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In rhinoplasty, it is necessary to consider the correlation between the anthropometric indicators of the nasal bone, so that it
prevents surgical complications and enhances the patient’s satisfaction. The penetrating form of high-energy electromagnetic
radiation is highly impacted on human health, which has often raised concerns of alternative method for facial analysis. The
critical stage to assess nasal morphology is the nasal analysis on its anthropology that is highly reliant on the understanding of
the structural features of the nasal radix. For example, the shape and size of nasal bone features, skin thickness, and also body
factors aggregated from different facial anthropology values. In medical diagnosis, however, the morphology of the nasal bone
is determined manually and significantly relies on the clinician’s expertise. Furthermore, the evaluation anthropological
keypoint of the nasal bone is nonrepeatable and laborious, also finding widely differ and intralaboratory variability in the
results because of facial soft tissue and equipment defects. In order to overcome these problems, we propose specialized
convolutional neural network (CNN) architecture to accurately predict nasal measurement based on digital 2D
photogrammetry. To boost performance and efficacy, it is deliberately constructed with many layers and different filter sizes,
with less filters and optimizing parameters. Through its result, the back-propagation neural network (BPNN) indicated the
correlation between differences in human body factors mentioned are height, weight known as body mass index (BMI), age,
gender, and the nasal bone dimension of the participant. With full of parameters could the nasal morphology be diagnostic
continuously. The model’s performance is evaluated on various newest architecture models such as DenseNet, ConvNet,
Inception, VGG, and MobileNet. Experiments were directly conducted on different facials. The results show the proposed
architecture worked well in terms of nasal properties achieved which utilize four statistical criteria named mean average
precision (mAP), mean absolute error (MAE), R-square (R2), and T-test analyzed. Data has also shown that the nasal shape of
Southeast Asians, especially Vietnamese, could be divided into different types in two perspective views. From cadavers for bony
datasets, nasal bones can be classified into 2 morphological types in the lateral view which “V” shape was presented by 78.8%
and the remains were “S” shape evaluated based on Lazovic (2015). With 2 angular dimension averages are 136:41 ± 7:99 and
104:25 ± 5:95 represented by the nasofrontal angle (g-n-prn) and the nasomental angle (n-prn-sn), respectively. For frontal
view, classified by Hwang, Tae-Sun, et al. (2005), nasal morphology of Vietnamese participants could be divided into three
types: type A was present in 57.6% and type B was present in 30.3% of the noses. In particular, types C, D, and E were not a
common form of Vietnamese which includes the remaining number of participants. In conclusion, the proposed model
performed the potential hybrid of CNN and BPNN with its application to give expected accuracy in terms of keypoint
localization and nasal morphology regression. Nasal analysis can replace MRI imaging diagnostics that are reflected by the risk
to human body.

Hindawi
Computational and Mathematical Methods in Medicine
Volume 2022, Article ID 5938493, 18 pages
https://doi.org/10.1155/2022/5938493

https://orcid.org/0000-0002-2747-8210
https://orcid.org/0000-0001-6290-8952
https://orcid.org/0000-0003-0526-0736
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5938493


1. Introduction

In today’s society, appearance plays a crucial role and affects
almost all, as a reaction to the need for beauty and to ensure
the symmetry of the face, especially the nose, which is the pro-
truding component of the human face that has gained the
interest of widespread science in the process of recognizing
individuals. Rhinoplasty is supposedly known as the alterna-
tion, restoration, or reconstruction of the nose. Reconstructive
surgery changes the appearance of the nose for beauty pur-
poses and restores the form and functions of the nose. One
of the primary reasons that people require rhinoplasty not
only for beauty but also the nasal bone is the thinnest and
softest of the facial bone [1], in which 23.2% of the facial
fracture from a retrospective review made of 151 patients over
a 4-year period was nasal bones, shown by Alvi et al. 2003 [2].
Furthermore, forty-nine percent of broken facial nasal bones
were immediately affected when drivers or passengers were
involved in a collision, analyzed by Cormier and Duma 2009
[3]. From Byun et al., male patients surpassed the number of
female patients by 3.3 times for the age of 20. The most com-
mon cause of injury overall was abuse [4]. Nasal injuries can
be mentioned as penetrating trauma-affected by bombs, war,
or breathing problems, could be a deviated nasal septum or a
sinus, or even treats birth defects problem like cleft palate dis-
ease [5] especially cancer patients with necrotic wounds that
need surgery [6, 7]. The other factor is genetic inheritance of
the dorsal humps or acquired during growth [8]. For almost
all people, these naturally occurring bumps on the nose have
nothing unhealthy or risk [9], while some feel not confident
with dorsal humps appearing. Moreover, according to the
concept of the Eastern, especially Asian, morphology of nose
surgery depends on the desire and purpose to change fortune
[10]. As a result, in addition to correcting a visible facial defect
caused by the nose, the nasal bone is critical in balancing the
proportion of the face between the need for adaptation and
the nose and embellishing for self-confidence. However, its
diverse shape and human presence are correlated with life
phases, gender, race [11–15], and body mass index (BMI)
[12]. The nose shape is designed to regulate its efficiency as a
sense of smell as well as to play an important role in breathing.

In the cutting-edge of the technological revolution, diag-
nostic is taken easily and flourished in rhinoplasty. With
modern clinical techniques of development, many studies
have helped people to diagnose the bone structure through
the epidermis without needing to do surgery. Thanks to dig-
ital medical images, the statistical analysis combines vision
machine with computer aid, plastic surgery now can be per-
formed much easier. The doctor not only detail described
anatomical variation of nasal septum by digital scanned of
cadaver specimens [16] but also analysis the development
of nasal septum according to specific age and gender by
magnetic resonance imaging (MRI) [17]. Beyond that, com-
puterized tomography (CT) scan was used efficiently to
measure and estimate nasal septal cartilage area [18]. CT
scans have been an advantage for medical treatment and
diagnostics. However, following the nearest researches, ion-
izing radiations impose risks to human health including
occupational risk, patient safety, and also the environment

[19]. Therefore, CT scans are also harming patients with
ionizing radiation which is a known human carcinogen
[20], resulting in a possible public health disadvantage, with
anatomical visualization intended to implement diagnostics,
improve outcomes, and prevent invasive surgery. Growing
health issues around radiation hazards are now driving for-
ward efforts to limit preventable CT scans and possibly
reduce radiation exposures [21]. Therefore, facial anthropo-
metric analysis is one of the most commonly used alternative
method for lowering operating costs while improving
patient welfare [22]. This study presents an efficient method
to analyze facial anthropometric with the support of deep
learning in the diagnosis of nasal morphology with depen-
dence various. As a result, this study hopefully contributes
a rapid and precious model applying in surgical preparation
and nose modeling. Based on the result, defects under sur-
face skin layers had been located by the surgeon that can
limit the minimum damage and do not leave the scar after
surgery. Facial anthropometric analysis [23] with computer
aid is almost applied in many fields might be mentioned as
diagnosing medical images, surgical planning [24], facial
reconstruction surgeries, facial security [25], and also foren-
sic investigation [26]. CNNs used an indirect anthropometry
technique on approach research to provide the best digital
image diagnoses where conventional calculation is restricted
due to the need to measure on human skin using a purely
manual measuring instrument, and since human skin is a
soft surface, the ruler sinks into the skin, leading error to
be recorded. On the other hand, it would not necessitate
overt interference by medical personnel or have an effect
on the human. Modeling is an important tool for under-
standing the linkages between nasal bone structure and as
well as for predicting nasal morphology under a self-
consistent framework. Machine learning models, such as
the most widely used the artificial neural networks, have
been used to efficiently classify as a feature of its influencing
factors for rapidly depicting the interdependence between
the nasal bone and facial landmark, thereby have been con-
sidered a better choice for nasal bone detection. For instance,
fracture prediction by CNN [27] and R-CNN [28] is consid-
ered critical to early warning and well treatment of planning
surgery. Indirect measurement models with CNN have
received extensive attention over the last decades; Anjit
and Rishidas [29] show the facial recognition model com-
posing with two-layer deep CNN for feature extraction and
SRC for classification. A variety of machine learning tech-
niques have been used to predict nasal problems, such as
the back-propagation neural network (BPNN) for the iden-
tification of the nasal bone [30], the long short-term mem-
ory neural network (LSTM) in SAHS event detection based
on breathing [31], the random forest (RF) [32], and the sup-
port vector machine (SVM) [33]. Hybridization approaches
integrating different machine learning techniques [34] have
also been explored in recent years to improve nasal bone
morphological prediction reliability and accuracy, with satis-
factory morphology results. In this study, the hybrid of CNN
and BPNN proposed is an interesting model enabled to not
only locate multiple keypoint attributes at once by also
investigating the association between anthropometry and
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morphometric of the nasal bones by determining major
facial landmarks and the other additional body indexes.
The positions of landmarks and some specific distances
measured on cadavers were correlated with the location of
nasal landmarks on the facial surface. The predicted result
can be visualized in a 2D map.

Following anthropometric, facial landmarks (keypoints)
are used to localize and represent salient regions of the
faces which can be easily determined by Euclidean geome-
try on the projection plane. In addition, indicated by Far-
kas et al. [35] that classical landmarks obtained by direct
anthropometry would typically also be obtained by 2D-
photogrammetry. Moreover, the dominant technique for
defining the various anatomical features was the use of direct
anthropometric, while actually, the most generally employed
method is indirect anthropometry, 2D-photogrammetry
instead of direct anthropometry pointed out by Farkas et al.
[36–38]. Their method described a widely used series of mea-
surements to describe the human face. The anthropometric
analysis is essential to provide a detailed description of face
anthropometry and its various important applications to
define nasal morphology in terms of projective measure-
ments, tangential measurements, and angular measurements.
Nasal bone morphology and its correlation with the other
body indexes is a central part of the anthropometric analysis.
The bony shape could be classified by different types in dis-
tinct ways. For instance, in the profile view, Hwang et al.
[39] proposed the original shape of the nasal bone, while
Uzun and Fikri [40] are classified the original into the easier
way. On the other hand, Lazovic et al. showed the nostril
models and nasal profiles in young Turkish by sex [41],
meanwhile Sugawara [42] described properly organize their
procedures inside the radix and bone and cartilaginous vaults
which classify the nasal shape into two morphologies which
are “V shape” and “S shape” from measured distances on
Caucasian bony. In this study, analysis of Vietnamese nasal
bone shape had been presented and classified following two
perspective looks as Hwang et al. (2005) and followed by
Lazovic (2015). However, we force open surgery to prolong
the patient’s recovery process and it is difficult to collect data
due to muscle components and soft tissue cover surrounding
the nasal bones, so it needs to be analyzed from the nose’s
surface. On the other hand, in the fields of otolaryngology
and anthropology, as there are distinct variations between
races in form and scale of the nose, there are undoubtedly
certain differences in the nasal bone’s shape and sizes. The
shape of the various Turkish’s nose is a sign indicating spe-
cific race, age, and sexual dimorphism which introduced by
Lazovic et al. [41], and it is possible to pass through the
parameters of the human index; these characteristic features
to diagnose the morphology and also the type of nose that
one possesses. Hence, it is possible to predict the size and
morphology of the nasal bones through physical indicators
of the body. Secondly, based on Sugawara’s research on nasal
morphology in typical rhinoplasty of Asian [42] by topolog-
ical analysis method to show the correlation of nose shape
based on the shape of the external surface of the nose, the
method of collection image acquisition, simulation by man-
ual photo editing software by physician experience, shows

the change of nose before and after surgery from straight
and horizontal images and also shows the correlation of fat
layer, muscles, and nasal bones through the experiments.
However, it should be noted that detecting nasal anthropol-
ogy by hand was laborious, time-consuming, and nonrepea-
table in the preceding experiments. Advances in neural
networks continue to separate nasal skeletal into distinct
groups using linear measurement and angular dimensions.
As a result of analyzing the previous related works, the
importance of using hybrid deep learning in regression nasal
bone morphology based on human body variables may be
studied in order to improve and accelerate the diagnostic
process for determining nose shape rather than utilizing han-
dle photo may be studied. Furthermore, good manipulation
of these contributing parameters can simulate and improve
the morphology of the effect on a 2D snapshot. Furthermore,
based on participant data, this research concentrates on
remarks about the typical nasal bone form of the Asian group
based on external 2D shapes provided significantly. The gen-
erated nasal sizes are automatically based on a photograph
without fixing the head, which is a sophisticated system with
the trained model. Following Introduction, this study is
organized to outline the material and methods in Section 2
and introduce the methods and feature definition of nasal
anthropology in Section 3. Section 4 presents the hybrid of
CNN and BPNN. Experiments and results are shown and
remarked in Section 5.

2. Materials and Methods

2.1. Data Collection. The study is aimed at using digital
images to be able to generate the facial landmark based on
nasal anthropology most accurately and predict its morphol-
ogy. The procedure and computer simulation process are
important to choose suitable photographs that may compare
the exact model provided by the parameters derived by dif-
ferent human indexes. Practically, firstly, patients on project
have been conducted to determine facial landmarks with cal-
iper and using stainless steel ruler for reference; however,
these custom works, though, are often time-consuming and
costly. Therefore, the hybrid of CNNs and BPNN-aided
diagnostic for nasal anthropology from digital 2D images is
required; facial landmarks on human’s skin could be
detected in a second with high precise instead of traditional
methods. However, the range by which a picture is taken
influences the face’s position in the shot. Image distortion
will appear when the focal length of the lens is less than
50mm. Moreover, for intraoperative photos, a macrolens is
especially useful and recommended when the focal length
of the lens is greater than 70mm [42]. The camera Canon
ILCE-7M2 was used in this study. The image for image pro-
cessing was captured by custom setting at 1/60 second, and
aperture inlet is f/6.3. Focal length of the lens is 55mm,
ISO 200. The required participant must never have facial
plastic surgery and are not affected by eye problems in which
they asked to sit still in a position to avoid muscle fatigue, or
position moving while cameras obtain pictures in the short
period time. This work helps hold statement of the partici-
pant at the same moment and reduce as much as possible
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image round error. Cameras are placed in the same mechan-
ical system which the first camera is shot straight and per-
pendicular projection with frontal plane. The focus point
captured directly at the closest point from the camera lens
is the nose tip (prm). The second camera is placed at the lat-
eral plane, perpendicular to the median plane and the Frank-
fort horizontal plane indicated on the lateral face parallel to
the ground. The focal length of the lens is the same distance
as the human nose as the first camera. The third camera was
placed on the basilar plane; it would adjust to catch the nos-
tril at the bottom view. Efforts to capture images from
objects were made to ensure true profile views in 3 frame-
based settings. Participants were asked to keep their head
in horizontal plane, coronal plane, and sagittal plane at the
same time. However, photographer care is needed to avoid
shaking. Therefore, the experiment was established with uni-
fication of the best shooting angle with constant focal length
and shooting angle. These experiments make sure to not
change their posture and keep their face in neutral emotion
in the short period to ensure a true record of object
measurement.

2.2. Datasets, Preprocessing, and Augmentation. In this
research, experiments are set up and collected at the Univer-
sity of Medicine Pham Ngoc Thach by participants individ-
ually. The databases contain facial images by multiviews of
partners with information of gender, ages, and Asia origin,
specifically Southeast Asia. Data consisted of 3 different data
files described in Table 1: Firstly, the entire study group
(N = 2000) served with facial images by 3 perspective views
in which front view, lateral view, and basilar view; the ratio
of men and women, respectively, is 4.36% and 95.64%, with
the age means 35:09 ± 11:56 year old as the training file in
CNN for landmark detect. The procedure has one main con-
figuration parameter, which is the size of the train and test
sets. Image data of 2000 participants and augmented data
have been separated into a training set with the size of 80
percent of means that the remaining 20 percent are allocated
to the test set; this subject file has been used for landmarks
defined by CNN training. Secondly, in total, data for 182
healthy participants were randomly analyzed. Image of 81
males (in which 44.5%) at the age 22:01 ± 1:39 and 101
females (in which 55.5%) with the age means 21:88 ± 1:68
was considered as the evaluate file. The mean BMI was
22:34 ± 12:8 with the minimum and maximum BMI were
18.2 kg/m2 and 32.7 kg/m2.

Finally, facial of 33 cadavers, 18 males (in which 54.5%)
and 15 females (in which 45.5%), with an average age at

64:9 ± 13:9, have been collected as the same view of healthy
humans both originally, and yet operation, combined with
the body’s input parameters was used to predict the nasal
shape based on BNN. All input volumes were resized to
224 × 224 pixels with normalization of the pixel on volumes.
Image processing had used to resize the height and width of
the image at the same ratio. In addition, aggressive data aug-
mentation is used to improve or enrich the variety of data
[43], especially the data is lacking because of limited by the
number of volunteers or participants and also prevent over-
fitting when evaluating model with reality. The method was
used with the batch generator framework such as spatial
augmentations, colour augmentation, noise or cropping that
serve as input data for the processing, and measuring system
shown as the framework of proposals in Figure 1. Finally,
images have been normalized following this function:

opvh,w =
ipvh,w/255
� �

− 0:5
σ

, ð1Þ

where opvh,w, ipvh,w, and σ are the output pixel value,
input pixel value, and standard deviation, respectively.

2.3. Training Architecture: Nasal Shape Regression Based on
Facial Anthropology. First of all, each picture will be taken
with a stainless steel ruler with a scale of at least 1mm with
an error of 0.02mm. Secondly, from figures, marked points
were provided by the doctor and expert’s medical evaluation.
The evaluated figures will be numbered and labeled with
markers as the testing data. The proposed system shown in
Figure 2 is divided into 4 stages. In stage 1, the CNN model
is used at first trained with characteristic features of the
human nose in a semisupervised method with 2000 samples.
Clinical specialists have hand-labeled facial landmarks
marked for first training of CNN. The dataset would be col-
lected including feature extruded and localization of feature
map. Through CNN, the model allows the unlabeled dataset
to be able to identify specific facial points by three related
direction views of the photographs. After that, predicted
values have been implemented on both 182 living humans;
each error was used to update the set of values for the weight
of layers until loss score accordingly decreases. The CNN
stage is allowed to provide the relatively accurate position
of testing objects, specifically the location of landmark
points which expressed by ðX, YÞ and ðY , ZÞ coordinates.
Qualified samples are returned to test the unlabeled dataset,
evaluating the first point ðX1, Y1Þ to n-point ðXk, YkÞ values
from true labels associated with predicted labels of CNN.

Table 1: Characteristics and standard parameter for input training and validation by 3 specific groups.

Characteristic Training group External evaluation group Internal evaluation group

(n = 2000) (n = 182) (n = 33)
Male 88 81 18

Female 1912 101 15

Age 35:09 ± 11:56 22:01 ± 1:39 64:9 ± 13:9

BMI 24:86 ± 10:43 22:34 ± 12:8 N/A

Mean ± standard deviation. N/A: not available.
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(a) (b)

(c)

Figure 1: Anthropometric landmarks have been indirectly measured in three perspective views; all dimensions are in millimeters (mm)
based on split length on the ruler belongs with an image. Image modified with permission. tr: trichion; g: glabella, s: sellion; r: rhinion;
en: endocanthion; ex: exocanthion; mf: maxillofrontale; prm: pronasale; al: alare; ac: subalare; sn: subnasale; zy: zygion; li: labrale inferius;
ls: labrale superius; ch: cheilion; pg: pogonion; gn: gnathion.
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Figure 2: The framework of proposals in nasal bone shape prediction.

5Computational and Mathematical Methods in Medicine



The trained model will be implemented to produce data
about distance and face corners of specific enrollment
points. Anthropological training for facial landmark detec-
tion carefully considerably chose 29 keypoints. With the
same idea, cadavers were being measured including three
perspective photos of pre- and postoperation; this work
helps compare the relative of the nasal bone and the other
factors such as skin thickness or subcutaneous fat. Stage 3
described the measurement from keypoints detected by
CNN. Each landmark position on the face will be repre-
sented by a characteristic feature to help identify and build
up the nose size with standard distance, which is shown in
step 2 and step 3. The computer reconstructs the nose by
mesh visualization based on the general size and shape of
the nose, which is then compared to the actual size of the
person. The neural network used the nose size as the input
variable that predicts nasal bones from the physical body
index, corresponding to the participant. In the final stage,
thus, the model reach the appropriate accuracy level con-
tinues as a part of input layer combining with diverse vari-
ables listed as ages, genders [11, 13, 15], human body
indexes (BMI) [44, 45], and race [46, 47] known as height
and weight, estimating the relationship between the other
factors with the shape of the nasal bone [48, 49]. As the
result, based on CNN results on detection of the landmark,
BPNN would diagnose the nasal bone shape properties with
all facial features and body parameters.

3. Nasal Anthropology and Feature Extraction

According to human anatomy, the nasal bones have been
enclosed and preserved by skin, ligament, and subcutaneous
fat; the thickness of which may be substantially determined
by CT or ultrasound. These approaches have now shown
adverse impacts on public wellbeing. Photogrammetry is
thus a standard and safety tool used to quantify features
taken from photography, namely, the anthropometry
method. Anthropometry is the bioscience of human body
calculation [50]. Anthropometric results reveal several fac-
tors that focus on knowledge of the distribution of measures
across population groups. In this study, shape of the nose is
being recognized the anthropometric knowledge and using
an artificial neural network to integral in the training model
which expected result identify and distinguish various face
easier. However, the nasal bone was hard to determine
exactly the dimension of bone due to the thickness of the
soft tissue known as the skin layer and subcutaneous fat
because an individual is quantitative. Therefore, landmark
points are the result of anthropometric evaluation with the
identification of particular locations personally, described
in terms of noticeable or tangible characteristics of the
subject. For the ease for the patient and specialist, a visual
history of the rhinoplasty procedure is provided with a com-
parable standard of excellence, beginning with the preopera-
tive consultation and progressing after surgery. Although the
anatomical structure of the nose consists of two main parts:
the nasal bone and the nasal cartilage. Nasal bone shape
based on the facial feature was the most interesting. Linear
and angular measurements had been sequentially imple-

mented on different perspective standard images based on
the facial keypoint. Plastic and oral/maxillofacial surgery had
been accepted as a method of determining the position and
size of the nasal bones thanks to the palpable characteristics
marked on the patient’s skin surface known as keypoints or
landmark points. Facial keypoints are interest features same
as the others appearing on every human face. Face authentica-
tion, face recording in photographs and videos, face recogni-
tion, facial signals for medical care, and facial attribute
inference are all helpful features in face analysis [51]. Indirect
measurement on digital 2D-photogrammetry instead of using
a calliper, compass, and casual equipment as direct measure-
ment is much easier, faster, and given higher precision.

3.1. Metric Linear Measurement and Angular Measurements
on Facial Surface. A reference plane called the Frankfort
horizontal plane is used to measure the datum and minimize
measurement errors. Frankfort horizontal plane is relatively
parallel to the ground which is defined as a plane from the
Porion (Po) to the Orbitale (Or) which is shown in
Figure 1(b). This rule assures consistent pretreatment and
posttreatment head position. Facial anthropometric points
are symmetrical across the median plane in an uncertain size
and uneven, a sequence of comparisons between any of these
landmarks shall be carried out using carefully defined tech-
niques and measurement equipment. In this study, the sys-
tem uses a total of 29 landmark points including 10 pairs
of these points that describe the pose of the nose. The land-
marks with linear measurement and angular measurement
are typically identified by abbreviations of corresponding
anatomical terms which are described briefly in Figure 1.
These locations of landmark have been collected and pro-
jected from 3 orthographic planes which 90 degrees perpen-
dicular to each other. Anterior view as Figure 1(a), lateral
view shown in Figure 1(b), and basilar view shown in
Figure 1(c), along with line drawings, head position has the
sign focus on lens focal length. As a result, measurements
are repeated by the same individual are accurate and quanti-
ties of different individuals can be compared effectively.
Points of reference reflect specific features on the face of
each human and thus serve as the basis for the form of the
correlation of facial parts; each person would have his/her
characteristics on nose shape. Collected 2-dimension images
are used to measure; however, the landmark points will not
be on the same Cartesian coordinate system, leading to the
need for a method to measure the distance 2 specific points
in different planes.

The distance transform is a useful method in computer
vision and pattern recognition because it determines the dis-
tance between each object point and the closest boundary.
The binary image determines the distance between each
pixel and the closest nonzero pixel in the distance transform.
Euclidean norm is satisfied to use in this study which helps
determine the straight-line distance between pixels to pixels
and evaluated the measurement of specific points of the
image. In the 2D Euclidean geometry, from the Cartesian
coordinate, distance between 2 points with start point is wi
= ðw1,w2,w3, ⋯wnÞ and the endpoint is ui = ð u1, u2,u3, ⋯
unÞ following the Pythagorean theorem which is defined as
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d wi, uið Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
n

i=1
ui −wið Þ2

s
: ð2Þ

The image provides the original dimension with H ×W
pixels, which are transferred as dimensional Euclid, namely,
image space. Each pixel is represented as a point in the
image space. Since the image space algebra can be conve-
niently expressed as seen above, the Euclidean distance of
images can be calculated using metric coefficients hij which
are defined as

hij = <gi, gj > =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<gi, gi >

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi<gj, gj >
p

∗ cos θij, ð3Þ

where <, > is the scalar value, and θij is the angle
between gi and gj. All the pictures with checked landmarks
and constructs were saved as noncompressed TIFF files.
These all files were set to millimeters and analyzed with
the same metric coefficient. In frontal view, the anthropo-
metric ratios used to estimate intranasal symmetry [51, 52]
were nasal height (the glabella to the subnasal) to width
ratio, described as the distance between the maxilla-frontal
right and left, ratio of mid-alar width shown as mid-alar-
right to mid-alar-left, ratio of nasal base width shown as
sub-alar-right to sub-alar-left, and total nose width from
alare-right to alare-left, finally, the angle ratio between the
dorsum’s long axes and the midline ratio in alar asymmetry
(Figure 1). The frontal process of the maxilla can also have
flat, convex, or concave forms. In the lateral view
(Figure 3), the research focused primarily on the tangent
and angle that follows the nasal dorsum. Facial landmarks
are collected automatically by the CNN model which helped
to describe and predict of nasal bones based on these angular
measurement. Measurement had been implemented by nine
angles on facial skin and four angles on nasal bone. On facial
skin, based on keypoint, every 3 identified keypoints in the
lateral image could be defined as an angle. The nasofrontal
angle, nasofacial angle, and nasomental angle shown in

Figure 3(a) and other angles shown in Figure 3(b) described
the morphology of the nose in general. The kyphion angle
shown listed is the special angle that indicates the dorsal
hump of nasal; it just appears in some specific participants.

3.2. Nasal Bone Properties. The nasal bones are two small
bones which are supported by the bony septum body and
are situated in the upper-middle of the vertical axis [52]. It
is in charge of the shape of the nose or its corrective appear-
ance, nasal bones has 4 borders: superior, medial, lateral,
inferior namely, caudal edge of nasal bone known as rhi-
nion, nasofrontal sature border which its top place called
glabella, and lateral limited by nasomaxillary satures. Rhi-
nion is where the nasal bones meet the cartilage; in different
people, this bone will develop differently; it is considered a
recognizable part of the hunchback of the bone and the
cartilage layer slipped onto each other or mismatched. The
keystone region shown in Figure 4(b) depicts the association
of the bone irregularities and cartilaginous frameworks
described by the kyphion. The kyphion angle listed in
Table 2 is usually known as dorsal humps. These anomalies
may result in a hump in the shape of a person’s nose, rather
than a flat slope from the bridge to the tip. A dorsal hump
may also form as a result of trauma or accident. A bruised
or fractured nose can cause a dorsal hump if the cartilage
and bone heal unevenly. It is an essential anatomical struc-
ture that provides cohesion at the osseocartilaginous junc-
tion [9] and nasal bone analysis based on anthropometry
is required to predict morphology of the nose through spe-
cific facial landmark.

The correlation between anthropometric indicators of
the nasal bone has been analyzed and recorded from Viet-
namese cadavers. The sizes of the nasal bone were measured
by horizontal and vertical planes. In the horizontal plane, d3,
d4, and d5 shown in Figure 4(a) described the upper width
of the nasal bone, the lower width of nasal bone, and the
narrowest, respectively. On the other side, the narrowest seg-
ment of the nasal bone is considered when its location would
above the eye and equal to or below the sellion (S). The

(a) (b)

Figure 3: Angular measurements based on indirect anthropology on the patient’s skin with angular measurement to be listed as (a) g-n-prn,
n-prn-pg, g-sn-pg, n-prn-sn and (b) n-prn-sn, cm-sn-ls, li-sm-pg, g-sn-pg. Image used with permission of subject.
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average length of the nasal bone (N-R) is described by d2 in
the vertical plane. There are the correlation between the
upper widths with the narrowest segment of the nasal bone;
the correlation between the distance from nasion (N) to
sellion, the distance from sellion to rhinion (R), and the dis-
tance from S to Kyphion (K) at nasal hump when it possible
seen. Last but not least, in the lateral view (Figure 4(b)), four
angular dimensions included the nasion angle, dorsal profile
angle, rhinion angle, and kyphion angle shown in Table 2
have been implemented for determining the nasal shape
and also showing the relationship between the nose surface
and the inner bony which separated by the thick of skin layer
and the other factors.

One of the most important factors to consider when
conducting rhinoplasty is skin thickness. The upper half of
the nose’s skin is thinner and flexible, while the lower half
is thicker and more adherent. Analyzed from 33 adult
cadavers, average skin thickness was noted to be greatest at
the nasofrontal suture in which 1:25 ± 1:22mm and least
0:6 ± 0:5mm at the rhinion. Alharethy et al. [48] noted that
the mean overlying skin thickness at the nasion was 3:89 ±
1:48mm and at the rhinion was 1:16 ± 0:6mm. The reason
might be any nasal changes associated with ages and races
(e.g., nasal lengthening or tip droop) can be caused by
changes in the soft tissue that covers the nose.

4. Hybrid of Convolutional and Back-
Propagation Neural Network

With the above preprocessing, augmentation, and partition-
ing of the nasal and facial anthropological datasets, the CNN
and BPNN architecture especially for the morphological
regression of the nasal bone is proposed. In this stage,
CNN obtained the top results in many complicated classifi-
cation and regression tasks. First of all, the original image
was well prepared like described above. The augmentation
and preprocessed images continually jointed the convolu-
tional network as the input. The convolution network struc-
ture classifies facial keypoint into 29 points on the face in
frontal, lateral, and basal images, which is shown in
Figure 5. The labeled images on 3 perspective views were
fed to each feature extractor to obtain the feature map sepa-
rately. Various networks, such as ResNet, Inception, Mobile-
Net, DenseNet-264, and VGG can be used as feature
extractors, and feature maps of different dimensions can be
obtained according to each network’s structure. ResNet is a
method consisting in adding feature maps, while DenseNet
is a structure that concatenates feature maps. In this study,
five models are used to extract features by continuously con-
necting the feature map of the previous layers with the input

(a) (b)

Figure 4: Distances are practically measured for the nasal bones, in which horizontal d4, d5, and d3 are the width of nasal bones at the
nasomaxillary suture line, nasion, and nasofrontal suture, perspectively. With red line, it illustrated the distance between nason and
sellion (dimensions are shown in mm) (a). Nasal bone had been removed, ligament and soft tissue captured from the right side (b).

Table 2: The nasal angles on the skin surface are listed from 1 to
9 and the measurement angles are made on the nasal bone from
10 to 13.

No. Abbreviation Name

1 g-n-prn Nasofrontal angle

2 pg-n-prn Nasofacial angle

3 g-sn-pg Facial angle

4 n-prm-sn Nasomental angle

5 n-prm-cm Nasal angle

6 cm-sn-ls Nasolabial angle

7 α Middle facial height angle

8 β Lower facial height angle

9 n–k–r1 Nasal kyphion rhino

10 NA Nasion angle

11 DPA Dorsal profile angle

12 KA Kyphion angle

13 RA Rhinion angle
1k: kyphion. This feature appeared in some cases, affecting the shape and
profile of the nose.
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of the next layer in order to compare the efficient of extract
feature map. Figure 5 shows CNN architecture in short nine-
teen layers with 16 convolution layers, 3 fully connected
layers, 5 MaxPool layers with stride 1, and a Softmax layer.
For all models, an Adam optimizer with learning rates
0.001 over 100 epochs is used. A batch size of 100 is used,
with a validation split of 0.2. Each layer of the first convolu-
tion layer has a filter size of 3 × 3 for each layer. For each
subsampling, the first pooling size of 3 × 3 and the next
pooling size of 5 × 5 are replicated. After each max-pooling
layer, a dropout is created. The dense layer is applied after
the layer has been flattened.

The vanishing gradient can be improved, and feature
propagation can be enhanced using this architecture. The
depth of the feature map derived using all five networks is
calculated by the growth rate and number of layers in each
block, while the width and height are determined by the
number of downsamplings. Since a pretrained network was
used in this analysis, an input image of 224 × 224 × 3 is
transformed into a feature map of 14 × 14 × 512 after filter-
ing through the feature extractor. Each feature map from
the 3 perspective images is converted into a vector using
global average pooling and then concatenated into a single
vector using concatenation. A dense layer is being used to
perform the final classification. Pytorch was used to design
the proposed network.

In this study the input image is set to W ×H × C where
C is number of channels andWidth × Height ðW ×HÞ is the
input dimension. The input image is given as an input to the
first convolutional layer with filter ð3 × 3Þ of size with recti-
fied linear unit (ReLU) activation function. Output will be of
the size ðW −H + 1Þ × ðW −H + 1Þ. It is essential to sum
the contributions from the previous layer cells, weighted by
the filter components, add a bias term, and then apply the
activation function. The second convolutional layer was cre-
ated using the same technique. The contribution of each
convolutional layer was calculated using

Fk
ab = σ 〠

m−1

i=0
〠
m−1

j=0
wijx

k−1
a+ið Þ b+jð Þ

� �
+ bias

 !
, ð4Þ

where m is a number of neurals in the k − 1 layer. The
max-pooling layer takes a ðk × kÞ region and outputs a single

value which is the maximum for that region. The input layer
is ðn × nÞ layer, and the output will be a ðW/kÞ × ðn/kÞ layer,
as each ðk × kÞ block is reduced to just a single value via the
max function.

∂L
∂wij

= 〠
w−h

a=0
〠
w−h

b=0

∂L
∂xkab

∂xkab
∂wij

, ð5Þ

where L is a specified error function. The partial of L
with respect to each neuron output is the error that needs
to compute for the previous layer. The gradient component
for each weight is given below function using the chain
rule (6):

∂L
∂xkab

=
∂L
∂ykab

∂ykab
∂xkab

=
∂L
∂ykab

σ′ xkab
� �

: ð6Þ

Two convolutional layers have been configured to fully
connect the dense layer and dropout layer of threshold
0.25. Since there are more than two output classes, the output
layer has been used with the Softmax function. After initial-
izing the Softmax at the output classes, the position of key-
points will be represented by a vector of two components,
as seen in Figure 5. Keypoints are extracted from image as
the feature map; each point would show by the position in
2D coordinate, represented by ðxi, yiÞ. Next stage, these
points were used to calculate the distance in pair and angles
as described in Section 3; for instance, alar base width would
be calculated by the dimension between alar right ðx14, y14Þ
and alar left ðx16, y16Þ. The nasal width is correlated with
the dimension between nasomaxillary sature at right ðx4, y4
Þ and nasomaxillary sature at left ðx7, y7Þ, etc. The distance
method is implemented as the same on the cadaver’s nasal
bone dataset during surgery. After all, the nose distance of
the participant and their morphology combined on nasal
bone dimension of the cadaver with their nose morphology
yet operation are continuing as the input of the special
back-propagation which described in Figure 6.

First known, the internal organs in the human body will
have a structure that self-regulates to suit the person’s condi-
tion; the nose is no exception, since more tissue maintenance
requires more oxygen consumption. The human nasal cavity

INPUT IMAGE FEATURE EXTRACTION Fully connected
layer

OUTPUT
Tr (X1, Y1)
Tr (X2, Y2)
Tr (X3, Y3)

mf1 (X4–1, Y4–1)
....

Gn (X29, Y29)

Feature map
2449 x 1632 x 3

Resize 224 x 224 x 3
224 x 224 x 64 112 x 112 x 128

14 x 14 x 512

Convolution
+ ReLU

Convolution
+ ReLU

Convolution
+ ReLU

Convolution
+ ReLU

Convolution layers

ReLU + dropout So�M
ax

Initializer

Flattened

MaxPool
3x3 MaxPool

5x5

Figure 5: Proposed convolutional neural network (CNN) model for anthropological localization.
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may be connected to the slight mass of the body. For exam-
ple, as compared to females, modern human men had a
larger airway width and a larger lung capacity proportional
to bodyweight (Hopkins and Harms, 2004). This is most
likely related to well-established features of sexual dimor-
phism in regular energy and oxygen demands in Homo sapi-
ens genders (Panter-Brick, 2002). Sexual dimorphism in
these characteristics is most common throughout puberty,
when adolescents begin to experience considerable increases
in body mass, changes in body composition, and related
changes in oxygen consumption needs (Bitar et al., 2000;
Maynard et al., 2001; Wells, 2007). For these reason, BPNN
has been used to predict the bony based on the prediction of
all above factors. The BPNN is a fully connected neural net-
work with 3 layers shown as Figure 6: an input layer, a hid-
den layer (or multilayers), and an output layer. This neural
network will perform two main functions: forward and
backward propagation. For modification of weight with opti-
mized and precious reach at peak, each hidden layer would
add a bias which allows update data training. The activation
function named a rectified linear unit abbreviated by ReLU
was added in the hidden layer attaches a weight to an input
signal during forward propagation, after that the weighted
signal is then forwarded to the output layer for calculation

of the desire value. The ReLU function employed in this
stage is described by (7) formula:

f xð Þ =
x if x > 0,

0 if x ≤ 0:

(
ð7Þ

The ReLU and its derivative also are monotonous.
Whether it gets any negative input, it returns 0; however,
when input receives any positive value x, it returns value.
As a result, it produces an output with a value range of 0
to infinite. Successful completion of forward propagation
or backward propagation would be allowed if the discrep-
ancy (error) between the output value and the target output
value reaches the tolerable error range. The biases and the
weights in the BPNN are defined by output (8) function:

BW= f 〠
n

i=1,j=1
Wij − biasij

�����
�����, ð8Þ

where ij is itinerary during training process. Learning
rate is denoted by f and derivative of error with respect to
weight was calculated by biasij = ∂Error/∂Wij. Regarding

Back-propagation

INPUT LAYER HIDDEN LAYER TARGET LAYER

te
xt

Body mass index
Feed-forward data transfer

Back-propagation error value
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Angle measurement
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Figure 6: Proposed BPNN model for nasal bone morphology prediction.
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recurrent training, the BPNN consistently changes the cost
of the weight and bias vector, which gives the precise mor-
phology of the nasal bone of the neural network close to
the expected value shown in the target layer. By the result,
the nasal bone can be classified into 5 classes which are rep-
resented in the result. The nasomaxillary sutures initially
descended vertically and obliquely described as Type A.
Type B, in which the nasomaxillary sutures were concave
in the middle part. Type C, in which the frontonasal suture
was relatively narrow and the nasomaxillary suture des-
cended obliquely; Type D in which the frontonasal suture
was relatively wide and the nasomaxillary sutures were con-
cave in the middle part. Type E, in which the frontonasal
suture was relatively wide and the nasomaxillary sutures des-
cended vertically.

5. Results and Discussion

This section describes the training configurations and evalu-
ation metrics used for performance analysis. The results of
the architecture for facial masked segmentation, keypoint
detection, and bone shape regression are discussed individ-
ually according to their sequence of the body index. The
convolution proposed could predict facial keypoints with
several deep learning models. Using predictive data from
the CNN network as input data for the BPNN to modify
the nasal bone morphology and performed by visual result
in this section and evaluating the relationship between them
most objectively.

5.1. Photogrammetric Evaluation and Performance
Indicators. After labeling the entire dataset, the entire image
and argumentation will be fed into the CNN to perform the
learning of the parameters shown as Figure 7. Evaluating the
model accuracy is an essential part of the process in creating
machine learning models to describe how well the model is
performing. The score function helps to measure regression
performance listed as the mean absolute error (MAE), R
-squared (R2), and mean average precision (mAP). The
MAE is the average of the absolute difference between fore-
casted values and actual measured data, calculated by aver-

aging the absolute difference over the selected dataset
which is described by

MAE y, ŷð Þ = 1
n
〠
n−1

i=0
yi − ŷij j, ð9Þ

where ŷi is the predicted value of the ith keypoint and
value of dimension, while yi is corresponded the true value
of keypoint location on face. R-squared is used to calculate
the error between the predicted bounding boxes and the
anchor boxes; improving localization loss will help detect
objects become more accurate. The R2 represents the corre-
lation between the predicted results and the actual output,
varying from 0 to 1, as shown in equation (10):

R2 = 1 −
SSRegression
SSTotal

= 1 −
∑i yi − y∧ið Þ2
∑i yi − �yið Þ2 : ð10Þ

The closer the absolute value of R is to 1, the better the
mode. A model with higher R2 values but lower MAE values
performs better. In general, higher R2 values may coincide
with smaller MAE values. Finally, mAP is usually used as
the evaluation index of target detection performance. The
mAP value is the region under the P-R curve, where recall
is the x-axis and accuracy is the y-axis. mAP reflects the
average accuracy of specific categories and can be used to
evaluate the network model’s performance in all categories.
The mAP determination formula is as follows:

mAP =
1
k
〠
k

i=1

ð1
0
PdR, ð11Þ

where k represents number of detected categories. pi and

pi
_

are detected keypoints by algorithm of deep learning and
manual measurement method, respectively.

5.2. Training Configuration and Keypoint Detected Results. A
green fabric background was used to easily facial segmenta-
tion making it possible for the pixels to receive only in the
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Figure 7: Features extracted in output layer and representation of feature map in every CNN’s layer.
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face of the object according to different angles and reduce
variance in computation complexity. Normalize and aug-
ment data had been shuffled to detect and localize all essen-
tial landmarks. Several state-of-the-art detectors that are
based on convolutional neural networks have been tested
and validated performed in Figure 8. Following the output
of a number of CNN layers for facial segmentation, the key-
point filters are performed as part of the data normalization
procedure to better align the images in an upright pose. Sim-
ilar to facial segmentation, applied multiple state-of-the-art
model for facial keypoint detection were compared best
model to any optimally rotating nasal anthropology photo-
graphs. Training and testing the detection of nasion point
(deepest and hardest point) on the face were illustrated with
various network models to meet the requirements in rapid
and precise training. MobileNet with dropout was config-
ured with a total of 4,253,864 parameters. The learning rate
was 0.001 for training this model; the loss for MobileNet
with the dropout layer indicates a significant reduction in
loss performed. Figure illustrates how a learning rate of
0.001 reduces failure across epochs. It can be seen in

Table 3 and Figure 8 that the DenseNet model has returned
smaller MAE than InceptionV3 and ConvNet, which were
1.738mm and 3.412mm, respectively. It because the original
implementation only utilizes two-layer skip connection and
without any shuffle or deeper channel learning. Therefore,
ConvNet with dropout predicts key-points less accuracy
than DenseNet and InceptionV3, and the worst for applying
in this study. VGG19 model has the loss value slowly con-
verged to desire value at first one fourth of 100 epochs, after
that it was stable and reached the optimal value, however, it
could meet by overfitting when the training process con-
tinues at the same with other.

As a result, when comparing to a basic skip connection
scheme, the three layers of the residual module with a larger
kernel in the middle layer provides better keypoint detec-
tion. Some predicted keypoints on the face are missing and
do not perform well with the head orientation, which is
helpful if the head angle is approximate. It is worth nothing
that depthwise and pointwise convolution in the MobileNet
has produced excellent task of detection all keypoints even
though the model parameter of was used as the lighter than
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another. By the way, rather than just the later layers, the
early layers will play an important role in learning the best
feature representation. Therefore, according to overall result
performance, MobileNet is selected as the best model for
landmark detection due to its low MAE values and light-
weight (less than 4 million parameters). Figure 9 was shown
samples of detection of keypoints with belong accuracy
belong accuracy in three directions that fed to nasal bony
regression network. From Table 4, the model applied Mobi-
leNet has shown quite good results for average loss at
0.1199% with 29 complex landmarks. The mAP accuracy

in the testing of dataset for pictures of automatic cameras,
or images with simple backgrounds with full light, is quite
high 97.869%. However, the input image is heavily affected
by the surroundings and lighting, the model accuracy drops

Table 3: Performance of CNN-BPNN predicting facial landmarks and its morphology applied from five CNN models.

Evaluate metrics ConvNet InceptionV3 MobileNet DenseNet VGG19

Training and validation stage
R2 0.582 0.836 0.957 0.884 0.919

MAE (mm) 2.323 1.529 0.176 0.631 0.352

Testing stage
R2 0.331 0.749 0.934 0.912 0.871

MAE (mm) 3.412 1.738 0.281 0.442 0.597

(a) (b)

(c)

Figure 9: Anthropometric keypoints have been predicted by CNNs model in three perspective views; (a, c) frontal, lateral, and basal views,
respectively. All dimension units are in millimeter (mm) based on split length on the ruler belongs with an image can be automatically
measured.

Table 4: Algorithm accuracy in the best model construction
process.

Training Validation Testing

mAP 98.2258% 98.5326% 97.8693%
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sharply to 85.739% while model have being trained with the
original and augment images.

5.3. Evaluate Nasal Morphology Based on Anthropology and
CNN-BPNN. In this research, analysis on 33 cadavers was
used to examine the nasal bone morphology. Females made
up 45.5% of the dataset, with an average of 65. With the
nasal bone having K point ratio accounted for 24.2%. The
sample with K points are found in the middle of the dorsal
was 75%. Vietnamese nasal bone length calculated by the
distance start from N to R, which average value was 23:81
± 2:94mm, while the average distance between nasion and
the deepest point of nasal bone was 5:71 ± 1:22mm. Finally,
distance from sellion to rhinion was 18:56 ± 2:69mm.

At the nasion, the bone width between two left and right
borders are 5:52 ± 1:34mm and 5:59 ± 1:31mm, respec-
tively. Similarly, linear distances have been measured
(shown as Table 5) at the lowest point—sellion (S) in the
dorsal line and rhinion (R). Bone’s width at the S is the smal-
lest distance which is 5:05 ± 0:84mm at the left and 5:17 ±
0:95mm at the right. The average length of the nasal bone
(N-R) is 23:81 ± 2:94mm. The nasal bone width on average
is 10:21 ± 2:53mm; the lower nasal bone width is 17:08 ±
2:08mm. The narrowest piece of the average horizontal
nasal bone is 8:24 ± 1:58mm. However, there are no varia-

tions in bony sizes based on gender or age, despite the fact
that nasal anthropology would change in distance or angle
by using CNN to detect and measure. By this exam, nasal
bone morphologies are divided into two categories: direct
front view and lateral view. At first, Lang and Baumeister
[38] categorized German bone shape into eight groups in
frontal view. However, category was too complicated,
Hwang et al. [39] has shortened categories into 5 types when
studying Korean nasal bone shape, and this shortened classi-
fication was being widely applied in numerous studies. Based
on the distance calculated above, result of the nasal bone
morphology of our study was shown in Table 6. The cate-
gory illustrated that most of nasal bones of Vietnamese with
direct perspective. Type A was present in 57.6% of partici-
pants. Type B was present in 30.3% of the noses. In

Table 5: Nasal bone distances indirectly measured comparing with custom measured values following sexual dimorphism.

Predicted nasal distances Male (n = 81) Female (n = 101) Average value p mean

N–S 5:56 ± 1:25 5:89 ± 1:19 5:71 ± 1:22 0.452

S–K (n = 8) 14:54 ± 0:73 14:08 ± 0:93 14:31 ± 0:82 0.461

K–R (n = 8) 4:61 ± 1:29 4:52 ± 1:08 4:56 ± 1:10 0.917

S–R 18:85 ± 3:02 18:22 ± 2:29 18:56 ± 2:69 0.515

N–R 23:79 ± 3:46 23:83 ± 2:29 23:81 ± 2:94 0.971

Each value is represented as mean ± standard deviation in millimeters;.

Table 6: Nasal bone morphological regression and classification by the frontal view in our study.

Nasal morphology Male (n = 18) Female (n = 15) Percentage

Type A 9 (50.0) 10 (66.7) 57.6%

Type B 6 (33.2) 4 (26.7) 30.3%

Type C 1 (5.6) 0 3.0%

Type D 1 (5.6) 1 (6.6) 6.1%

Type E 1 (5.6) 0 3.0%

Table 7: Comparison of the present nasal bone data with the previous studies carried out in other races.

Author Race A (%) B (%) C (%) D (%) E (%)

Present study Vietnamese (33) 57.6 30.3 3.0 6.1 3.0

Lang and Baumeister [38] German (79) 68.3 10.1 1.3 10.1 10.1

Hwang et al. [39] Korean (88) 43.2 52.3 4.5 0.0 0.0

Prado et al. [53] Brazil (97) 49.5 27.8 13.4 2.1 7.2

Table 8: Nasal bone shape from angular regression values in the
lateral view (n = 33).

“V” shape (n = 26) “S” shape (n = 7)
Male 15 (83.3) 3 (16.7)

Female 12 (80.0) 3 (20.0)

With the kyphion 1 (12.5) 7 (87.5)

Without the kyphion 25 (100) 0 (0)
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particularly, types C, D, and E were not common form; the
remaining types account for a very low proportion. By this
category, nasal shape following each race would have dif-
fered characteristics which was performed in Table 7. For
instance, types D and E were not observed in Koreans. These
results were different from the study carried out in Germans,
in which type A was most common (68.3%), while types B,
D, and E comprised the rest at an equal frequency of
10.1% in each case.

In the lateral view, the shape of the nasal bone had clas-
sified follows its angle measurement by Sugawara. His result
showed the majority of nasal bone ratio was “S” type with
88% in Caucasian race [42]. The big different of V-shaped

nasal bones and S-shaped nasal bones was the curve line that
nasal structure make from. “V” type nasal morphology has a
straight line structure across sellion through rhino and con-
sequently single point of angulation at the dorsal profile
angle (DPA), while “S” type nasal morphology has a curving
arc that starts at sellion, travels through a distinct point at
kyphion, and peaks at rhino. There are two angulation loca-
tions, one at the DPA and one at the kyphion angle. Mean-
while, the majority of Vietnamese nasal bone shape had “V”
shape (78.8%). The reason caused of nasal shape was
depended on the hump analysis shown in Table 8. Besides,
it can be seen that the majority of Europeans are “S” shape,
while Vietnamese had the other. This may stem from racial
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Figure 10: Nasal morphology was presented in the lateral image with back-propagation, including the bounding on nose shape and
approximately size of nasal bone.

Table 9: Nasal dimension are predicted following body mass index (BMI).

No. Predicted nasal distances Underweight Normal weight Overweight Obesity p mean

≤18.5 (18.5-24.9) (25-29.9) (over 30)

1 n–prn 4:03 ± 0:33 3:85 ± 0:37 3:92 ± 0:49 3:73 ± 0:34 0.047

2 n–sn 4:90 ± 0:34 4:91 ± 0:31 4:96 ± 0:33 4:88 ± 0:47 0.496∗

3 al–al 3:90 ± 0:29 4:01 ± 0:31 4:19 ± 0:38 4:19 ± 0:27 0.001

4 ac–ac 3:14 ± 0:33 3:23 ± 0:29 3:33 ± 0:37 3:38 ± 0:29 0.024

5 n–r 1:36 ± 0:22 1:26 ± 0:21 1:24 ± 0:20 1:12 ± 0:19 0.0006

6 en–en 3:60 ± 0:27 3:57 ± 0:23 3:68 ± 0:26 3:68 ± 0:25 0.052

7 sn–prn 1:50 ± 0:22 1:67 ± 0:19 1:70 ± 0:18 1:67 ± 0:18 0.020
∗Kruskal-Wallis method, Mean ± standard deviation.
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differences leading to completely different nasal bone struc-
ture characteristics. The size and the shape of the nasal bone
can be used to clarify the anthropological characteristics of
each race.

The second experiment the work of BPNN is imple-
mented on 182 participants, from an average age of 22:01
± 1:39, with 55.5% female. Predicted data is also used to
visualize nose shape that appropriate with the predicted
nasal bone dimension. The experimental results of BPNN
combined with topology are shown in Figure 10. The
detected data is described as a frequency and percentage
with qualitative variables. Medium and standard deviation
was described with quantitative variables. Since the index
of each individual is different, statistical analysis is applied
to test the result correlative between nasal bony and the
other nose’s dimension. T-test analysis was used to deter-
mine gender differences and the difference in nutritional sta-
tus in indicators such as BMI, Kruskal-Wallis test replaced T
-test in some results. In participant’s data, the overweight
and obesity rate was quite high at 19.2% and 20.3%, respec-
tively. The rate of normal weight still accounted for 52.8%.
Most sizes of nasal root areas of the study sample have the
difference between men and women, in which the measure-
ments in men are larger than women. Accordingly, the study
shows that people with high BMI will have shorter than in
height of the nasal but the nasal width is wider than low
BMI shown in Table 9. All soft tissue angles were signifi-
cantly larger than the bone angles for the nasofrontal angle,
nasal tip angle, and nasolabial angle, respectively. With
regard to sex, the bone and soft tissue nasofrontal angles
were significantly larger in women than in men, whereas
the bone and soft tissue nasal tip angles were significantly
larger in men than in women. The nasolabial angle showed
no significant difference between men and women (bone, p
= 0:002; soft tissue, p = 0:005).

When comparing the size of nasal radix according BMI,
there is a statistically significant difference following Table 8.
Dorsal length (n–prn) was greater in underweight and nor-
mal weight groups than the overweight-obese (p = 0:047).
Nose base width (al–al) and nose swing width (ac–ac) of
the underweight and the normal weight would be narrower
than the others by p = 0:001 and 0.024, respectively. The
distance between nasion and rhinion (n–r) would be greater
in slim and normal people than in overweight–obesity
(p < 0:001). Subnasale and pronasale distance (sn–prn)
would be smaller in the underweight and normal groups
than in the overweight-obese group (p = 0:02).

Table 10 depicted the difference in sexual dimorphism,
and nasofrontal angle average was 136:410 ± 7:990, with
females having a greater angle than males. The middle face
(distance from nasion to subnasale) accounts for roughly

43% compared to the length of the face from the nasal radix
to the chin at the lowest point (n-gn) and has a gender dif-
ference, with the female having a greater rate than the male.

6. Conclusions

In this paper, for medical image analysis, we proposed a
hybrid of CNN and BPNN on detecting facial landmarks
and predict nasal morphologies with 2D digital image. We
have shown that the power the proposed architecture can
be harnessed to provide fast and accurate solutions to auto-
matically identify anthropology keypoints and specific nasal
distance. The comparison of the proposed CNN with opti-
mized state-of-the-art approaches evaluated with five dis-
tinct attack architecture models demonstrated MobileNet
predominance under many circumstances. According to
anthropological studies, nasal morphology is influenced by
various factors could be known as BMI, age, gender, and
race. These features are being selected as a part of the input
layer of our back-propagation neural network which
increases the predicted efficacy. Moreover, based on the lat-
est studies of nasal morphology, Vietnamese nasal morphol-
ogy could be divided into various types in different
perspective views known as frontal view and lateral view.

This study not only focuses on the application of CNN
and BPNN identifies facial anthropology on nasal bone
shape regression but also show a number of clinical analysis
and applications. Aesthetic surgeons when planning surgery
needs to discriminate indicators features of the patient’s
nose on the soft tissue which has relevant relationship to
the bone. Otherwise, the correlation between these indica-
tors helps the surgeon when intervening should pay atten-
tion to the harmony between the structures of the nasal
bone. Combined altogether, the current study provides
knowledge on the nasal anthropology and morphological
features in the Vietnamese population, which could be used
to identify the Vietnamese anthropological traits.
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Table 10: Nasal dimension are predicted based on sexual dimorphism.

No. Predicted nasal angles Male (n = 81) Female (n = 101) Average value P mean

1 g–n–prn 133:89 ± 1:06 138:43 ± 0:57 136:41 ± 7:99 0.0003

2 n–prn–sn 103:43 ± 0:64 104:91 ± 0:60 104:25 ± 5:95 0.095

Mean ± standard deviation.
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