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Resistance toward current and new classes of anti-tuberculosis (anti-TB) antibiotics

are rapidly emerging; thus, innovative therapies focused on host processes, termed

host-directed therapies (HDTs), are promising novel approaches for shortening therapy

regimens without inducing drug resistance. Development of new TB drugs is lengthy and

expensive, and success is not guaranteed; thus, alternatives are needed. Repurposed

drugs have already passed Food and Drug Administration (FDA) as well as European

Medicines Agency (EMA) safety requirements andmay only need to prove efficacy against

Mycobacterium tuberculosis (M.tb). Phosphodiesterases (PDEs) hydrolyze the catalytic

breakdown of both cyclic adenosine monophosphate (cAMP) and cyclic guanosine

monophosphate (cGMP) to their inactive mononucleotides. Advances in molecular

pharmacology have identified 11 PDE families; and the success of sildenafil, a PDE-5

selective inhibitor (PDE-5i), in treating pulmonary hypertension and erectile dysfunction

has invigorated research into the therapeutic potential of selective PDE inhibitors in

other conditions. Myeloid-derived suppressor cells (MDSCs) suppress anti-TB T-cell

responses, likely contributing to TB disease progression. PDE-5i increases cGMP within

MDSC resulting in the downregulation of arginase-1 (ARG1) and nitric oxide synthase 2

(NOS2), reducing MDSC’s suppressive potential. The effect of this reduction decreases

MDSC-induced T-cell-suppressive mechanisms. This review highlights the possibility of

HDT targeting of MDSC, using a PDE-5i in combination with the current TB regimen,

resulting in improved TB treatment efficacy.

Keywords: tuberculosis, host-directed therapy, myeloid-derived suppressor cells, sildenafil, phosphodiesterase-5

inhibitors

TUBERCULOSIS TREATMENT CHALLENGES

Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb), is among the top 10 causes
of death worldwide (1). The current 6-month regimen for drug-sensitive TB only achieves an
82% success rate after strict adherence, leaving 1.1 million people sick (1). Increasing resistance
to anti-TB drugs compounded with time-consuming and costly drug development have further
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hampered treatment. More effective, cheaper, and smarter
drug discovery approaches represent promising solutions
to these challenges. Drug repurposing, new indications for
existing drugs, is based on poly-pharmacology principles
whereby one drug is able to act on multiple targets or disease
pathways (2). Drug repurposing has been accepted globally
as being more rapid and cost-effective than have traditional
drug discovery approaches (3, 4). Several research groups
have recently published their research and novel ideas on
the introduction of HDT in the treatment of TB. Zumla
et al. made the case for parallel investments into HDT in TB,
specifically those with the potential to shorten the duration
of TB therapy and improve treatment outcomes for drug-
susceptible and drug-resistant M.tb strains (5). Sachan et al. (6)
argued that supplementing anti-TB therapy with host response
modulators will overcome antibiotic resistance and will aid in
killing non-replicating bacilli. Sachan et al. also make the case
that deployment of HDT in TB may be optimally achieved
through macrophage-targeted inhaled delivery systems (6).
Furthermore, recent studies have illustrated multiple potential
host therapeutic targets against M.tb. These include targeting
granuloma structure (enbrel and bevacizumab), autophagy
induction (vitamin D3, rapamycin, and carbamazepine),
anti-inflammatory response (ibuprofen, zileuton, prednisone,
sildenafil, and doxycycline), cell-mediated immune response
(statin, metformin, and ipilimumab), and anti-M.tb monoclonal
antibodies (anti-LAM monoclonal IgG3/IgA/IgM) (7). Most
recently, a comprehensive review focusing on HDT strategies
to improve treatment outcome in TB highlighted preclinical
studies that aimed to enhance endogenous pathways and/or limit
destructive host responses. It discussed promising preclinical
candidates and forerunning compounds at advanced stages of
clinical investigation in TB HDT efficacy trials (8). Moreover, the
National Institutes of Health (NIH) hosts a resource database
(clinicaltrials.gov) of privately and publicly funded human
clinical trials investigations on adjunct therapies for various
forms of TB. Taken together, the development of repurposed
drugs as adjunct anti-TB therapies is being actively pursued,
as they would have a positive impact on treatment success
rates globally.

Abbreviations: TB, Tuberculosis; HDT, Host-directed therapies; FDA, Food and

Drug Administration; EMA, European Medicines Agency; M.tb, Mycobacterium

tuberculosis; PDE, Phosphodiesterase; cAMP, Cyclic adenosine monophosphate;

cGMP, Cyclic guanosine monophosphate; MDSC, Myeloid-derived suppressor

cell; ARG1, Arginase 1; NOS2, Nitric oxide synthase 2; PKA, Protein kinase

A; CREB, Cyclic-AMP response element-binding protein; NFκB, Nuclear factor

kappa-light-chain-enhancer of activated B cells; TNF-α, Tumor necrosis factor

alpha; c-di-AMP, Cyclic di-AMP; STING, Stimulator of interferon genes; IRF3,

Interferon regulator factor 3; PAMP, Pathogen-associated molecular pattern;

PDE-i, Phosphodiesterase inhibitor; IL, Interleukin; PK, Pharmacokinetics; PD,

Pharmacodynamics; Gr-1, Protein gamma response 1; Ly-6G, Lymphocyte antigen

6 complex locus G6D; NO, Nitric oxide; BCG, Bacillus Calmette–Guérin;

VEGF, Vascular endothelial growth factor; GM-CSF, Granulocyte-macrophage

colony-stimulating factor; SCF, Stem cell factor; c-kitP, Phosphorylated c-kit;

mRCC, Metastatic renal cell carcinoma; Treg, Regulatory T cell; MMP, Matrix

metalloproteinase; ATRA, All trans retinoic acid; HIV, Human immunodeficiency

virus; ARV, Antiretroviral.

Inadequate Immune Response
The inadequacy of immune response balance to the M.tb
pathogen results in excessive pro-inflammatory processes
resulting in severe tissue damage in the lungs (9). This
tissue damage is required for bacterial spread, as pathogen
entry into pulmonary airways permits aerosol transmission.
Recent studies have also highlighted that the immune
pathology of TB patients is further affected by a balance
of both pathogen- and host-induced signaling events
(10, 11). Agarwal et al. showed that among 17 adenylate
cyclase genes present in M.tb, Rv0386 is required for
virulence. They demonstrated that it facilitates delivery of
bacterial-derived cAMP into the macrophage cytoplasm,
enabling M.tb to modify both its intracellular and tissue
environments to facilitate long-term survival (10). M.tb
is also capable of releasing and trafficking bioactive lipids
to exacerbate infection pathology and drive granuloma
progression leading to caseation and spread (11). Modulation
of host response by repurposed drugs in combination
with anti-TB drugs during M.tb infection represents
an adjunctive treatment approach to improve current
treatment efficacy.

CYCLIC ADENOSINE MONOPHOSPHATE
AND Mycobacterium tuberculosis

cAMP is an important second messenger signaling molecule
involved in the regulation of many cellular processes during
M.tb infection (10). M.tb manipulates and subverts cAMP
signaling pathways within infected host phagocytes, directly
influencing bacterial survival in mice (10). Upon infection,
M.tb produces a burst of cAMP within macrophages. Bacterial-
derived cAMP is delivered to the macrophage cytoplasm through
expression of a microbial adenylate cyclase gene, resulting in
increased cytosolic cAMP levels. This 3–5-fold increase in cAMP
concentration compared with baseline triggers the PKA–CREB
pathway to upregulate NFκB transcription. Tumor necrosis
factor alpha (TNF-α) secretion is elevated as a consequence
of bacterial-mediated cAMP signaling subversion during
early infection. This fosters bacterial survival by promoting
necrosis and granuloma formation (10). Cyclic-di-adenosine
monophosphate (c-di-AMP), a double-edged sword, M.tb-
derived secondary messenger, interferes with host immune
signaling pathways (12). Through STING-IRF3 signaling
pathway, c-di-AMP induces type I interferon, benefiting
the microbe through enhanced immunopathology (13). But
c-di-AMP also enhances bacterial killing and autophagy
(13). c-di-AMP is recognized via macrophage cytosolic
surveillance pathways as a pathogen-associated molecular
pattern (PAMP). Microbial c-di-AMP production benefits
the host by stimulation of autophagy as previously indicated
in animal models where M.tb expressing excess c-di-AMP
displayed loss of pathogenicity (12). Taken together, targeting
the network of cAMP-mediated signaling pathways with
repurposed drugs could reduce bacterial survival during
M.tb infection.
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PHOSPHODIESTERASE INHIBITORS

Inflammation can also be controlled by regulating the activity
of phosphodiesterases (PDEs), a group of enzymes that
hydrolyze cyclic adenosine and guanosine monophosphates
to AMP and GMP (14). Eleven classes of PDEs have been
identified in mammals, and inhibitors are available for types
1–5 (15). PDE types 1–3 are able to hydrolyze both cAMP
and cGMP, whereas type 4 and type 5 PDEs specifically
hydrolyze cAMP and cGMP, respectively. Each PDE type has
unique localization and expression profiles, in addition to their
differing substrate specificities (16). PDE inhibitors (PDE-i) have
become important drugs in human medicine, as they increase
cytosolic concentrations of cyclic nucleotides, by inhibiting
their breakdown by PDEs. PDE-3i has been used medically to
treat intermittent claudication, PDE-4i for chronic obstructive
pulmonary disease, and PDE-5i for erectile dysfunction and
pulmonary hypertension. In various models of TB disease, PDE-I
has shown success as an adjunctive treatment agent (17, 18). In
an 8-week mouse model, roflumilast, an FDA-approved PDE-
4i, augmented isoniazid action (19). Further investigation into
the exact mechanism of PDE-i success in TB mouse models
remains to be determined. Sildenafil, an FDA/EMA approved
PDE-5i, also known as Viagra R©, has been used clinically
to treat pulmonary hypertension, cardiac hypertrophy, and
erectile dysfunction by increasing intracellular concentrations
of cyclic guanosine monophosphate (cGMP) (20, 21). PDE-
5i has also shown restorative immune effects and consistent
benefits in the treatment of male genitourinary dysfunctions
[including benign prostatic hyperplasia (22, 23), lower urinary
tract symptoms (24), and Peyronie’s disease (25)], as well as
neurologic dysfunctions [neurogenesis and recovery from stroke
(26–31)], tissue and organ protection [antineoplastic agent (32)
and gastrointestinal damage (33, 34)], cutaneous ulcerations
[antiphospholipid syndrome (35), scleroderma (36, 37), and
systemic sclerosis (38, 39)], transplant and reconstructive surgery
(40–44), female genital dysfunctions [fertility and preeclampsia
(45–50)], and diabetes [neuropathy and vasculopathy (51–
53)]. In oncology, PDE-5 inhibition was tested in mice
and shown to be immune restorative by reversing tumor-
induced immunosuppression and inducing antitumor immunity
that delayed tumor progression. In particular, sildenafil has
shown to improve cancer therapy by upregulating T-cell
numbers in tumors and increasing T-cell activation and T-
cell interleukin (IL)-2 production (54). Subsequently, PDE-5i
is being repurposed and tested in human clinical trials for
treatment of malignancies.

Because of PDE-5i’s success in oncology, this was attempted in
TB owing to the long-term chronic inflammatory state common
to both diseases. PDE-5i has shown promise in laboratory models
of M.tb infection/TB disease; however, the effect of PDE-5i on
host immune responses, specifically MDSC levels and function,
in the context of human TB remains unknown. Reports show
that sildenafil addition to standard TB therapy accelerated M.tb
sterilization in the mouse lung by 1 month as compared with
standard treatment alone (55). Thus, adjunct PDE-i together with

anti-TB chemotherapy may help shorten treatment duration and
improve treatment outcome.

SILDENAFIL

Sildenafil has been well-characterized and has known PK, PD,
and safety profiles. Sildenafil is rapidly absorbed; acts within
30min to 1 h; has a short plasma half-life of 4 h; and is well-
tolerated in the dosage range of 25 and 100mg (56, 57). Sildenafil
also has a calculated bioavailability of 41% (58). Testing of drug–
drug interactions between TB medication and sildenafil would
be prudent. Moreover, both sildenafil and first-line TB drugs
(isoniazid, rifampicin, pyrazinamide, ethambutol, and rifabutin)
share interactions with cytochrome P450 (Cyp3A) (59, 60).
In a study by Maiga et al. (55), they utilized cilostazol and
sildenafil, both FDA approved, in combination with rifampin
in their in vivo experiments, with the rationale being that the
same compounds could be tested in humans. They concluded
that cilostazol does not reduce the efficacy of rifampin, but
this remains to be tested for sildenafil (55). Dash et al. (61)
used computer modeling studies to examine the docking ability
of sildenafil on M.tb. They found that according to the “TB-
drugome,” the Rv1555 protein is “druggable” with sildenafil and
has the potential to inhibit the electron transport function during
anaerobic respiration, but further validation with M.tb strains is
required to provide more accurate and reliable proof. Conclusive
evidence showing no reduction in the efficacy of TB medication
in the presence of sildenafil is still required and should be
investigated. Because coinfection between M.tb and HIV is a
significant problem worldwide, particularly in South Africa, the
interactions between sildenafil and antiretrovirals should also
be considered. Sildenafil has been shown to have no significant
change on the effect of ARV levels (saquinavir and ritonavir) (62).
Sildenafil could therefore be considered for patients with M.tb
and HIV coinfection.

MYELOID-DERIVED SUPPRESSOR CELLS

MDSCs are a heterogeneous population of myeloid cells,
at various stages of differentiation, consisting of immature
myeloid cells and also further differentiated early granulocytic
or monocytic cells, with the capacity to suppress T-cell
functions (63).

MDSC can be divided into two subsets with distinct
morphology and suppressive mechanisms: firstly, monocytic
MDSC (M-MDSC), morphologically similar to monocytes,
macrophages, and dendritic cells, expressing high levels of
NO; and secondly, polymorphonuclear MDSC (PMN-MDSC),
morphologically similar to granulocytes, expressing high levels
of ROS (63, 64). MDSC frequencies are increased in humans at
TB diagnosis (65). Others have also found that the predominant
subset of cells accumulating in the lungs of mice infected with
M.tb was Gr1+ (66). This finding is consistent with that of
Tsiganov et al., who found an association between TB progression
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and cells expressing Gr-1 and Ly-6G (67). MDSC with immuno-
modulatory and suppressive effects were also significantly
increased in the blood and lung components of TB patients (68).
While Obregón-Henao et al. (66) showed that Gr1+MDSC from
TB patients highly expressed arginase-1 (ARG1), an immuno-
modulatory enzyme that depletes L-arginine, imparting potent
immunosuppressive effects on T-cell function. Tsiganov et al.
(67) and Daker et al. (68) showed that MDSC suppressed T-cell
proliferation inmycobacterial infections in vitro via a nitric oxide
(NO)-dependent method. Knaul et al. (69) were also consistent
in showing accumulation of MDSC during TB but went further
to show that these cells, in addition to their immunosuppressive
capacity, could phagocytose both BCG and H37Rv. This work
suggests that MDSC has a dual role in TB disease: firstly

by suppressing T-cell function and secondly harboring M.tb.
Considering the immunosuppressive properties of MDSC in TB,
ablation of these cells represents a feasible target for investigation
of potential HDT.

MYELOID-DERIVED SUPPRESSOR CELL
AND PHOSPHODIESTERASE-5 SELECTIVE
INHIBITOR

Sildenafil downregulates MDSC immunosuppressive activity in
cancer. Serafini et al. have shown that sildenafil downregulated
MDSC in a mouse model and thereby restored antitumor
immunity (54). Sildenafil-mediated downregulation of MDSC

FIGURE 1 | Phosphodiesterase-5 inhibition of MDSC function. A schematic representation of PDE-5 inhibition on MDSC function. PDE-i increases cGMP, which

results in destabilization of the iNOS mRNA, reduced synthesis of iNOS, and ultimately less production of NO. It is also able to downregulate the expression of IL4-Rα,

resulting in a reduction of arginase-1 expression. This reduces MDSC-mediated suppression of T cells carried out via arginase-1 and iNOS. (Figure created using

Biorender.com).
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resulted in T- and B-cell-dependent immune enhancement
and also greatly increased CD8 T-cell recruitment to the
inflammation site. The mechanism by which PDE-5 inhibition
downregulates MDSC activity is through inhibition of ARG1
and NOS2 expression (Figure 1), which have been shown
to be critical in immune suppression (54). More recently,
studies have shown an increase of MDSC in melanoma
lesions, with an associated downregulation in T-cell activity
(70, 71). Pharmacological inhibition of PDE-5 attenuated MDSC
immunosuppressive function and significantly increased survival
of tumor-bearing mice (70, 71). A case report described
a patient with multiple myeloma who, after being treated
with a PDE-5 inhibitor, experienced a durable anti-tumor
immune response and clinical improvement from reduced
MDSC function (72). In the context of pulmonary TB, PDE-
i has shown to decrease TB disease severity, pathology, and
bacillary load in mouse models, but their effect on host
immunity during human M.tb infection and TB disease remains
poorly defined (17–19, 73).

CONCLUSION

The demonstration of a biologically significant role of MDSC
during M.tb infection would have important implications for
clinical studies on TB in South Africa and across the world.
Theoretically, drugs that could target MDSC directly or its
associated mechanisms could prevent MDSC accumulation
and function, potentially overcoming MDSC-mediated immune
suppression in TB. These would include medications that would
induce differentiation of MDSC into mature non-suppressive
cells, inhibit MDSC expansion from hematopoietic precursors,

and block MDSC signaling pathways. These strategies are
currently explored in mouse models in ongoing clinical trials
testing modulation of MDSC by pharmacological intervention
in cancer patients, focusing on sildenafil, a substance limiting
MDSC immunosuppressive function. PDE-5 inhibitors seem
promising in TB models, but the mechanism of PDE-5i
improving host Mtb control has not been established. Neither
has the role of sildenafil on human MDSC in the context of
TB been evaluated. Further groundwork is needed to better
understand how PDE-5i might be beneficial in combination
with TB treatment. Thus, examining the potential role of PDE-
5i-mediated MDSC modulation and resultant restored T-cell
function in the presence of MDSC should be investigated in the
context of TB disease. These investigations will pave the way
toward a better understanding of the basic mechanisms of host
immune defense and the human capacity to develop immune
responses to these infections. In conclusion, data from future
studies could serve as the required scientific evidence for clinical
investigations using sildenafil administration as adjunct therapy
in TB.
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