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Abstract

A mesoscale network model is proposed for the development of spike and wave discharges

(SWDs) in the cortico-thalamo-cortical (C-T-C) circuit. It is based on experimental findings in

two genetic models of childhood absence epilepsy–rats of WAG/Rij and GAERS strains.

The model is organized hierarchically into two levels (brain structures and individual neu-

rons) and composed of compartments for representation of somatosensory cortex, reticular

and ventroposteriomedial thalamic nuclei. The cortex and the two thalamic compartments

contain excitatory and inhibitory connections between four populations of neurons. Two con-

nected subnetworks both including relevant parts of a C-T-C network responsible for SWD

generation are modelled: a smaller subnetwork for the focal area in which the SWD genera-

tion can take place, and a larger subnetwork for surrounding areas which can be only pas-

sively involved into SWDs, but which is mostly responsible for normal brain activity. This

assumption allows modeling of both normal and SWD activity as a dynamical system (no

noise is necessary), providing reproducibility of results and allowing future analysis by

means of theory of dynamical system theories. The model is able to reproduce most time-

frequency changes in EEG activity accompanying the transition from normal to epileptiform

activity and back. Three different mechanisms of SWD initiation reported previously in

experimental studies were successfully reproduced in the model. The model incorporates

also a separate mechanism for the maintenance of SWDs based on coupling analysis from

experimental data. Finally, the model reproduces the possibility to stop ongoing SWDs with

high frequency electrical stimulation, as described in the literature.

Introduction

Absence epilepsy is characterized by recurring paroxysmal seizures with a diminishment of

responsiveness and awareness with sudden onset and termination. Usually it starts to occur in

children between the ages of 5 and 12 and it often spontaneously disappears at puberty or
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adolescence. Absences begin without an aura, and their duration rarely exceeds 10–30 seconds.

The seizures are accompanied by a typical bilateral symmetrical and generalized 2.5 to 4 Hz

spike-wave discharge (SWD) in the electroencephalogram (EEG).

The fact that spike-wave activity concomitant to the absences occurs rather suddenly and

synchronously in all electrodes in the surface EEG, made the first researchers mistakenly

believe that the absence pathogenesis has an origin in “deep” subcortical structures such as

higher brain stem or thalamus, and that the pathological activity diverges from there to both

hemispheres [1]. For more detailed studies towards the mechanisms of SWD generation, vari-

ous animal models have been used; most well known are two genetic absence models, rats of

the WAG/Rij strain [2] and Genetic Absence Epileptic Rats form Strasbourg (GAERS) [3].

These models, first discovered in the eighties of the previous century, are well documented

and validated as models for childhood absence epilepsy. They show the for absence epilepsy

characteristic clinical concomitants accompanying the SWDs, such as mild facial myoclonus,

accelerated breathing, and twitching of the vibrissae [4], as well as many other characteristics

contributing to face, predictive and construct validity [2].

Computational models on SWD generation made a great contribution to our understand-

ing of the pathophysiology of absence epilepsy [5–7]. Currently there are a number of models

that are quite distinct from each other including phenomenological [8] and biophysical models

[9–11]; thalamic [12], cortical [13, 14] and thalamo-cortical [15], micro- [12, 16], meso- [17–

21] and macroscale [7, 16, 22–28] models were described. Most models aim to reproduce the

characteristics of SWDs, but some of them focus on effect of abnormal activity in thalamo-cor-

tical networks, most often the thalamus was considered as the initiation site for SWDs [29–

30]. These different models show that there is a basic understanding about the contribution of

various types of intrinsic currents and synaptic receptors, and of the physiological conditions

under which synchronized activity in the form of sleep spindles and SWDs may occur, includ-

ing the necessary feedback of thalamus to cortex and vice versa and the role of the four key ele-

ments comprising the cortical pyramidal cells and interneurons, the thalamo-cortical relay

cells, and neurons of the reticular thalamic nucleus.

It is hypothesized that the ability to generate SWDs, which develops with age, is a relatively

small pathology in the matrix of connections in the brain, caused by genetic factors. Wide-

spread neural mass models are able to reproduce significant number of characteristics of epi-

lepsy, but they are limited in three points. First, they do not allow reproducing the effect that

relatively small changes in the connectivity matrix are responsible for SWDs, since they have

only one equation [18] or a small set of equations [7] for each cell type. Second, the intercon-

nections inside the brain structures, e. g. inside the reticular thalamic nucleus and inside the

cortex cannot be included, but they are known to be significant for the ability of SWD genera-

tion. Third, there is no possibility to model the deviation of the disease over the population,

since only one set of parameters corresponds to the pathological conditions (in network mod-

els this is possible by varying the connectivity matrix).

Since there could be a lot of different models for the same observed phenomenon such as

SWD, one needs some tool for model verification. Here, we propose the following criteria: 1)

spectra, 2) mean duration and distribution of SWD duration, 3) response to external stimula-

tion, 4) Granger causality analysis of connectivity. We propose to consider the model suitable

if it reproduces all these characteristics of experimental data qualitatively and/or

quantitatively.

The peculiarity of the current work is that it uses a combination of mathematical modeling

methods from the first principle (direct modeling) and model methods by solving an inverse

problem (inverse modeling, [31]), comparing the results obtained from experimental data

from the GAERS and WAG/Rij models to our mesoscale model. The main idea of creating this
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model was the assumption that the network structure plays a major role in generating highly

synchronized activity in cortical and thalamic neurons, and that this activity is a function of

the entire network organization, not only of the focal area. This idea was already illustrated in

general for integrate-and-fire model neurons in [32]. Modeling different brain structures of

C-T-C networks with large ensembles of oscillators (of a spatially distributed system) was per-

formed by Proske et al. in [33] for thalamocortical dysrhythmia and by Nuidel et al. in [29] for

image processing. However, these works did not focus on representing properties of absence

seizures and SWDs. The results by Rothkegel et al. [34] suggest that initiation and termination

processes for epileptic seizures can be generated in specially organized neural networks.

Recently a first version of mesoscale phenomenological, C-T-C model for SWDs was pro-

posed [35]. The aim of the current paper is to fix a number of the disadvantages of the previous

model and to provide new features mirroring the physiological knowledge about SWDs and

C-T-C networks in general. So, the objectives of the current paper are as follows:

1. to consider the relevant to the SWD generation part of thalamus to be split into ventropos-

teromedial thalamic nucleus (VPM, TC-nodes) and the inhibitory reticular thalamic

nucleus (RTN, RE-nodes), while previously the thalamus was considered as a single

compartment;

2. to consider two types of cortical cells: pyramidal (PY) cellsand interneurons (IN) in ratio

4:1, while previously interneurons were not taken into account;

3. to make difference between inhibitory and excitatory projections; in particular in the cur-

rent model the nodes corresponding to cortical interneurons and RE-cellsprovide inhibi-

tory projections to other nodes, including projections to other nodeswithin the same

structure, while the projections of the nodes corresponding to PY and TC-cells are excit-

atory; previously there was no separation between excitatory and inhibitory couplings;

4. to provide both normal and pathological dynamics by means of coupling architecture;

noise must not be necessary for obtaining normal dynamics, so all the computational exper-

iments become completely reproducible and no source of external complexity would be

assumed; to achieve this both thalamic and cortical parts of the network are split into the

focal and surrounding (larger) area, which is also partly involved in the generation of

SWDs.

5. to provide three different ways to initiate SWD: due to increase in intracortical excitability,

by external input from nervus trigeminus [36], and low frequency modulation [37, 38],

while previously only an external input was considered;

6. to obtain mean seizure length close to the length reported in experiments, including a sei-

zure maintenance process [39];

7. to reproduce thereported in the literature [40] mechanism of seizure termination by means

of high (130 Hz) frequency stimulation;

8. to reproduce the results of coupling analysis of experimental data, achieved by means of

Granger causality [41, 42].

Materials and methods

Model structure

Coupling architecture of the model was synthesized from the works [7, 18, 43] and others. It is

illustrated in Fig 1. The model consists of four compartments: “PY” and “IN” for pyramidal
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cells and interneurons in cortex and “TC” and “RE” for thalamocortical cells and GABA-ergic

reticular thalamic neurons in thalamus respectively. Further, to be able to compare model

results to the experimentally observed phenomena, these compartments are also addressed as

cortex (PY and IN together), VPM (ventroposterial medial nucleus of the thalamus, TC) and

RTN (reticular thalamic nucleus, RE). Nervus trigeminus (N. trigeminus), innervating the

whisker and frontal facial area, is considered as external input in the model and is modeled as

an additional compartment.

Each compartment consists of a relatively high number of model nodesand is divided into

two subpopulations. One, smaller subpopulation is modeling the focal areas in both thalamus

and cortex. The number of model nodes in it is Nf
PY ¼ 40; Nf

IN ¼ 10; Nf
TC ¼ 40; Nf

RE ¼ 40.

The other, larger subpopulation is modeling the surrounding areas. The number of model

nodes in it is Ns
PY ¼ 160; Ns

IN ¼ 40; Ns
TC ¼ 80; Ns

RE ¼ 80. These surrounding areas corre-

spond to other thalamic nuclei for TC and RE nodes (some of them can also be involved in

SWDs, see e. g. [39, 44, 45]), and for cortical areas connected to somatosensory cortex (parietal

cortex in the rat) for PY and IN nodes, including frontal and occipital cortex, which are nor-

mally involved in SWDs [3, 46]. The inclusion of these surrounding areas into the model was

necessary to provide irregular oscillatory dynamics interictally. Therefore the total number of

cells in each compartment was NPY ¼ Nf
PY þ Ns

PY ¼ 200; NIN ¼ Nf
IN þ Ns

IN ¼ 50; NTC ¼

Nf
TC þ Ns

TC ¼ 120; NRE ¼ Nf
RE þ Ns

RE ¼ 120. Additionally, giving NNT = 10 nodes were used

for n. trigeminus (“NT”), given 500 model nodes in total. All these numbers were set more or

less empirically, based on our previous model [32], and to facilitate the occurrence of all neces-

sary effect. The main conditions were the following: the number of interneurons being 4 times

smaller than number of pyramid nodes, the total number of thalamic nodes should not be

larger than the number of cortical ones.

The pathological part of the matrix does not work in isolation. And it is insufficient to

reproduce interictal dynamics because it is small. Therefore, we also included the neurons of

the surrounding areas of the same structures partially connected to the pathological matrix

into the model. Otherwise, interictal activity would have to be modeled by noise as in [35]. But

for the purpose of diagnosing external influences (stimulations), this approach is unacceptable,

since the result will simultaneously depend on both the presence of noise and stimulus, so it

will not be possible to identify the cause of the change in dynamics.

It is obvious that the number of model nodes is much smaller than the number of cells in

the real brain. However, we were inspired by the idea from vacuum electronics, where bil-

lions of real electrons in reverse wave lamp are substituted in the model neither by the similar

number of model electrons, nor by a single particle, but by some sufficiently large number of

model “enlarged particles” [47], each of those is considered instead of large number of real

particles with similar parameters. In electronics this approach allows to take into account

electrical interactions between electrons in the tube, otherwise only interactions between the

walls of the lamps and electrons and between electrons and the field are considered. In our

case, model neurons (nodes) are analogous to these “enlarged particles”. On the one hand,

such an approach makes it possible to simulate model time series using ordinary modern

computers, since the number of network nodes is not too large. On the other hand, it allows

to represent the essential interactions between nodes in the same structure (internal connec-

tions) in the model in contrast to neuron mass models like [7], where internal connections

are represented by some effective parameters. Due to the described properties of the model,

we call it dynamical mesoscale model (DMM) in comparison to the previous stochastic meso-
scale model (SMM) described in [35], where interictal dynamics were not possible without

noise.
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Model equations

Since network effects are the main theme of this study, the simplest possible neuron model

was used for an individual node, that is FitzHugh-Nagumo [48, 49] Eq (1) with sigmoid cou-

pling function h. While different models are known to be possible for the representation of

individual neurons (see [50] for the most recent review), this one is one of the simplest oscil-

latory ones. Due to the presence of time delay τ in the model (1), they were solved using Euler

algorithm, sampled with a step 0.5, and then time was renormalized in the ratio 1/1700, giving

a sampling frequency fsamp = 3400 Hz to provide the time scale fitting the properties of experi-

mental data; a similar effect was achieved by changing model parameters and coupling coeffi-

cients [35], but in that paper the parameter values had to be set with values far from essential

ones reported in the literature.

dxi
dt
¼ xiða � xiÞðxi � 1Þ � yi þ

X

j6¼i

Ci;jhðxiðt � tÞÞ;

dyi
dt
¼ bxi � gyi;

hðxÞ ¼ 1þ
tanhðxÞ

2
;

ð1Þ

Where C is a coupling matrix, and parameters of individual nodes set to be equal for all

nodes a = 0.8, b = 0.008, γ = 0.0033. Time delay τ, corresponding to the time of synaptic con-

ductance between nodes, was different for different matrices and was set to be 9–13 data points

(approximately 2.6–3.8 ms in renormalized time).

The coupling matrix C entirely determines the dynamics of the network. The links between

individual nodes were generated randomly, but following the scheme plotted in Fig 1 for cou-

plings between brain structures and cell types. The coupling matrix generation was organized

as follows. First, the whole matrix C was set to zero. Then couplings as presented in Fig 1 were

set nonzero with different probabilities for different connections (see Table 1), with nodes in

Fig 1. Coupling architecture of the proposed model. Inhibitory links are shown by dashed lines, exciting ones are solid. “PY” are

pyramidal nodesin the cortex, “IN” are cortical interneurons, “TC” are thalamocortical nodes, “RE” are inhibitory nodesin the

reticular thalamic nucleus, N. trigeminus serves as an external input.

https://doi.org/10.1371/journal.pone.0239125.g001

Table 1. Probabilities of nonzero coupling between nodes in different compartments.

Surrounding areas Focal area

Node type PY IN TC RE NT PY IN TC RE NT

PY 0.009 0.0315 0.0225 - - 0.036 0.126 0.045 - -

IN 0.009 0.0315 0.0225 - - 0.036 0.126 0.045 - -

TC 0.0135 - - 0.01125 - 0.054 - - 0.0225 0.18

RE 0.0135 - 0.0225 0.01125 - 0.054 - 0.045 0.0225 -

https://doi.org/10.1371/journal.pone.0239125.t001
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the focal area being coupled more often than in the surrounding ones. Values in Table 1 were

fitted empirically in order to facilitate the occurrence of SWDs in the focal area. Only two non-

zero values of Ci,j were used: 0.1 for excitatory couplings and −0.1 for inhibitory ones. At the

final step, the collateral couplings were changed to the same (nonzero) value. The matrices for

the focal area and the matrices for the surrounding areas were generated separately to simplify

the process of further selection. In each case 7000 matrices were generated. Then, only matri-

ces for the focal area being able to generate SWDs in response to short lasting increases in

intracortical excitability (see the section “Onset due to gradual increase of intracortical excit-

ability” for details) were selected. Also, matrices for surrounding areas generating chaotic

dynamics without a well-established main frequency were selected. Then pairs of matrices for

the focal area and for the surrounding areas were composed, under the condition that for both

matrices in the pair the same value of τ was used. Matrices were coupled according to scheme

(see Fig 1) and using probabilities for surrounding areas (see Table 1). As a result, four matri-

ces with the desired properties were obtained.

In Table 1 the probabilities of connections between nodes used for random model matrix

generation are presented. Left half corresponds to the probabilities in the surrounding area

submatrix, right half corresponds to probabilities in the focal areas.

Model time series for local field potentials (LFPs) were constructed as a sum of time series

for all corresponding nodes. In particular, time series for the cortex were calculated as a sum of

activities of all “PY” and “IN” nodes, model time series for the VPM were constructed as a sum

of activities of all “TC” nodes, and model time series for the RTN were constructed as a sum of

activities of all “RE” nodes.

Experimental data

To compare the result of modeling with experimental data, two published datasets were used.

LPF recordings of the GAERS were used as experimental data, they were collected at the

Institute of Physiology I, Westfälische Wilhelms Universität, Münster, Germany. All experi-

mental procedures were carried out in accordance with the guidelines and regulations of the

council of the European Union (Directive 2010/63/EU) and approved by local authorities

(review board institution: Landesamtfür Natur, Umwelt und Verbraucherschutz Nordrhein-

Westfalen; approval ID number: 84–02.04.2014.A398). Recordings of LPF from the somato-

sensory cortex (SI), the ventro-posterior medial nucleus of the thalamus (VPM) and the reticu-

lar nucleus of the thalamus (RTN) were used, recordings were performed in neurolept

anesthetized rats. Data of this experiment were previously reported in [51].

LPF recordings of cortex and thalamus of symptomatic WAG/Rij rats were also used as

experimental data. The data were collected at the Donders Center for Cognition, Radboud

University, Nijmegen, the Netherlands. The experiment was approved by the Ethical Commit-

tee on Animal Experimentation of Radboud University Nijmegen (RU-DEC). LFP from free

moving animals were from the somatosensory cortex (SI), the VPM and RTN. Data of this

experiment were previously reported in [45].

Results

SWD initiation

Three ways of SWD onset were investigated in the model.

Onset due to gradual increase of intracortical excitability. The onset of the SWDs was

modeled by the simulation of processes of initiation of SWDs, as described earlier [39]. A

short-term (0.3 s length) gradual preictal increase of the coupling coefficients (from the basic

value 0.1 to the value 0.115) between PY neurons simulated the initiation process (see Fig 2,
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left column). One can see that SWD starts immediately in all channels after this temporary

process has stopped, while during the initiation process LFP’s in all channels remain similar

regarding its dynamics as interictally. This matches experimental findings from [39, 45], where

the increase in intracortical coupling preceded the onset of SWD, while compared to preictal

level a coupling decrease took place just after SWD onset.

Onset due to external driving from N. trigeminus. Stimulation of peripheral nerves can

result in SWD appearance as experimentally shown [36]. Here, following our first model [35]

n. trigeminus, which has projections to the VPM and is therefore directly coupled to the tha-

lamo-cortical system, is assumed as being a structure that is able to drive the VPM and somato-

sensory cortex. The short time (0.3 s) increase in coupling from n. trigeminus to VPM

Fig 2. Connectivity matrix of the proposed model. Red points indicate the excitatory links and blue points represent inhibitory links.

NT–Nervus trigeminus, TCf–thalamocortical nodes (focal area), REf–reticular thalamic neurons (focal area), PYf–pyramidal nodes (focal

area), INf–interneurons (focal area); TCs–thalamocortical nodes (surrounding area), REs–reticular thalamic neurons (surrounding area),

PYs–pyramidal nodes (surrounding area), INs–interneurons (surrounding area).

https://doi.org/10.1371/journal.pone.0239125.g002
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neurons from initial value 0.1 to the value 0.2 is shown in Fig 3B (the corresponding time

interval is indicated between the red lines in VPM subplot). The spectral and shape character-

istics of SWDs generated by means of this mechanism are the same as for SWDs generated by

the increase in intracortical excitability. Moreover, all matrices selected to be able to generate

SWDs using intracortical mechanism were able also to generate SWDs as a response to an

external stimulus.

Onset due to low frequency stimulation. Luttjohann et al. in [52, 53] showed that low

frequency cortical stimulation of the focal area in WAG/Rij rats can provoke SWDs. In the

proposed model the discharge onset also can be elicited by using short-term stimulation

applied to cortical PY neurons. Stimulation consisted of an 8 Hz sinusoid application to the

PY and IN populations for 0.3 seconds. In order to simulate the stimulation, the second model

equation in (1) was replaced by Eq (2) for cortical nodes (PY and IN) only.

dxi
dt
¼ xða � xÞðx � 1Þ � yi þ

X

j

Ci;jhðxiðt � tÞÞ þ sinðotÞ ð2Þ

In contrast to SWDs initiated with increase of intracortical excitability, SWDs start in the

time window of stimulation, not after. SWDs initiated with this mechanism are shown on Fig

Fig 3. Three mechanisms of SWD onset. Model LFPs at SWD onset due to 3 different reasons: (a)–increase in intracortical excitability, (b)–

external driving from N. trigeminus to VPM, (c)–low frequency harmonic stimulation of cortex. In all cases the initiation process starts at

time moment 2 s and took place between the red lines.

https://doi.org/10.1371/journal.pone.0239125.g003
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3C. Their shape and amplitude do not differ from those of SWDs initiated by means of previ-

ously presented mechanisms in the same coupling matrix.

SWD maintenance. In [39] an increase in interactions between different thalamic nuclei

(primary caudal RTN) and cortical layers based on results of coupling analysis was taken out.

This coupling process was considered as a separate SWD maintenance mechanism which

starts about 0.5–1.5 s after the onset of SWDs. This mechanism was included into the current

model as relatively long coupling increase from RTN nodes to both pyramidal nodes and IN-

nodes (see Fig 4). The coupling coefficients were increased from the normal value 0.1 to 0.115

for 5 s. This mechanism occurred to be very helpful for the model since its inclusion allowed

both to support the signal amplitude during SWDs as well as their duration–see Fig 4. Most

SWDs were elongated 1.5–3 times due to this mechanism, as shown by the orange curve in Fig

4 in comparison to the black one, while some of SWDs did not change.

SWD termination

The mechanisms of SWD termination remain relatively unexplored. In [45, 41] no separate

SWD termination mechanism was found and SWD termination was interpreted as a result of

discontinuation of maintenance mechanisms. In [26] an increase in coupling from rostral

RTN to cortex at 1 s before the SWD termination was detected and it was proposed to reflect

Fig 4. Effect of SWD maintenance process. Model SWD without separate maintenance process (black) and with maintenance (additionally

increased coupling from “PY” nodes to “TC” nodes between blue lines). SWD was initiated by short in time increase of intracortical

excitability (between red lines). Orange line shows the discharge with the maintenance process.

https://doi.org/10.1371/journal.pone.0239125.g004
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or represent part of a possible SWD abortion mechanism, but this hypothesis needed more

support. Therefore, no special mechanism of spontaneous SWD termination was provided in

the current model.

Spontaneous termination. In the proposed model all SWDs terminated spontaneously.

And this is also the case in the genetic models and in children with childhood absence epilepsy.

The spontaneous termination was used as a criterion for the selection of the coupling matrices.

In terms of nonlinear dynamics this means that in the current model each SWD is a long tran-

sient process rather than a stable regime. Such an approach is in agreement with modern ideas

of nonlinear dynamics, with chimera states, heteroclinic trajectories and other transients

rather than classical chaotic or regular attractors being considered as typical regimes of activity

in models of neural networks [54–56].

The distribution function of spontaneously terminated SWDs of the model (a) and real data

(b) is shown in Fig 5. This distribution was constructed from 400 SWDs obtained from 4 matrices

(100 per matrix). The maximum of distribution lies between 5 and 6 s which prettily matches the

experimental results obtained in the WAG/Rij model, in GAERS the SWDs may last longer [57].

Also, more than 90% of SWDs are shorter than 10 s, with very long seizures of 15–32 s still being

possible. It should be mentioned that without a separate SWD maintenance process described in

section “SWD maintenance”, the distribution would be significantly shifted to shorter values.

Termination with high frequency stimulation. High frequency stimulation was shown

to be the effective tool favorable for the abortion of SWDs. Stimulation for 1 sec with 130 Hz at

low intensities, either in cortex, thalamus or brainstem quickly aborted SWDs, as it was shown

in vivo [38, 40] in WAG/Rij rats, and at other locations, e.g. basal ganglia in GAERS [58–60].

The current model is able to reproduce this termination mechanism. An example of 130 Hz

pulse stimulation is plotted in Fig 5. The stimulus was applied to the cortex (to all PY and IN

nodes of the focal area) after 4s after SWD onset. The characteristics of pulses were as follows:

pulse amplitude 1mV, pulse duration 0.6ms, interpulse interval 8ms, total length of stimulation

1s. The SWD, as it would develop without stimulation, is plotted in orange. It can be seen that

SWD stopped during the application of the stimulus. We considered four different matrices

and ten seizures for each matrix; it was found that 60% of SWDs were successfully terminated.

Comparison of model series and spectra to experimental ones

The main frequency of SWDs decreases during the discharge from 5 to 3 Hz for humans. In

rats of the GAERS strain, the main frequency also decreases during the discharge from 8 to 7

Hz. In rats of the WAG / Rij strain a sharper decrease in the main frequency is observed—

from 11 to 8 Hz. The main SWD duration is 5–6 s for humans, about 15 s for GAERS rats and

5–8 s for WAG/Rij rats [61].

Comparison of model LFPs to LFPs of WAG/Rij rats. Typical time series and spectro-

grams of local field potentials at SWD measured from WAG/Rij rats are depicted in Fig 6

SWD start and termination are shown with black vertical lines. The increase in amplitude of

the EEG signal during SWDs, in comparison to preictal and postictal states, is visible in plots

of the LFPs. Also, the signals become more regular, the main frequency about 8.5 Hz and its

higher harmonics (up to fourth one for cortex and VPM and up to third one for RTN) can be

found in spectrograms during SWD. Amplitude of the cortical signal both during SWDs and

interictally is higher than the amplitudes of signals from thalamic nuclei, and this is in agree-

ment with what is commonly seen by us [46, 52] and might be due to the larger strength of the

dipoles of cortical pyramidal versus thalamic neurons. Pyramidal cells are orderly oriented

and have long, thick apical dendrites that can generate strong dipoles along the somatodendri-

tic axis, and all this contributes substantially to the strength of the extracellular field. By
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contrast, thalamocortical cells, that have dendrites of relatively equal size in all directions,

show only small dipoles and they contribute less to the extracellular fields responsible for the

LPFs [62].

Time series and spectrograms of DMM are plotted in Fig 7 The current model reproduces

all mentioned properties of LFP signals and their spectrograms associated with transition to

SWD, in particular the increase of amplitude and presence of frequency characteristics typical

for SWDs with its higher harmonics. Absolute values of LFP signals and zero mean in Fig 8 are

the result of amplification and shift by measuring device, so they cannot be considered as

Fig 5. SWD probability density. Estimation of probability density of SWD duration of (a) calculated using 100 SWDs from 4

matrices, 400 in total, (b) calculated using LFP from WAG/Rij rats.

https://doi.org/10.1371/journal.pone.0239125.g005

Fig 6. SWD termination by external high frequency stimulation. SWD was initiated by short in time increase in excitatory coupling between cortical nodes (time

frame between two vertical red lines), and SWD maintenance process took place between two blue lines. Cortical 130 Hz pulse stimulation was started at time moment

7.5 s (about 4 s after seizure onset) and led to premature SWD termination. The stimulus can be seen in cortical model LFP at time moment 8 ± 0.5 s. The series, as it

would develop without stimulation, is plotted with orange.

https://doi.org/10.1371/journal.pone.0239125.g006
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reference value for our model. When the spikes during the SWD are compared, one can see

that both in our model and in experimental signals the amplitude of cortical ECoG activity,

representing extracellular fields, is higher than in the signals from the thalamus. Also, both

Fig 7. Time series and spectrograms of LFPs from WAG/Rij rats. Three channels are considered: somatosensory cortex, layer 4, ventral posteromedial thalamic

nucleus (VPM) and reticular thalamic nucleus (RTN).

https://doi.org/10.1371/journal.pone.0239125.g007

Fig 8. Time series and spectrograms of LFPs from DMM. Somatosensory cortex signals represented by a summary signal from “PY” and “IN” nodes, VPM signal

is represented by sum of TC node activities and RTN signal is represented by sum of RE node activities.

https://doi.org/10.1371/journal.pone.0239125.g008
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model and experimental discharges do not look strictly periodic, and demonstrate losses of

spikes in some cases and a rather large modulation of the amplitude of the spikes across time.

Comparison of model LFPs and single units to those of GAERS rats. Most of the

researchers involved in absence epilepsy do not consider that the models (GAERS and WAG/

Rij rats) to be very different from each other, both are derived from Wistar rats, although there

are differences between the two strains regarding the epileptic genes. In GAERS, a mutated

gene has been discovered, which is not mutated in WAG/Rij rats. The fact that different

genetic causes might underlie the same epileptic phenotype, is not uncommon. The cells in

cortical layer V in the facial area of the somatosensory cortex were found to be excitable, and

these cells are thought to be the cause of the SWDs in GAERS [37]. Although the authors of

[61] emphasize that there are differences in WAG/Rij and GAERS rats, the main message is

that the SWDs are rather similar. Moreover, the site of the focus is the same (facial area of the

somatosensory cortex), and the same drugs increase or decrease SWDs in GAERS and in

WAG/Rij rats [63]. We do not have intracellular recordings from GAERS in our labs, instead

we used published data [64, 65].

Time series and spectrograms of activity of a single node (a) and local field potentials from

the surrounding area (b) experimentally measured for GAERS rats are shown in Fig 9. One

can see synchronized rhythmic activity during SWD with a main frequency of about 6 Hz

(slightly lower due to the neurolept anesthesia) and the presence of its higher harmonics. The

firing of cells preictally is irregular. These data support the experimental outcomes of [51],

where it was shown that the same cell can demonstrate regular bursting during SWD and

irregular activity at other time intervals. The cell activity is noisy due to activities of neighbor

cells and currents in the intercellular medium.

The model represents a similar pattern (see Fig 10): irregular spikes interictally and regular

firing ictally (some spikes are “lost” and that can be seen also in the experimental cell). We have

to notice that there is small “bridge”—a number of connections from the “epileptic” (focus) sub-

matrix to the “normal” (surrounding) one, see the rectangular (PYf–column, PYs–row) in Fig

2. These connections almost do not affect the activity of the normal matrix in the background,

since first, they are relatively few in comparing with the number of interconnections inside the

focal submatrix, and second, the epileptic part is also smaller than the “normal” one. But when

SWDs are initiated in the focus, this small “bridge” is enough to include part of nodes from sur-

rounding areas into oscillations. The node, which dynamics is shown in Fig 10, is a part of sur-

rounding matrix but gets the input from another node belonging to the focal submatrix.

Fig 9. Time series and spectrograms of GAERS rats from the ECoG activity recorded from the somatosensory cortex. Activity of a single unit (pyramidal cell) is

plotted at the subplot a, and LFPs are plotted at the subplot b.

https://doi.org/10.1371/journal.pone.0239125.g009
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Coupling analysis of model data with Granger causality method

An adapted nonlinear Granger causality method was used here, which was proposed specifi-

cally for studying SWDs [66]. The method is based on the construction of empirical predictive

models in the time [67], but using non-linear models with specially selected parameters. We

evaluated several sets of parameters that met the criteria from [66, 68] in order to find the opti-

mal set of sensitivity / specificity ratio. As a result, the prediction length τ = T/12 was empiri-

cally chosen for both experimental and model data, where T is the characteristic oscillation

period, a quantity inversely proportional to the main oscillation frequency (i. e., for the

absence discharges T = 8 Hz). The length of the moving window was chosen w = 1 s. The

remaining parameters were selected automatically by the BIC criterion [69]: the dimension

of the individual model was set to Ds = 4, the polynomial order—P = 2, the lag in the model—

l = T/24.

For each SWD, in the study of Granger causality, intervals, including background (10–3

seconds before the seizure onset) were analyzed, as well as preictal, ictal, and postictal activity.

were used. On the plots (see Fig 11) of the prediction improvement versus time PImean(t), the

distance between the black vertical dashed and solid lines indicates the moving window length.

Gray points show PImean values insignificantly different from zero (i. e. from baseline activity),

red points correspond to the PImean values significantly higher than the baseline level PIbl (p<

0.05). In the title of each plot the direction of coupling and name of channels between which

the coupling was tested were specified using the y!x notation.

If the changes of PImean(t) began within the window (from the dashed to the solid line),

then they may originate from the fact that the moving window captures the transition process

from the background to the SWD and, accordingly, they are no longer considered as precursor

activity.

There is an increase in coupling for both experimental and model data between all struc-

tures studied (Cortex, RTN, VPM) during the SWD. However, there are also some differences:

in the experimental data one can see a pre-ictal (up to a dashed line) increase in coupling in

almost all channel pairs, first of all when RTN increases its coupling strength to the cortex

(RTN! Cortex). For the model, a significant increase in coupling begins exactly at the

moment of the onset of SWD. Secondly, for the experimental interictally PImean are approxi-

mately the same for all channel pairs, for the model data, when studying the effects on VPM,

PImean values interictally are significantly higher than in other channel pairs.

Fig 10. Time series and spectrograms of DMM from somatosensory cortex signal. LFPs (upper plots) are constructed as a sum of signals from all “PY” and “IN”

nodes, and single unit signal was taken from a “PY” node.

https://doi.org/10.1371/journal.pone.0239125.g010
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Discussion

Here a new mathematical model for SWDs at absence epilepsy was provided. In this model we

followed the main idea of our previous paper [35] to make a mesoscale model that is able to

reproduce most effects (both regarding SWD characteristics and transitional effects from nor-

mal activity to SWDs and back) due to coupling organization in the ensemble, not due to indi-

vidual properties of nodes. The main differences of the current model from the previous one

[35] and other models reported in literature are as follows.

The model consists of relatively large number of model nodes (500) in comparison to neuron

mass models such as proposed in [7, 70], where only four nodes were considered. This led to the

significantly larger model complexity (1000 equations) comparing to [7] where 23 equations

were used and [18] with 4 equations. These 500 nodes were structured in comparison to a similar

network model for dysrhythmia [33] and organized into five compartments, modeling two tha-

lamic nuclei (VPM and RTN), two cortical node types (pyramids and interneurons), and exter-

nal input (n. trigeminus) with four of these compartments (excluding that for n. trigeminus)

being divided into two parts: focal and surrounding areas; while previously in [23] the model

nodes were split only into two (thalamus and cortex) compartments. Inhibitory and excitatory

connections were considered following [7], previously this distinction was not made by us. Small

time delays in coupling were introduced into the model since axon conductivity takes a reason-

able time, so the model has to be considered as a time delayed differential equations model (not

ordinary differential equations), having formally an infinite number of degrees of freedom.

The changes in the current model in comparison to the previously known ones, led to the

successful modeling of a number of new effects, matching the objectives formulated at the

model design. In particular:

1. The model worked as a dynamical system. Adding noise to the model was no longer neces-

sary, and all effects (seizure initiation or termination) induced by changes in the input

matrices or due to external stimulation were reproducible. This gave us the possibility to

investigate mechanisms of seizure termination by high frequency stimulation, since in the

proposed model it is known how SWDs would develop without stimulation. The model

correctly simulates SWD termination as a consequence of high frequency 1 s stimulation,

in agreement with experimental data [40]. Similar results were already demonstrated using

a neural mass model for hippocampal seizures [71], however this could be possible also due

to the hippocampal seizures are focal and not initially generalized as SWDs. Therefore, the

network was not so necessary as for absence seizures.

2. Three different mechanisms of seizures initiation reported in the literature were repro-

duced in the model: First, by a short increase of intracortical excitability, second, by an

increase of coupling from external input (n. trigeminus), and third, by low frequency (8

Hz) stimulation. All of them led to similar SWDs. All these mechanisms are network mech-

anisms based on relatively small and short changes in amplitude and by short changes in

coupling strength between only a small number of nodes within the focal area. No manual

changes of individual nodes parameters or coupling architecture were necessary.

Fig 11. Coupling analysis using the adapted Granger causality method. The subplot a corresponds to LFPs recorded

from WAG/Rij rats, and the subplot b corresponds to LFPs generated by DMM. The figure shows the studied intervals

before, during and after the seizure (the seizure onset and the seizure termination are marked by black vertical lines).

The distance between the black vertical dashed and solid lines indicates the length of the moving window. Gray points

show the insignificant average pairwise prediction improvement PImean, red points correspond to the PImean values

significantly higher than the baseline level PIbl at the significance level of 0.05. In the title of each plot it is written the

influence from which system to which was tested (y!x).

https://doi.org/10.1371/journal.pone.0239125.g011
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3. Most known models including [7, 18] consider the interictal dynamics and SWDs as two

coexisting attractors, with switches between them being possible due to noise. Epilepsy as a

multistate phenomenon was considered and discussed based on experimental data simula-

tion in a recent review [70]. In our model SWDs are not considered as an attractor, but as a

long transient process (due to system dimension this cannot be proved analytically), and

SWD termination is at the same time both deterministic and spontaneous following basic

ideas of dynamical chaos. We do not consider this as a model disadvantage, since in dynam-

ical systems of very large dimension like the proposed one, many long living transient phe-

nomena were found, including chimeras [54] and heteroclinic orbits [55, 56] which can

work as models for real world phenomena; in particular they were found in networks of

neuron models.

4. We were able to compare model time series of both local field potentials and individual

nodes to the experimental ones, while in neuron mass models only LFPs could be com-

pared. All main temporal, amplitude and frequency properties of SWDs by themselves and

in comparison to interictal dynamics were reproduced. This was proven by comparing

model series and spectra to experimental recordings from the most commonly used genetic

absence epilepsy models, rats of the WAG/Rij and GAERS lines.

5. An additional process for seizure maintenance was added following [39] to get the mean

SWD length close to the length reported in experiments. This approach yielded a probabil-

ity distribution of SWD lengths very close to known in literature for WAG/Rij rats.

6. The model reproduced most characteristics of coupling dynamics measured from time

series [41, 42] for pairs of channels commensurable to the LFP channels provided by the

model.

The proposed model was developed for genetic rats and therefore lacks some features of

human models. Destexhe’s model of absence seizures [5] generates 3 Hz SWDs, typical for e.g.

childhood absence epilepsy. There is also a “rodent” version of this model [72], which gener-

ates SWDs of 8 Hz, typically seen in the genetic rat models. These models are biophysically

realistic, in the sense that they consider biophysical models of the intrinsic currents and synap-

tic receptors present in the circuit. Their model presents a number of important features:

1. the seizure occurs when the cortex is made more excitable, with an intact thalamus. This

seems relevant to experiments showing that there is indeed an increase of cortical excitabil-

ity in the genetic rodent models [46] and that an intact thalamus is imperative for the occur-

rence of SWDs;

2. the model proposes also an explanation why the rats’ SWDs have a frequency of around 8

Hz, while it is typically around 5–6 Hz in cats, and 3 Hz humans.

The mechanism is proposed to be dependent of the relative strength of GABA(A) and

GABA(B) conductances in the thalamus. Our model does not differ between GABA(A) and

GABA(B) currents (the model of an individual node is not detailed enough for this), therefore

our model cannot be used to investigate the contribution of these conductances which could

play a role in the difference in frequency between rodents and people. Many different cortical

cell layers interact differently during spike and waves as was established in GAERS [73], others

showed preictal intracortical processes in WAG/Rij rats [74]. Future models might indeed

require different populations of cells in different cortical layers, also since it was found that the

superficial layers of the somatosensory cortex are indispensable for the occurrence of SWDs,

while the deeper layers communicate directly with the thalamus [75]. Also, it would be
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interesting to evaluate the predictive validity of future models regarding the effects of locally

infused GABA-ergic drugs as well as glutamatergic ones.

In the proposed model all nodes corresponding to different cell types are modeled by the

same equations. Many different cortical cell layers interact differently during spike and waves

as was established in GAERS [73], others showed preictal intracortical processes in WAG/Rij

rats [74]. Future models might indeed require different populations of cells in different cortical

layers, also since it was found that the superficial layers of the somatosensory cortex are indis-

pensable for the occurrence of SWDs, while the deeper layers communicate directly with the

thalamus [75].
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