exhibit paradigm-specific activity, we also performed
disjunction analyses (Robertson et al., 2015) by applying an
exclusive mask of the resulting conjunction activity on each of
the parallel and the serial overall statistic images. The resulting
statistic images were thresholded using clusters of Z > 3.1 and
a cluster significance threshold of P = 0.05 FWE corrected for
multiple comparisons.

Functional Labeling
To provide a higher-level interpretation of the group-level
activation maps, their correspondence with well-defined
functional brain networks (Laird et al., 2011) was estimated. We
used the ICN_Atlas toolbox (Kozák et al., 2017) to estimate the
spatial correlation between the resulting group-level activation
maps and the 20 intrinsic connectivity networks (ICNs) of the
BrainMap database (Laird et al., 2011). The spatial correlation
was chosen as a similarity measure because it takes into account
both the activation extent and level, as well as its spatial variation.

Structural Labeling
Group activation maps were parcellated according to the
Harvard–Oxford cortical and subcortical structural probabilistic
atlas thresholded at P = 0.25. Results of the parcellation were
overlaid on the MNI152 standard brain image. Regions were
labelled according to whether the particular region was activated
only in the parallel (red) or the serial overall contrasts (blue),
resulting from the disjunction analyses, or activated in both
paradigms as indicated by the conjunction analysis (green).

RESULTS

The present analyses identify and compare the brain areas
associated with a NF task targeting the aMCC in two distinct
paradigms that differed in the timing of feedback presentation:
the parallel paradigm, which entails processing the delayed
feedback concurrently with executing a mental strategy, and
the serial paradigm, which temporally separates the strategy
execution and feedback processing. We performed whole-brain
fMRI analysis of the most efficient NF training (mETR),
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i.e., the training run with the largest increase of aMCC
activation and positive feedback, separately for the three
different conditions to obtain the associated BOLD-activation
maps: (1) parallel paradigm: concurrent strategy execution and
feedback processing; (2) serial paradigm: only strategy execution;
and (3) serial paradigm: only feedback processing. These maps
were further correlated with ICNs associated with specific
functions to gain insight into the processes associated with the
activated brain areas and the performed tasks.

Efficient Neurofeedback Training Runs
Participants in the serial paradigm performed the NF tasks more
efficiently compared to those in the parallel paradigm, evident
by a significantly larger training efficiency, i.e., increase of the
BOLD amplitude in the aMCC relative to that in the whole
brain [mean (SD): 2.3 (1.0) vs. 1.27 (0.8); t = −2.4, df = 16.665,
P = 0.028] during the most efficient NF training run (mETR;
Figure 2A, Table 1). The analysis of the distribution of the mETR
showed that the mETR occurred at various stages during the
NF training (Table 1), with no significant difference (W = 43.5,

P = 0.65) between the serial paradigm (median: 6) and the parallel
paradigm (median: 12.5; Figure 2B).

Whole-Brain fMRI Analysis of Efficient
Neurofeedback Run
Brain Areas and Brain Networks Associated With
Neurofeedback Subcomponents
The parallel paradigm revealed activation in brain areas that
were correlated to three brain networks (Figures 3A,D). The
most prominent activation is of the anterior cingulate cortex
(ACC), which can be related to the successful regulation
of the aMCC—the target region within the ACC—by the
executed strategy. The pattern of activations of the ACC,
the anterior insula (aI), and the frontal cortex spatially
correlates with BM 4 (r = 0.23), the cingulo-opercular
network (CON). This network, also known as the salience
network (Menon, 2011), is a transitional network linking
cognition and emotion/interoception (Laird et al., 2011).
The concurrent task also activated the basal ganglia (BG),
with a pattern spatially correlating with BM 3 (r = 0.21),

FIGURE 2 | Behavioral outcomes of the most efficient training run (mETR). (A) Percent signal change (PSC) in anterior midcingulate cortex (aMCC) achieved during
the mETR in the two paradigms. (B) Distribution of the temporal position of the mETR (run no. of mETR) within the schedule of the 18 NF training runs in the two
paradigms. ∗Denotes significant difference at the threshold of p = 0.05.

TABLE 1 | The run number, i.e., position, of the most efficient training run (mETR) within the 18 training runs and its corresponding training efficiency (TE) in percent
signal change (PSC), i.e., PSCaMCC minus PSCbg for each subject as well as their central tendency (median for mETR and mean for TE) in one of the two feedback
paradigms.

Subject mETR TE (PSC) Subject mETR TE (PSC)

P01 11 2.2 S01 8 2.7
P02 1 0.8 S02 18 3.7
P03 18 1.2 S03 11 2.1
P04 14 0.8 S04 6 1.2
P05 1 2.1 S05 2 1.9
P06 18 2.6 S06 2 2.1
P07 8 0.8 S07 5 1.4
P08 5 0.6 S08 6 2.3
P09 14 1.4 S09 16 1.0
P10 17 0.2 S10 2 4.2

Median/mean 12.5 1.27 Median/mean 6 2.3

P, parallel paradigm; S, serial paradigm.
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FIGURE 3 | (A–C) Brain regions activated in the NF subcomponents across the three different conditions. Color code corresponds to the BrainMap20 (Laird et al.,
2011) atlas base map. (D–F) Spatial correlation of brain activity in NF with the BrainMap20 intrinsic connectivity networks (ICNs). FPCN, frontoparietal control
network. Thresholded and unthresholded activation maps are available at https://neurovault.org/collections/7730.

which is strongly associated with reward. The pattern of
activation in the left superior, medial, and inferior frontal
gyri spatially correlated with the left frontoparietal control
network (L-FPCN) BM 18 (r = 0.11), which is associated
with memory tasks. Additionally, there was a small spatial
correlation with the activation pattern in the visual areas, BM 12
(r = 0.05).

The strategy execution component of the serial paradigm
exhibited activation in fewer brain areas and was associated
with fewer brain networks than that in the parallel paradigm
(Figures 3B,E). Activation in the ACC again points to successful
strategies activating the targeted brain area. A set of areas that
consists of the precuneus, cuneus, posterior cingulate cortex
(PCC), and frontal medial cortex (FMC) was prominently
activated, and the pattern of their activity spatially correlated
with the default mode network (DMN), BM 13 (r = 0.19).
The second set of brain activations, the lingual gyrus and
calcarine cortex, is correlated with the visual network, BM 12
(r = 0.18). The third set—the left superior frontal gyrus (SFG)
and left middle frontal gyrus (MFG)—collectively classified
as the dorsolateral prefrontal cortex (DLPFC), is part of
the left (FPCN), BM 18 (r = 0.06), and is associated with
memory tasks.

The activation map of the feedback processing of the serial
paradigm displays a wide range of brain areas associated
with several brain networks (Figures 3C,F). ACC activation
is prominent, which indicates a role of this area in feedback
processing. Feedback processing activated brain areas associated
with the DMN (BM 13; r = 0.19): FMC, precuneus, PCC,
and inferior frontal gyrus (IFG). Also activated are brain areas
associated with the CON (BM 4; r = 0.17): ACC, paracingulate
gyrus, and bilateral aI. Two sets of brain areas are associated with
the lateralized, left and right, frontoparietal control networks
(R-FPCN, BM 15, r = 0.106 and L-FPCN, BM 18, r = 0.07):
superior parietal lobule (SPL), supramarginal gyrus (SMG),
angular gyrus (AG), and medial and superior frontal gyrus
(MFG, SFG). Other areas that showed increased activation were
the motor areas (BM 7), visual areas (BM 10), auditory areas (BM
16), as well as areas associated with spatial normalization artifacts
(BM 20; Table 2).

Common and Specific Neurofeedback Networks
To gain an overall picture of the networks that are commonly
involved in executing a mental strategy concurrent with or
separate from processing feedback, we combined the BMs
associated with the parallel and the serial paradigms (Figure 4,
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FIGURE 4 | Brain areas that are dominantly activated in the disjunction of parallel paradigm (red), serial paradigm (blue), and the conjunction of the parallel and the
serial paradigms (green). ACC, anterior cingulate cortex; aI, anterior insula; FMC, frontal medial cortex; GP, globus pallidus; IFG, inferior frontal gyrus; MFG, middle
frontal gyrus; pu, putamen; SFG, superior frontal gyrus; SMG, supramarginal gyrus; STG, superior temporal gyrus.

green). The resulting set of brain areas comprises three major
large-scale cognitive networks: the DMN (anchored in FMC,
PCC, and precuneus), CON (anterior cingulate and bilateral aI),
and FPCN (dLPFC and PPC). Additional brain areas such as the
visual association areas, putamen of the BG, and the thalamus
were activated.

We also asked the question if there are specific differences in
brain activation associated with the temporal separation of the
strategy execution and the feedback processing, i.e., if there are
brain areas dominantly activated in either the parallel paradigm
or the serial (strategy execution and feedback-processing period)
paradigm. Our disjunction analysis revealed a small set of
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TABLE 2 | Prominent BrainMap20 intrinsic connectivity networks that are spatially correlated to activation maps in the neurofeedback subcomponents in the three
conditions.

Neurofeedback subcomponent

Parallel
(strategy+
feedback)

Serial:
strategy
execution

Serial:
feedback
processing

BM20 atlas areas Function (Laird et al., 2011), selected by
relevance to NF task

– BM2 – sgACC and OFC Emotion and a strong preference for a reward
task.

BM 3 – * Bilateral BG and thalamus Mostly strong preference for a reward task.
BM 4 – BM 4 Bilateral AI and fO Transitional network linking cognition and

emotion or interoception.
BM 6 – – SFG and MFG including premotor and

SMC
Action imagination, learning and recall of
complex sequences.

– – BM 7 MFG and SPL Visual processing, counting, and calculation.
– – BM 10 MTG and ITG Viewing complex stimuli and mental rotation.
BM 12 BM 12 – Medial POC Simple visual stimuli.
– BM 13 BM 13 MPFC, PCC, and precuneus DMN, imagine scenes, and episodic memory.
– – BM 15 R-FPCN Reasoning, attention, and memory.
– – BM 16 Transverse temporal gyri Audition, music, and speech.
– – BM 17 Dorsal precentral gyri, central sulci, and

postcentral gyri
Sensorimotor cortices for mouth region,
associated with speech, reading, and
swallowing.

BM 18 BM 18 BM 18 L-FPCN Working memory and explicit memory tasks.
– – BM 20 Artefactual Artefact from pre-processing.

BM, brain map; BG, basal ganglia; ACC, anterior cingulate cortex; AI, anterior insula; fO, frontal operculum; ITG, inferior temporal gyrus; L-FPCN, left-lateralized frontoparietal network;
MFG, middle frontal gyrus; MPFC, medial prefrontal cortex; MTG, middle temporal gyrus; NF, neurofeedback; sgACC, subgenual ACC; SMC, somatomotor cortex; PCC, posterior
cingulate cortex; POC, posterior occipital cortex; PreCu, precuneus; R-FPCN, right-lateralized frontoparietal networks; SFG, superior frontal gyrus; SPL, superior parietal lobule. *Only
the thalamus is seen in BM3 of the feedback processing task.

brain areas was activated more evidently during the concurrent
strategy execution and delayed feedback processing in the parallel
paradigm (Figure 4, red): the caudate, putamen, and globus
pallidus (GP)—all of which make up the BG. The overall contrast
of the serial paradigm revealed activations in the bilateral SMG
and right superior temporal gyrus (STG; Figure 4, blue), which
were found to be more evident for this paradigm. Since these
brain areas are part of the activation map of the feedback
period, they can most likely be attributed to the feedback
processing (Figure 3B).

DISCUSSION

The aim of this work was to identify and compare the brain
activation associated with strategy execution and feedback
processing, performed concurrently in the parallel paradigms or
separately in the serial paradigm, during the mETR. Participants
of the serial paradigm were able to achieve higher aMCC
activation than participants of the parallel paradigm. Whole-
brain analysis across the three conditions showed that the
pattern of brain activation in the parallel paradigm is spatially
correlated (i.e., had a similar spatial distribution) with the BG
network and the CON. Activations in the strategy execution
task of the serial paradigm spatially correlated with the intrinsic
activations of the visual-processing network, the DMN, and the
FPCN, while activations during the feedback processing task
spatially correlated with the intrinsic activations of the CON,
the DMN, and the FPCN. Contrasting the activation elicited
by the parallel paradigm with the combined activation of the
serial strategy and serial feedback revealed that BG activation
was dominantly specific to the parallel paradigm, while only the

activations of the STG and SMG were dominantly specific to the
serial paradigm.

Training Efficiency
Self-regulation of the aMCC brain activity was more efficient
when feedback processing was separated from strategy execution;
this observation is also in line with other studies (Johnson
et al., 2012; Emmert et al., 2017; Oblak et al., 2017; Hellrung
et al., 2018). The temporal separation of strategy execution
and feedback processing leads to two advantageous effects:
(1) reduction in cognitive load; and (2) more intuitive link
between behavior and reward. When following the parallel
paradigm, participants have to multitask by executing a mental
strategy, processing feedback, and estimating its timing. On the
other hand, when following the serial paradigm, participants can
focus on performing one subcomponent of the NF task at a time:
first executing a mental strategy, then perceiving and processing
the corresponding feedback. Separating the multitasking into a
sequence of two consecutive tasks reduces the cognitive load.
The second effect is associated with the characteristics of the
delayed feedback signal and its temporal ambiguity. Missing
time cues in the parallel paradigm cause a credit assignment
problem (Oblak et al., 2017), namely, participants must recall
which executed mental strategy caused the change in the
feedback. The serial paradigm resolves the ambiguous temporal
contingency by informing participants about the timing and
increases the contiguity through the one-to-one relationship
of the feedback to the strategy execution. Our observations
are in line with other studies that showed awareness of the
delay in the feedback can facilitate causal learning (Greville and
Buehner, 2010; Greville et al., 2013). Therefore, we can state

Frontiers in Human Neuroscience | www.frontiersin.org 9 May 2021 | Volume 15 | Article 645048

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Dewiputri et al. Brain Networks in Efficient fMRI Neurofeedback

that the unambiguous temporal contingency and contiguity of
the feedback in the serial paradigm facilitates operant learning
in NF.

Methodological Considerations
The difference in self-regulation achieved in the mETR in
the serial compared to the parallel paradigm group triggers
the discussion of the comparability of the two NF designs.
Although the parallel paradigm used longer total regulation
time (6 × 20 s = 120 s) in comparison with the serial
(8 × 10 s = 80 s), the longer time is divided between the
strategy execution and the feedback evaluation. We generally
do not have data on how participants meet this multitasking
challenge in the parallel paradigm, but we assume task switching
between the two subcomponents because there is a logical
order between them: i.e., the feedback evaluation informs
the strategy execution. Based on the low temporal resolution
and since the periods are modeled with conditions in their
entirety, the resulting fMRI activations represent the process or
processes dominantly being present during the given period.
While in the parallel paradigm there is a single condition,
which is considered to be an unknown mixture of the
two subcomponents, the serial paradigm contains conditions
representing the pure subcomponents.

An additional concern may be that the higher efficiency in the
mETRs could be explained by a higher subject engagement and
subsequent better data quality, which could ultimately lead to an
overestimation of the overall effect, i.e., higher efficiency in both
paradigms. However, the overall effect is orthogonal to the effect
of interest, which is the difference between the paradigms.

Brain Areas and Networks in the aMCC
Neurofeedback Subcomponents
The identified brain areas and networks that are active during
the concurrent NF subcomponents allow inferences about the
cognitive processes involved and their interaction. The brain
areas activated in the parallel NF paradigm are similar to the
general findings of other NF studies. Specifically, the ACC,
the aI, and the BG are brain areas associated with the neural
mechanisms of NF-assisted self-regulation (Emmert et al., 2016;
Sitaram et al., 2017).

One of the most prominent brain areas activated is
the ACC, which can at least partially be attributed to the
successful self-regulation of the aMCC, a smaller target region
within the ACC. It is also a positive control considering
our data selection approach based on the training efficiency.
The ACC is functionally connected to the insula (Menon
and Uddin, 2010; Shackman et al., 2011) and is part
of the CON—a transitional network linking cognition and
emotion or interoception (Laird et al., 2011), with which
the activation pattern of the parallel paradigm is correlated.
This network, also called the salience network, monitors
the salience of external inputs and internal events (Bressler
and Menon, 2010) and mediates the switching between
internalized and externalized cognition (Sridharan et al.,
2008; Bressler and Menon, 2010; Goulden et al., 2014).
Activation of the CON reflects the multitasking demands

of the parallel paradigm: participants need to execute an
internal mental strategy while concurrently processing external
feedback. Of course, the correspondence between the active
brain regions/networks and the NF subcomponents cannot
be confirmed in the parallel paradigm due to the lack of
temporal separation.

The second prominently activated brain areas are the BG,
which are associated with a network strongly activated by
reward tasks. The involvement of the BG in NF learning is a
well-established concept and has been shown in animals (Koralek
et al., 2012) as well as in human studies (Birbaumer et al.,
2013; Sitaram et al., 2017; Skottnik et al., 2019). Evidence for
the importance of the BG also comes from a meta-analysis of
fMRI NF studies, where the BG are consistently active during
NF (Emmert et al., 2016). The BG are also targets of the
midbrain dopaminergic neurons, which transmit phasic signals
that convey a reward prediction error—a neurophysiological
signal that relates to how unexpected or surprising an outcome
(Walsh and Anderson, 2011). The reward prediction error is
then transmitted to the ACC, which evaluates it and provides
a signal for behavioral adjustment—whether to reinforce or
to punish the actions preceding the outcome (Walsh and
Anderson, 2011; Amiez et al., 2012). In the context of our NF
experiment, activation of the caudate and the GP of the BG
seen primarily in the parallel paradigm could be interpreted as
evidence for fine-tuning of strategies according to the concurrent
feedback that participants receive. Even though the BG activation
is more evident in the parallel condition, the challenging
multitasking condition with the concurrent strategy execution,
estimating the feedback delay, and evaluating the feedback signal
results in lower activation during the mETR than in the serial
condition (Figure 2). However, since these results are based on
a limited set of data, further analyses are necessary to reappraise
this finding.

The separation of the two NF subcomponents in the serial
paradigm allowed us to distinguish the brain areas and networks
that potentially overlap in the parallel paradigm. The brain
areas activated during strategy execution were the smallest and
the least distributed. However, it must be acknowledged that
the experimental design has less power to detect activation
during strategy execution than during feedback evaluation due
to the lower number of periods for the former. The distinct
activation of aMCCmost likely results from the successful mental
strategy, as expected based on data selection. The involvement
of the DLPFC and the posterior parietal cortex (PPC) in NF
supports previous findings (Emmert et al., 2016), specifically
those associating it with NF control (Sitaram et al., 2017). This
is reflected in the correlated network, the FPCN, also known
as the central executive network, which is engaged in higher-
order cognitive and attention control, mediating goal-directed
behavior through attention shifting (Bressler and Menon, 2010).
The other network involved in strategy execution correlated
with the cuneus and precuneus, i.e., the DMN (Bressler and
Menon, 2010). This network is associated with internally focused
behavior, such as self-referential processing (Buckner et al.,
2008; Andrews-Hanna et al., 2010), and it thus reflects the
assigned task: to perform a mental strategy to self-regulate the
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aMCC. These two networks distinctively represent the processes
associated with finding and executing a mental strategy for
self-regulation, i.e., the combination of externally oriented,
goal-directed behavior and internal self-referential mental
processing. FPCN can couple with DMN when a goal-directed
behavior requires endogenous, self-referential thoughts (Dixon
et al., 2018) or autobiographical planning (Spreng et al., 2010),
and this FPCN–DMN coupling could be hypothesized to allocate
resources toward executing an intrinsic cognitive process to
increase the NF signal.

Brain areas activated specifically during feedback processing
reveal a complex pattern of activation and are correlated with
a larger number of brain networks, reflecting the complexity
of the task itself. Three major cognitive networks are present
in the delineated feedback processing subcomponent: the
DMN, the FPCN, and the CON, which are also shown to
be involved in the parallel paradigm (FPCN and CON) and
the delineated strategy execution subcomponent (FPCN and
DMN). It can be considered that the different aspects of
the feedback processing are reflected in the activation of the
different networks. The activation of both the DMN and the
FPCN during the feedback period could reflect a recollection
of the executed strategy during the feedback period. This is
instrumental since the outcome of the feedback has to be
related to the strategy performed. The involvement of the CON
can also be associated with processing of the outcome of the
feedback, i.e., relating the internal representation of the executed
goal-directed strategy (DMN–FPCN) with the reward saliency of
the external feedback signal (BG) similarly to what we have seen
for the parallel paradigm.

The analysis of the feedback processing period also revealed
the activation of the aMCC as part of the prominently activated
ACC. This finding further clarifies the involvement of this brain
area we have also seen in the parallel paradigm and supports
earlier works suggesting the involvement of the aMCC/ACC in
feedback processing in both EEG NF (Gevensleben et al., 2014)
and fMRI NF (Auer et al., 2015), as well as in a trial-and-error
problem-solving task (Amiez et al., 2012).

The overlap of the parallel and the combined (i.e., strategy
and feedback) serial conditions further confirms the findings
of the functional labeling and demonstrates the involvement of
the DMN, FPCN, CON, and BG/thalamus in both paradigms
(Figure 4, green). Contrasting the parallel paradigm activation
with the combined serial conditions, we also explored whether
brain areas are dominantly active during the multitasking
parallel paradigm or specific to the serial paradigm. Similarly
to what we have seen in functional labeling, the parallel
paradigm showed a larger sensitivity in the BG (Figure 4,
red). On the other hand, the activation of the STG and the
superior medial gyrus (SMG) is more evident in the serial
paradigm (Figure 4, blue), which reflects activation being
present during the dedicated feedback-processing period.
These two areas have been proposed to exert a top-down
control of visual processing (Shapiro and Hillstrom, 2002),
which relates to the higher-order cognitive influence on
processing the visual information during the feedback
evaluation period.

CONCLUSIONS

Our results reveal that separating strategy execution from
feedback processing is able to dissect the usually overlapping
cognitive subcomponents of the NF tasks and to reveal insights
into the interplay of the whole-brain networks involved.
Although the inferences from the brain activation to the
cognitive processes associated with the NF tasks generally
concur with the existing knowledge, further studies and
analysis on the contribution of the subcomponents to the task
will paint a more comprehensive picture on how networks
work together in NF to support these processes. This more
general understanding of the NF task could further explain
individual variances in NF performance and help optimize
NF paradigms.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://neurovault.org/
collections/7730.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by local ethics committee of Georg-Ellias-Müller-
Institute for Psychology at the University of Göttingen, Germany.
The patients/participants provided their written informed
consent to participate in this study.

AUTHOR CONTRIBUTIONS

WD, TA, and RS conceptualized and designed the experiment
and wrote and revised the manuscript. WD implemented
the experiment. WD and TA analyzed the data. All authors
contributed to the article and approved the submitted version.

FUNDING

The work was financed by the Ministry of Education
Malaysia/Universiti Sains Malaysia; the International Max
Planck Research School of Neuroscience, Göttingen (to WD);
a Seed Fund of the Leibniz ScienceCampus Primate Cognition,
Göttingen (to RS); the German Federal Ministry for Education
and Research (BMBF) via the Bernstein Focus Neurotechnologie,
Göttingen (01GQ0812 to TA); the Medical Research Council,
London (MC-A060-53114 to TA); and the Biotechnology and
Biological Sciences Research Council, London (BB/S008314/1
to TA).

ACKNOWLEDGMENTS

We gratefully thank Prof. Dr. J. Frahm and his group
at the Biomedizinische NMR, Max-Planck-Institut für
biophysikalische Chemie, Göttingen for the generous support
and the possibility to undertake this study.

Frontiers in Human Neuroscience | www.frontiersin.org 11 May 2021 | Volume 15 | Article 645048

https://neurovault.org/collections/7730
https://neurovault.org/collections/7730
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Dewiputri et al. Brain Networks in Efficient fMRI Neurofeedback

REFERENCES

Abdulrahman, H., and Henson, R. N. (2016). Effect of trial-to-trial variability
on optimal event-related fMRI design: implications for beta-series correlation
and multi-voxel pattern analysis. NeuroImage 125, 756–766. doi: 10.1016/j.
neuroimage.2015.11.009

Amiez, C., Sallet, J., Procyk, E., and Petrides, M. (2012). Modulation of feedback
related activity in the rostral anterior cingulate cortex during trial and
error exploration.NeuroImage 63, 1078–1090. doi: 10.1016/j.neuroimage.2012.
06.023

Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., and Buckner, R. L.
(2010). Functional-anatomic fractionation of the brain’s default network.
Neuron 65, 550–562. doi: 10.1016/j.neuron.2010.02.005

Auer, T., Dewiputri, W. I., Frahm, J., and Schweizer, R. (2018). Higher-order brain
areas associated with real-time functional MRI neurofeedback training of the
somato-motor cortex. Neuroscience 378, 22–33. doi: 10.1016/j.neuroscience.
2016.04.034

Auer, T., Schweizer, R., and Frahm, J. (2015). Training efficiency and transfer
success in an extended real-time functional MRI neurofeedback training of
the somatomotor cortex of healthy subjects. Front. Hum. Neurosci. 9:547.
doi: 10.3389/fnhum.2015.00547

Birbaumer, N., Ruiz, S., and Sitaram, R. (2013). Learned regulation of brain
metabolism. Trends Cogn. Sci. 17, 295–302. doi: 10.1016/j.tics.2013.04.009

Bressler, S. L., and Menon, V. (2010). Large-scale brain networks in cognition:
emergingmethods and principles.Trends Cogn. Sci. 14, 277–290. doi: 10.1016/j.
tics.2010.04.004

Buckner, R. L., Andrews-Hanna, J. R., and Schacter, D. L. (2008). The brain’s
default network: anatomy, function and relevance to disease. Ann. N Y Acad.
Sci. 1124, 1–38. doi: 10.1196/annals.1440.011

Dewiputri, W. I., and Auer, T. (2013). Functional magnetic resonance imaging
(fMRI) neurofeedback: implementations and applications. Malaysian J. Med.
Sci. 20, 5–15.

Dewiputri, W. I., Schweizer, R., Auer, T., and Frahm, J. (2013). ‘‘Uncoupling
task and feedback processing during cognitive fMRI neurofeedback training,’’
in 19th Annual Meeting of the Organization of Human Brain Mapping
(Seattle).

Dixon, M. L., De La Vega, A., Mills, C., Andrews-Hanna, J., Spreng, R. N.,
Cole, M. W., et al. (2018). Heterogeneity within the frontoparietal control
network and its relationship to the default and dorsal attention networks. Proc.
Natl. Acad. Sci. U S A 115, E1598–E1607. doi: 10.1073/pnas.1715766115

Edelman, B. J., Meng, J., Suma, D., Zurn, C., Nagarajan, E., Baxter, B. S.,
et al. (2019). Noninvasive neuroimaging enhances continuous neural tracking
for robotic device control. Sci. Robot. 4:eaaw6844. doi: 10.1126/scirobotics.
aaw6844

Emmert, K., Kopel, R., Koush, Y., Maire, R., Senn, P., VanDeVille, D., et al. (2017).
Continuous vs. intermittent neurofeedback to regulate auditory cortex activity
of tinnitus patients using real-time fMRI—a pilot study. NeuroImage Clin. 14,
97–104. doi: 10.1016/j.nicl.2016.12.023

Emmert, K., Kopel, R., Sulzer, J., Brühl, A. B., Berman, B. D., Linden, D. E. J., et al.
(2016). Meta-analysis of real-time fMRI neurofeedback studies using individual
participant data: how is brain regulation mediated? NeuroImage 124, 806–812.
doi: 10.1016/j.neuroimage.2015.09.042

Gevensleben, H., Albrecht, B., Lütcke, H., Auer, T., Dewiputri,W. I., Schweizer, R.,
et al. (2014). Neurofeedback of slow cortical potentials: neural mechanisms
and feasibility of a placebo-controlled design in healthy adults. Front. Hum.
Neurosci. 8:990. doi: 10.3389/fnhum.2014.00990

Goulden, N., Khusnulina, A., Davis, N. J., Bracewell, R. M., Bokde, A. L.,
McNulty, J. P., et al. (2014). The salience network is responsible for switching
between the default mode network and the central executive network:
replication from DCM. NeuroImage 99, 180–190. doi: 10.1016/j.neuroimage.
2014.05.052

Greville, W. J., and Buehner, M. J. (2010). Temporal predictability facilitates causal
learning. J. Exp. Psychol. Gen. 139, 756–771. doi: 10.1037/a0020976

Greville,W. J., Cassar, A. A., Johansen,M. K., and Buehner,M. J. (2013). Structural
awareness mitigates the effect of delay in human causal learning. Mem. Cogn.
41, 904–916. doi: 10.3758/s13421-013-0308-7

Haller, S., Kopel, R., Jhooti, P., Haas, T., Scharnowski, F., Lovblad, K. O., et al.
(2013). Dynamic reconfiguration of human brain functional networks through

neurofeedback. NeuroImage 81, 243–252. doi: 10.1016/j.neuroimage.2013.
05.019

Heinrich, H., Gevensleben, H., Freisleder, F. J., Moll, G. H., and Rothenberger, A.
(2004). Training of slow cortical potentials in attention-deficit/hyperactivity
disorder: evidence for positive behavioral and neurophysiological effects. Biol.
Psychiatry 55, 772–775. doi: 10.1016/j.biopsych.2003.11.013

Hellrung, L., Dietrich, A., Hollmann,M., Pleger, B., Kalberlah, C., Roggenhofer, E.,
et al. (2018). Intermittent compared to continuous real-time fMRI
neurofeedback boosts control over amygdala activation. NeuroImage 166,
198–208. doi: 10.1016/j.neuroimage.2017.10.031

Johnson, K. A., Hartwell, K., LeMatty, T., Borckardt, J., Morgan, P. S.,
Govindarajan, K., et al. (2012). Intermittent ‘‘Real-time’’ fMRI feedback
is superior to continuous presentation for a motor imagery task: a
pilot study. J. Neuroimaging 22, 58–66. doi: 10.1111/j.1552-6569.2010.
00529.x

Kober, S. E., Schweiger, D., Reichert, J. L., Neuper, C., and Wood, G. (2017).
Upper alpha based neurofeedback training in chronic stroke: brain plasticity
processes and cognitive effects. Appl. Psychophysiol. Biofeedback 42, 69–83.
doi: 10.1007/s10484-017-9353-5

Koralek, A. C., Jin, X., Long, J. D., Costa, R. M., and Carmena, J. M. (2012).
Corticostriatal plasticity is necessary for learning intentional neuroprosthetic
skills. Nature 483, 331–335. doi: 10.1038/nature10845

Kozák, L. R., van Graan, L. A., Chaudhary, U. J., Szabó, Á. G., and Lemieux, L.
(2017). ICN_Atlas: automated description and quantification of functional
MRI activation patterns in the framework of intrinsic connectivity networks.
NeuroImage 163, 319–341. doi: 10.1016/j.neuroimage.2017.09.014

Laird, A. R., Fox, P. M., Eickhoff, S. B., Turner, J. A., Ray, K. L., Mckay, D. R., et al.
(2011). Behavioral interpretations of intrinsic connectivity networks. J. Cogn.
Neurosci. 23, 4022–4037. doi: 10.1162/jocn_a_00077

Linden, D. E. J. (2014). Neurofeedback and networks of depression.Dialogues Clin.
Neurosci. 16, 103–112. doi: 10.31887/DCNS.2014.16.1/dlinden

Lütcke, H., Gevensleben, H., Albrecht, B., and Frahm, J. (2009). Brain networks
involved in early versus late response anticipation and their relation to
conflict processing. J. Cogn. Neurosci. 21, 2172–2184. doi: 10.1162/jocn.2008.
21165

Menon, V. (2011). Large-scale brain networks and psychopathology: a unifying
triple network model. Trends Cogn. Sci. 15, 483–506. doi: 10.1016/j.tics.2011.
08.003

Menon, V., and Uddin, L. Q. (2010). Saliency, switching, attention and control:
a network model of insula function. Brain Struct. Funct. 214, 655–667.
doi: 10.1007/s00429-010-0262-0

Nichols, T., Brett, M., Andersson, J., Wager, T., and Poline, J. B. (2005). Valid
conjunction inference with the minimum statistic. NeuroImage 25, 653–660.
doi: 10.1016/j.neuroimage.2004.12.005

Oblak, E. F., Lewis-Peacock, J. A., and Sulzer, J. S. (2017). Self-regulation
strategy, feedback timing and hemodynamic properties modulate learning in a
simulated fMRI neurofeedback environment. PLoS Comput. Biol. 13:e1005681.
doi: 10.1371/journal.pcbi.1005681

Posse, S., Fitzgerald, D., Gao, K., Habel, U., Rosenberg, D., Moore, G. J.,
et al. (2003). Real-time fMRI of temporolimbic regions detects amygdala
activation during single-trial self-induced sadness. NeuroImage 18, 760–768.
doi: 10.1016/s1053-8119(03)00004-1

Robertson, B. D., Hiebert, N. M., Seergobin, K. N., Owen, A. M., and
MacDonald, P. A. (2015). Dorsal striatum mediates cognitive control, not
cognitive effort per se, in decision-making: an event-related fMRI study.
NeuroImage 114, 170–184. doi: 10.1016/j.neuroimage.2015.03.082

Shackman, A. J., Salomons, T. V., Slagter, H. A., Fox, A. S., Winter, J. J.,
and Davidson, R. J. (2011). The integration of negative affect, pain and
cognitive control in the cingulate cortex. Nat. Rev. Neurosci. 12, 154–167.
doi: 10.1038/nrn2994

Shapiro, K., and Hillstrom, A. P. (2002). Control of visuotemporal attention
by inferior parietal and superior temporal cortex. Curr. Biol. 12, 1320–1325.
doi: 10.1016/s0960-9822(02)01040-0

Sitaram, R., Ros, T., Stoeckel, L., Haller, S., Scharnowski, F., Lewis-Peacock, J.,
et al. (2017). Closed-loop brain training: the science of neurofeedback.Nat. Rev.
Neurosci. 18, 86–100. doi: 10.1038/nrn.2016.164

Skottnik, L., Sorger, B., Kamp, T., Linden, D., and Goebel, R. (2019). Success
and failure of controlling the real-time functional magnetic resonance imaging

Frontiers in Human Neuroscience | www.frontiersin.org 12 May 2021 | Volume 15 | Article 645048

https://doi.org/10.1016/j.neuroimage.2015.11.009
https://doi.org/10.1016/j.neuroimage.2015.11.009
https://doi.org/10.1016/j.neuroimage.2012.06.023
https://doi.org/10.1016/j.neuroimage.2012.06.023
https://doi.org/10.1016/j.neuron.2010.02.005
https://doi.org/10.1016/j.neuroscience.2016.04.034
https://doi.org/10.1016/j.neuroscience.2016.04.034
https://doi.org/10.3389/fnhum.2015.00547
https://doi.org/10.1016/j.tics.2013.04.009
https://doi.org/10.1016/j.tics.2010.04.004
https://doi.org/10.1016/j.tics.2010.04.004
https://doi.org/10.1196/annals.1440.011
https://doi.org/10.1073/pnas.1715766115 
https://doi.org/10.1126/scirobotics.aaw6844
https://doi.org/10.1126/scirobotics.aaw6844
https://doi.org/10.1016/j.nicl.2016.12.023
https://doi.org/10.1016/j.neuroimage.2015.09.042
https://doi.org/10.3389/fnhum.2014.00990
https://doi.org/10.1016/j.neuroimage.2014.05.052
https://doi.org/10.1016/j.neuroimage.2014.05.052
https://doi.org/10.1037/a0020976
https://doi.org/10.3758/s13421-013-0308-7
https://doi.org/10.1016/j.neuroimage.2013.05.019
https://doi.org/10.1016/j.neuroimage.2013.05.019
https://doi.org/10.1016/j.biopsych.2003.11.013
https://doi.org/10.1016/j.neuroimage.2017.10.031
https://doi.org/10.1111/j.1552-6569.2010.00529.x
https://doi.org/10.1111/j.1552-6569.2010.00529.x
https://doi.org/10.1007/s10484-017-9353-5
https://doi.org/10.1038/nature10845
https://doi.org/10.1016/j.neuroimage.2017.09.014 
https://doi.org/10.1162/jocn_a_00077
https://doi.org/10.31887/DCNS.2014.16.1/dlinden
https://doi.org/10.1162/jocn.2008.21165 
https://doi.org/10.1162/jocn.2008.21165 
https://doi.org/10.1016/j.tics.2011.08.003
https://doi.org/10.1016/j.tics.2011.08.003
https://doi.org/10.1007/s00429-010-0262-0
https://doi.org/10.1016/j.neuroimage.2004.12.005
https://doi.org/10.1371/journal.pcbi.1005681
https://doi.org/10.1016/s1053-8119(03)00004-1
https://doi.org/10.1016/j.neuroimage.2015.03.082 
https://doi.org/10.1038/nrn2994
https://doi.org/10.1016/s0960-9822(02)01040-0
https://doi.org/10.1038/nrn.2016.164
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Dewiputri et al. Brain Networks in Efficient fMRI Neurofeedback

neurofeedback signal are reflected in the striatum. Brain Behav. 9:e01240.
doi: 10.1002/brb3.1240

Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W., and
Schacter, D. L. (2010). Default network activity, coupled with the frontoparietal
control network, supports goal-directed cognition. NeuroImage 53, 303–317.
doi: 10.1016/j.neuroimage.2010.06.016

Sridharan, D., Levitin, D. J., and Menon, V. (2008). A critical role for the right
fronto-insular cortex in switching between central-executive and default-mode
networks. Proc. Natl. Acad. Sci. U S A 105, 12569–12574. doi: 10.1073/pnas.
0800005105

Strehl, U., Aggensteiner, P., Wachtlin, D., Brandeis, D., Albrecht, B., Arana, M.,
et al. (2017). Neurofeedback of slow cortical potentials in children
with attention-deficit/hyperactivity disorder: a multicenter randomized
trial controlling for unspecific effects. Front. Hum. Neurosci. 11:135.
doi: 10.3389/fnhum.2017.00135

Sulzer, J., Haller, S., Scharnowski, F., Weiskopf, N., Birbaumer, N.,
Blefari, M. L., et al. (2013). Real-time fMRI neurofeedback: progress and
challenges. NeuroImage 76, 386–399. doi: 10.1016/j.neuroimage.2013.
03.033

Walsh, M. M., and Anderson, J. R. (2011). Learning from delayed feedback: neural
responses in temporal credit assignment. Cogn. Affect. Behav. Neurosci. 11,
131–143. doi: 10.3758/s13415-011-0027-0

Weiskopf, N., Veit, R., Erb, M., Mathiak, K., Grodd, W., Goebel, R., et al.
(2003). Physiological self-regulation of regional brain activity using real-time
functional magnetic resonance imaging (fMRI): methodology and exemplary
data. NeuroImage 19, 577–586. doi: 10.1016/s1053-8119(03)00145-9

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Dewiputri, Schweizer and Auer. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 13 May 2021 | Volume 15 | Article 645048

https://doi.org/10.1002/brb3.1240
https://doi.org/10.1016/j.neuroimage.2010.06.016
https://doi.org/10.1073/pnas.0800005105
https://doi.org/10.1073/pnas.0800005105
https://doi.org/10.3389/fnhum.2017.00135 
https://doi.org/10.1016/j.neuroimage.2013.03.033
https://doi.org/10.1016/j.neuroimage.2013.03.033
https://doi.org/10.3758/s13415-011-0027-0
https://doi.org/10.1016/s1053-8119(03)00145-9
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles

	Brain Networks Underlying Strategy Execution and Feedback Processing in an Efficient Functional Magnetic Resonance Imaging Neurofeedback Training Performed in a Parallel or a Serial Paradigm
	INTRODUCTION
	MATERIALS AND METHODS
	Experimental Procedure
	MRI Data Acquisition
	Neurofeedback Training Paradigms
	Parallel Paradigm
	Serial Paradigm

	Real-Time fMRI Neurofeedback
	Training Efficiency
	Whole-Brain fMRI GLM Analyses
	Functional Labeling
	Structural Labeling


	RESULTS
	Efficient Neurofeedback Training Runs
	Whole-Brain fMRI Analysis of Efficient Neurofeedback Run
	Brain Areas and Brain Networks Associated With Neurofeedback Subcomponents
	Common and Specific Neurofeedback Networks


	DISCUSSION
	Training Efficiency
	Methodological Considerations
	Brain Areas and Networks in the aMCC Neurofeedback Subcomponents

	CONCLUSIONS
	DATA AVAILABILITY STATEMENT
	ETHICS STATEMENT
	AUTHOR CONTRIBUTIONS
	FUNDING
	ACKNOWLEDGMENTS
	REFERENCES


