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Abstract

Motivation: Reconstructing the full-length expressed transcripts (a.k.a. the transcript assembly

problem) from the short sequencing reads produced by RNA-seq protocol plays a central role in

identifying novel genes and transcripts as well as in studying gene expressions and gene functions.

A crucial step in transcript assembly is to accurately determine the splicing junctions and bounda-

ries of the expressed transcripts from the reads alignment. In contrast to the splicing junctions that

can be efficiently detected from spliced reads, the problem of identifying boundaries remains open

and challenging, due to the fact that the signal related to boundaries is noisy and weak.

Results: We present DeepBound, an effective approach to identify boundaries of expressed tran-

scripts from RNA-seq reads alignment. In its core DeepBound employs deep convolutional neural

fields to learn the hidden distributions and patterns of boundaries. To accurately model the transi-

tion probabilities and to solve the label-imbalance problem, we novelly incorporate the AUC (area

under the curve) score into the optimizing objective function. To address the issue that deep prob-

abilistic graphical models requires large number of labeled training samples, we propose to use

simulated RNA-seq datasets to train our model. Through extensive experimental studies on both

simulation datasets of two species and biological datasets, we show that DeepBound consistently

and significantly outperforms the two existing methods.

Availability and implementation: DeepBound is freely available at https://github.com/realbigws/

DeepBound.

Contact: mingfu.shao@cs.cmu.edu or realbigws@gmail.com

1 Introduction

RNA-sequencing (RNA-seq) is a well-established and widely used

technology that enables sensitive identification of novel transcripts

and accurate measurement of gene expressions (Wang et al., 2009).

Current high-throughput RNA-seq protocols usually produce short

sequencing reads of the expressed transcripts in a given sample.

Therefore, a fundamental computational problem is to reconstruct

the full-length expressed transcripts from such short sequencing reads,

which is usually referred to as the transcript assembly problem.

Transcript assembly is very challenging, not only because of the diffi-

culties shared with genome assembly problem, such as sequencing

errors, homologous repeats and coverage variations, but more import-

antly, due to the existence of alternative splicing (in eukaryotes),

which drastically increase the complexity of transcript assembly.

Existing assembly methods are either reference-based [for ex-

ample, Cufflinks (Trapnell et al., 2010), Scripture (Guttman et al.,

2010), IsoLasso (Li et al., 2011b), SLIDE (Li et al., 2011a), CLIIQ

(Lin et al., 2012), CEM (Li and Jiang, 2012), MITIE (Behr et al.,

2013), Traph (Tomescu et al., 2013), StringTie (Pertea et al., 2015)

and TransComb (Liu et al., 2016b)], or de novo [for example,

TransABySS (Robertson et al., 2010), Rnnotator (Martin et al.,

2010), Trinity (Grabherr et al., 2011), SOAPdenovo-Trans (Xie

et al., 2014), Velvet (Zerbino and Birney, 2008), Oases (Schulz

et al., 2012), IDBA-Tran (Peng et al., 2013) and BinPacker (Liu

et al., 2016a)], depending on whether a reference genome is assumed

available and being used. Reference-based methods usually give

higher accuracy comparing to de novo methods. In contrast to the

de novo methods that gives the nucleotide sequences of the
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expressed transcripts, reference based methods infer the structures

of expressed transcripts, i.e. the coordinates of the splicing junctions

and boundaries (i.e. 50 and 30 ends) w.r.t. the reference genome for

each expressed transcript. To achieve this, reference-based methods

first align all the reads to the reference genome using RNA-seq align-

ers [for example, TopHat2 (Kim et al., 2013), STAR (Dobin et al.,

2013) and HISAT (Kim et al., 2015)]. Then the reads are clustered

into different gene loci based on the alignment, and the coordinates

of splicing junctions and boundaries of all expressed isoforms are

inferred. Finally, within each gene loci, these coordinates are organ-

ized in a so-called splice graph, and the expressed transcripts are

assembled by computing a set of paths so as to mostly fit the splice

graph.

Hence, accurate identification of the splicing junctions and

boundaries from the reads alignment is crucial, since they provide

building-blocks for transcript assembly. The signal for splicing junc-

tions usually can be clearly reflected in the reads alignment, making

the identification of splicing junctions a relatively easy task.

Specifically, a splicing junction can be inferred by a group of reads

(called spliced reads) which are all separately aligned to the refer-

ence genome with identical separating coordinates (see Fig. 1a). In

contrast, such strong signal does not exist for transcript boundaries.

The intuition that can be used to identify boundaries is that the read

coverage tends to increase (resp. decrease) when a transcript starts

(resp. terminates). However, such signal is noisy and weak, making

the task of identification of boundaries very challenging.

Limited efforts have been focused on inferring boundaries of ex-

pressed transcripts from RNA-seq reads alignment. Current

reference-based transcript assemblers usually use a simple rule to

identify boundaries: the coordinates where reads appear and dis-

appear are identified as start and end boundaries, respectively (here-

inafter we call it as TypicalRule). TypicalRule suffers from both

high false-positive rate and false-negative rate for the following rea-

sons (Fig. 1b–d). First, some boundaries are inside exons, and for

such cases TypicalRule is impossible to identify them (Fig. 1b).

Second, a region within an exon might not be covered by any reads

due to low sequencing depth, high coverage variation and alignment

errors; such gap shall result in TypicalRule reporting two false-

positive boundaries (Fig. 1c). Third, TypicalRule shall also miss two

boundaries if contaminations of DNA sequences or misalignments

that bridge two transcripts (Fig. 1d). A recent study on meta-

assembly employs a more sophisticated method to infer boundaries

of the expressed transcripts (Niknafs et al., 2016). This method

employs Mann–Whitney U test and fold change comparison to iden-

tify significant coverage change (hereinafter we call it MWUTest).

However, as we will show in this paper, the accuracy of MWUTest

is still very low, due to its limited capability to model transitions and

to handle noise.

In this work, we propose a novel algorithmic framework,

DeepBound, to identify boundaries of expressed transcripts from

reads alignment by using deep convolutional neural fields

(DeepCNF) (Wang et al., 2015, 2016c). Different from previous

statistical methods, DeepBound can integrate a variety of informa-

tion and automatically determine their quantity under different cir-

cumstances. Our model and algorithm are particularly designed so

as to take advantage of the properties and to address the challeng-

ings of boundary detection. Specifically, first, DeepBound models

the boundary detection problem as a sequential labeling problem

using a conditional probabilistic graphical model (Lafferty et al.,

2001). The key idea is to quantify the probability of observing the

boundaries on position i given the features and states around i.

Second, given billion level of potential boundaries, patterns of boun-

daries are complicated. Previous sequential graphical model such as

Conditional Random Field and Hidden Markov Model cannot

model such complicated scenarios. In contrast, DeepCNF can natur-

ally model complex pattern hidden in the boundaries. Third, as the

boundaries are extremely sparse comparing to non-boundary coord-

inates, previous machine learning models will all be biased towards

predicting the input samples as non-boundaries. The inherent reason

is that it is very hard to discriminate the true signal with the outliers

for sparse observations. To handle this highly label-imbalanced

problem, we introduce a novel objective function which directly

models the AUC score between the predicted and actual labels

(Wang et al., 2016a,b). The price we pay is that we get a new object-

ive function which is neither smooth nor convex. However, by

applying the Chebyshev approximation (Calders and Jaroszewicz,

2007) on this objective function, we can still be able to optimize it

efficiently.

To address the issue that DeepCNF requires large volume of

labeled training samples, we novelly propose to use simulation

RNA-seq data to train our model. Ideally, realistic parametric distri-

bution of boundaries can be learned more accurately by such a

supervised learning way. To valid our assumption and also to com-

pare the performance of our method with that of TypicalRule and

MWUTest, we test these methods on simulation datasets from both

human and mouse species, as well as on biological RNA-seq data-

sets. The results demonstrate that the model trained with simulation

datasets on one species can also perform well on another species and

on biological datasets. On all testing datasets, our methods signifi-

cantly outperforms other two methods.

2 Experimental results

In this section, we first introduce the experimental pipeline and the

evaluation measurements in Section 2.1. After that we then illustrate

the performance of all three methods on simulation datasets in

Section 2.2, and that on biological datasets in Section 2.3.

2.1 Experimental settings
To identify boundaries of the expressed transcripts in a given RNA-

seq dataset, we first align all the reads to the reference genome using

the recent RNA-seq aligner HISAT2 (Kim et al., 2015). We then

cluster reads into different gene loci according to their aligned co-

ordinates such that the distance between adjacent gene loci is at least

A B

C D

Fig. 1. Illustration of identification of splicing junctions and challenging of

identifying boundaries. Exons and introns are represented as thick orange

bars and thin green bars, respectively. Reads are represented as blue bars,

where spliced reads are connected with dotted lines. (a) Splicing junction can

be inferred from a group of aligned spliced reads. (b) A transcript starts in the

middle of an exon. In this case, we can observe an increasing of read cover-

age. TypicalRule shall fail to identify this boundary. (c) A gap appears in the

middle of an exon. TypicalRule shall report two false-positive boundaries. (d)

Two transcripts are bridges by reads. TypicalRule shall miss these two

boundaries
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50 bp. Within each gene loci, splicing junctions are identified,

defined as two or more spliced reads that share the same splicing co-

ordinates. We use all these splicing junctions as well as the start and

end boundaries of the gene loci to partition the whole gene loci into

separate partial exons (see Fig. 2). Each partial exon serves as an in-

dependent instance, i.e. each method will take a partial exon (the

features of this partial exon, such as coverage profile, sequence in-

formation, etc.) as input and identify boundaries of the expressed

transcripts within this partial exon. For each dataset and each

method, the predicted boundaries by this method for this dataset

shall be the union of the identified boundaries for all partial exons

in this dataset.

We apply three methods to identify boundaries, TypicalRule,

MWUTest and DeepBound (see Section 3 for details about them).

To measure the accuracy of these methods, we first define the

ground-truth boundaries. For simulation datasets, we know exactly

the expressed transcripts from the simulation process, and their

boundaries are served as the ground-truth. For biological datasets,

we use the boundaries of all known transcripts in the annotation

database, and keep those within a distance of 50 bp for some partial

exon (in the studied RNA-seq dataset) as ground-truth. Notice that

usually for each RNA-seq dataset, only a subset of them gets ex-

pressed, and it could be also that some novel transcripts are ex-

pressed but not in the current annotation database. Nevertheless,

this way of comparison is still fare enough and commonly used to il-

lustrate the comparative performance of different methods.

Given the ground-truth boundaries, we use precision and recall

to measure the identified boundaries by each method. We evaluate

start boundaries and end boundaries separately. For each dataset,

we compute a one-to-one matching between the predicted start

(resp. end) boundaries and the ground-truth start (resp. end) boun-

daries, such that each pair of matched boundaries are adjacent ac-

cording to their coordinates. We say an identified boundary is

correct if it is matched to some ground-truth boundary and the dis-

tance between them is <50 bp. With this definition, we can then

compute precision, which is defined as the ratio between the number

of correct boundaries and the total number of identified boundaries,

and recall, which is defined as the ratio between the number of cor-

rect boundaries and the number of ground-truth boundaries. Notice

that for our boundary prediction problem it is not appropriate to

use true positive and false positive rates. This is because most gen-

omic positions are not boundaries, making the false positive rate al-

ways a tiny number. Thus, it is much more meaningful to use

precision and recall to perform evaluation.

2.2 Results on simulation datasets
We use Flux-Simulator (Griebel et al., 2012) to simulate the RNA-

seq datasets. Flux-Simulator utilizes the known transcriptome

annotation database (in our experiments, we use ENSEMBL release-

87 annotation) and reference genome to simulate the expressed

transcripts and the sequenced reads, following certain empirical dis-

tributions. To compare the performance of methods on datasets

with different sequencing depths, we use Flux-Simulation to gener-

ate two types of datasets, one containing 150 M paired-end reads of

length 75 bp, while the other containing 15 M 75 bp paired-end

reads. To test the methods on different species, we choose two

model species, human and mouse, and for each species, we inde-

pendently simulate 10 datasets for each type of dataset. We inde-

pendently simulate another two human datasets (with 150 M reads

in each dataset), and use them to train our DeepCNF model, as well

as to determine the parameters in TypicalRule and MWUTest.

The comparison of the three methods on 10 human simulation

datasets with 150 M reads is illustrated in Figure 3. First, we can ob-

serve that DeepBound significantly outperforms both TypicalRule

and MWUTest in terms of both precision and recall. Specifically,

DeepBound obtains precision of 44% and 59% for start and end

boundaries, while TypicalRule (better than MWUTest) gets 27%

and 41%, respectively. The advantage of DeepBound is even more

pronounced in terms of recall: DeepBound obtains 87% and 81%,

while TypicalRule (better than MWUTest) gets 42% and 61%, for

start and end boundaries, respectively. Second, MWUTest is better

than TypicalRule in terms of recall (about 8.1% and 5.9%, for start

and end boundaries, respectively), but slightly worse in terms of pre-

cision (about 0.93% and 2.4%). Third, notice that all three methods

have a small variation over the 10 datasets, indicating the consist-

ency of the methods on simulation datasets. Fourth, all the three

methods behave quite divergently on start and end boundaries. This

is probably because the sequencing protocols have different distribu-

tions and patterns on start and end boundaries.

The comparison of the three methods on 10 human simulation

datasets with 15 M reads is illustrated in Figure 4. Again,

A B C D E F G 
I1 I4 I3 I2 

H I J K L 
I6 I5 

Fig. 2. Illustration of partial exons within a gene loci. Thick orange bars (representing exons) and thin green bars (representing introns) show the (unknown) struc-

tures of the expressed transcripts. Green bars represent the observed reads that aligned to the reference genome. Notice that the three expressed transcripts

come from two genes, while we identify all the reads as a single gene loci (because the single read in the middle of I4 bridges the two genes). Six splice junctions,

(B, C), (D, E), (F, G), (D, G), (H, I) and (J, K), are identified, which, together with the gene loci boundaries, A and L, partition this gene loci into six partial exons, Ik,

1� k�6. Each partial exon becomes an independent instance. Notice that in partial exon I3, there exists a gap <50 bp, thus the two parts are regarded within a

single gene loci
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Fig. 3. Comparison of the three methods on human simulations with each

dataset containing 150 M reads. The height of each bar shows the average

precision (left part) and recall (right part) over the 10 datasets, while the thin

bar on top illustrates the standard deviation
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DeepBound significantly outperforms both TypicalRule and

MWUTest, especially in terms of recall. Comparing with the data-

sets with higher sequencing depth (Fig. 3), we can see that precision

of all three methods get improved, while recall keeps more or less

the same. This is probably because higher sequencing depth also

introduces more noise for identifying boundaries. Notice that our

model is trained on datasets with 150 M reads, thus the results here

demonstrate that our method does not suffer from overfitting with

the change of sequencing depths.

The comparison of the three methods on 10 mouse datasets

are illustrated in Figures 5 and 6 for 150 M datasets and 15 M

datasets, respectively. We can observe that our method trained on

human datasets works surprisingly well on mouse, again outper-

forms TypicalRule and MWUTest by a significant margin. The

fact that human-trained model still performs well for mouse tells

that the statistical pattern of boundaries is more heavily related

with sequencing and alignment errors, and reads coverage bias,

rather than different species (notice that although the sequencing

reads are simulated by Flux-Simulator, the reads alignment

are generated by ‘real’ aligner, HISAT). This is crucial for tran-

script boundary detection, since, as we illustrate here, we can

use deep learning model to capture the hidden patterns related

with boundaries from human data, and the trained model shall be

general enough to be applied to infer boundaries for other

species.

2.3 Results on biological datasets
To compare the performance of the three methods on biological

datasets, especially to illustrate whether DeepBound trained on

simulation datasets can still obtain high accuracy on biological data-

sets, we choose 10 RNA-seq datasets from ENCODE project (sum-

marized in Table 1). All these 10 datasets are from human species

and employ paired-end and strand-specific sequencing protocols.

They have various sequencing depths, read lengths and come from

divergent cell lines.

The comparison of the three methods on these biological data-

sets are illustrated in Figure 7. Again, our method outperforms

TypicalRule and MWUTest by a significant margin in terms of both

recall and precision for both start and end boundaries. These results

also demonstrate that our model trained on simulation datasets are

not overfitted towards simulations, but still be capable of applying

to biological datasets.
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Fig. 4. Comparison of the three methods on human simulations with each

dataset containing 15 M reads. The height of each bar shows the average pre-

cision (left part) and recall (right part) over the 10 datasets, while the thin bar

on top illustrates the standard deviation
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Fig. 5. Comparison of the three methods on mouse simulations with each

dataset containing 150 M reads. The height of each bar shows the average

precision (left part) and recall (right part) over the 10 datasets, while the thin

bar on top illustrates the standard deviation
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Fig. 6. Comparison of the three methods on mouse simulations with each

dataset containing 15 M reads. The height of each bar shows the average pre-

cision (left part) and recall (right part) over the 10 datasets, while the thin bar

on top illustrates the standard deviation

Table 1. Summary of the 10 biological datasets

SRA Acc. GEO Acc. #Spots Cell Line Localization Length

SRR534319 GSM981256 25M CD20þ cell 76

SRR534291 GSM981244 114M IMR90 cytosol 101

SRR545695 GSM984609 40M CD14þ cell 76

SRR387661 GSM840137 125M K562 cytosol 76

SRR307911 GSM758566 41M H1-hESC cell 76

SRR545723 GSM984621 147M HMEpC cell 101

SRR315323 GSM765399 30M NHEK nucleus 76

SRR307903 GSM758562 36M BJ cell 76

SRR315334 GSM765404 39M HeLa-S3 cytosol 76

SRR534307 GSM981252 167M MCF-7 cytosol 101
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Fig. 7. Comparison of the three methods on biological datasets. The height of

each bar shows the average precision (left part) and recall (right part) over

the 10 datasets, while the thin bar on top illustrates the standard deviation
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3 Materials and methods

In this Section, we fist describe our method, DeepBound, in Section

3.1. We then give further information about the parameters and im-

plementing details of methodsTypicalRule and MWUTest in Section

3.2 and Section 3.3, respectively.

3.1 DeepBound
DeepBound involves three major steps (see Fig. 8). Given an instance

(i.e. a partial exon), DeepBound first computes features for each

position within this partial exon based on the coverage profile, and

sequence information around the neighborhood of this position.

Second, DeepCNF is applied to learn robust logic that can translate

these position-specific features to position-specific probabilities, i.e.

the probabilities of being a boundary for each position. Third, with

these probabilities, we devise an efficient algorithm to infer actual

boundaries, through iteratively identify regions that yield high aver-

age probables.

3.1.1 Position-specific features

For each position i within a partial exon, we compute 17 features.

The first feature we add is the reads coverage for position i. We then

compute features about the context of position i by considering dif-

ferent size of windows around position i. Specifically, for a window

size of k, we compute nL and nR, which are the number of reads

aligned within the region [i– k,i) and (i,iþk], respectively. By

assuming a null hypothesis of uniform distribution, i.e. each of these

(nLþnR) reads has an equal chance to be in either region, we can

compute the P-value of that left (resp. right) region contains signifi-

cantly more reads than right (resp. left) region:

PL ¼
XnLþnR

n¼nL

nL þ nR

n

 !
� 0:5nLþnR ;

PR ¼
XnLþnR

n¼nR

nL þ nR

n

 !
� 0:5nLþnR :

We choose three window sizes, k¼20, 50, 100 and for each k,

we add the two P-values PL and PR and the two standard deviations

of the read coverage in the two regions as features. We also include

the sequence information as features. Specifically, for position k, we

add four binary features, indicating whether the nucleotide at this

position is A, C, G or T. Finally, we incorporate another two binary

features, indicating whether position i is the start or end boundary

of the whole gene loci (the boundaries of gene loci are very likely to

be boundaries of expressed transcripts).

3.1.2 AUC-maximized deep convolutional neural fields

We formalize the problem of transcript boundary detection as a

sequential labeling problem. There are three possible labels, start,

middle, end, representing whether a position is a start boundary,

non-boundary, or end boundary, respectively. For position i within

the partial exon, its predicted label is determined based on both the

features for position i and the predicted labels of position (i – 1) and

(iþ1). Our DeepCNF model has two major components: the

Conditional Neural Fields (CNF) module (Peng et al., 2009), and

the Deep Convolutional Neural Network (DCNN) module (Lee

et al., 2009). The CNF module is a linear chain probabilistic graph-

ical model which explicitly models conditional probability of

observing the labeling sequences given the corresponding features.

The binary potential of CNF model describes the dependency be-

tween the labels of adjacent positions. We substitute the original lin-

ear function with the DCNN model to capture the complex patterns

in the training data. In particular, given the input features fetched

from two adjacent positions, there are nine different DCNN models

quantifying the likelihood of observing nine pairs of states (for ex-

ample, start to middle, etc.), respectively. The weights of all the

DCNN models will be learned directly from training data and the

nine DCNN models will compete with each other to determine the

final assignments for each adjacent positions. Integrating DCNN

model with CNF enables us to capture the complicated underlying

predicting logic buried in the millions of labeled instances. To con-

trol model complexity and to avoid over-fitting, we add an L2-norm

penalty term as the regularization factor and perform 10 fold cross

validation to determine the hyper-parameter.

One of the major challenges for the transcript boundary detec-

tion is the number of training samples for different labels are

severely imbalanced (Galar et al., 2012). Comparing with the non-

boundary positions, the boundary positions are much rare, which

implies that the empirical estimation of transition probabilities be-

tween non-boundary positions and boundary positions will be all

nearly zero. This is a common problem for the genome and protein

sequence annotation where important nucleotides/genes/residues are

rare. Traditional strategies usually solve this problem by down-

sampling the training samples with dominating labels. However, in

our scenario, down-sampling will break the linear chain model into

pieces and lead to a bias estimation of the transition probability.

The computational challenge here is to solve the data imbalance

problem while still keep the estimation of transition probability

unbiased.

To tackle this problem, in this work we replace the widely used

log-likelihood objective function of probabilistic graphical model

with an estimated AUC objective function during training process

Fig. 8. Illustration of the pipeline of DeepBound. Left: Features are extracted from reads alignment. The main feature we are using are the coverage information

over a window. Middle: Illustration of the DeepCNF model. DeepCNF model takes all features as input, and predicts the probability of being start, middle, end for

each position. Right: The final boundaries are inferred using a greedy algorithm by taking the probabilities from the DeepCNF as input
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(Wang et al., 2016a). Note that this objective function is chosen in-

dependently to the structure and the potential functions of probabil-

istic graphical model. AUC can be derived from the ranking of

samples by their predicted confidence of different labels (Cortes and

Mohri, 2003). The intuition of using AUC objective function is to

transform the original classification problem using collection of in-

dividual samples to a new pairwise samples ranking problem. That

is, instead of trying to assign a particular label l to a sample s, we try

to predict whether sample s has a larger marginal probability to be

labeled as l comparing with sample t. It maximizes the AUC score

because as long as the partial order of the confidence between any

pair of samples maintain the same, the AUC score will be the same.

In this application, for a position in a partial exon with label start,

its predicted marginal probability should be larger than the pre-

dicted marginal probability of middle and end generated by the

DeepCNF model. The occurring frequency for each label is then be-

come equal in all the new pairwise ranking samples and hence solve

the data imbalance problem.

However, the above AUC-based objective function introduces

lots of non-smooth indicator functions in order to indicate the par-

tial order between two samples, making it not concave and thus

very hard to optimize. Another obstacle of the AUC function is the

pairwise summation which requires O(n2) computing time. To

tackle these problems, we first use a 10 order polynomial Chebyshev

function to approximate the AUC function as a smooth and differ-

ential function (Calders and Jaroszewicz, 2007), which can be com-

puted in linear time. To tradeoff between performance and training

time, here we use the L-BFGS (Liu and Nocedal, 1989) algorithm in-

stead of stochastic gradient descent to optimize it.

We emphasize that the AUC-maximized DeepCNF is a better

way to handle data imbalance issue comparing with other methods

such as up-sampling, down-sampling, or weighting samples. This is

because these sampling based methods are designed for independent

data points, but not suitable for sequence labeling since performing

sampling might break the linear chain structure of the sequence. In

fact, we have tried down-sampling on middle label positions; the re-

sult measured by AUC is only around 0.62, compared to AUC-

maximized DeepCNF at 0.93, with the same model architecture. We

also performed another experiment, in which we assumed each data

is independent and trained a model to maximize likelihood. The re-

sulting AUC was around 0.74, which is still not compatible to 0.93.

We use a three layer neural network with 100 hidden neurons in

each layer, and set the window size of features as 75. By trying alter-

native settings, we found that there is no improvement by using

more hidden neurons, more layers, or larger window size regarding

the predicting performance. The total 105423 instances (i.e. partial

exons) in the two human simulation datasets (with 150 M paired-

end reads in each dataset) are used to train our model.

3.1.3 Predict boundaries

For each position within a given partial exon, the above DeepCNF

model gives the probability of labeling this position as each of the

three labels. With these probabilities, we design a greedy algorithm

to predict the actual start and end boundaries. Our algorithm itera-

tively compute the region of length 10 bp, which has the largest

average probability of label start (resp. end) boundary. If this aver-

age probability is larger than a threshold P (we use 10-fold cross val-

idation to fix this parameter as P¼0.25), then the middle position

of the region is determined as a start (resp. end) boundary. Once a

new boundary i is determined, the region (i – 50, iþ50) shall be ex-

empt from identifying the same type of boundary, and the algorithm

continues to iteratively process the two sub-partial exons, one from

the leftmost position to (i � 50), and the other from (iþ50) to the

rightmost position of the current sub-problem. The algorithm ter-

minates when no new boundary can be found.

3.2 TypicalRule
Given a partial exon, TypicalRule first partitions it into sub-partial

exons by identifying gaps (i.e. regions with read coverage of 0) of

length larger than a threshold g. Then for each such gap,

TypicalRule reports two boundaries, the left position of the gap as

the end boundary, and the right position of the gap as the start

boundary. In addition to that, if the leftmost (resp. rightmost) pos-

ition of the given partial exon is the start (resp. end) boundary of the

whole gene loci, then this position shall be reported as a start (resp.

end) boundary. We have tried different value of g 2 f5 � kj1 � k

� 9g on the two training human simulation datasets, and choose

g¼10.

3.3 MWUTest
MWUTest is a subroutine used in the TACO package to detect

change point [see (Niknafs et al., 2016) Online Methods], which is

essentially the same problem we study here to identify transcript

boundaries. Given a partial exon, MWUTest iteratively identifies

the potential change point, defined as the position i that minimizes

the following mean square error (MSE):

MSEðiÞ ¼
Xi

k¼1

ðXk � �X1 Þ2 þ
Xn

k¼iþ1

ðXk � �X2 Þ2;

where Xk is the reads coverage at position k, n is the total length of

this partial exon, and X1 (resp. X2) is the average reads coverage for

the region [1, i] (resp. (i, n]). MWUTest then tests whether this po-

tential change point i meets both the following two significance cri-

teria: the P-value under the Mann–Whitney U test shall be less than

a threshold (we use the two training datasets to determine this par-

ameter as 0.00001), and fold change of the average coverage be-

tween the two sides shall be larger than a threshold (we fix it as 3.0

through trying different values on the training datasets). If the po-

tential change point satisfies these two criteria, then MWUTest shall

report this position as a transcript boundary, and iteratively process

the two sub-partial exons. The algorithm terminates if no potential

change point meets these two criteria.

4 Conclusion and discussion

In this paper, we propose a new approach, DeepBound, to identify

boundaries of expressed transcripts from RNA-seq reads alignment by

using deep convolutional neural fields. The performance of our method

has been extensively evaluated on both simulation datasets and biolo-

gical datasets, and the results demonstrate that our method significantly

outperforms two existing methods for boundary detection.

We emphasize that our model is trained on the reads alignment

generated by simulated RNA-seq reads (using Flux-Simulation) fol-

lowed by aligning them with ‘real’ aligner (HISAT). We show that

this training process is successful by illustrating that this model can

also achieve high accuracy when applied to other species and to bio-

logical datasets. This opens a new way to employ the power of deep

learning technologies to solve challenging sequencing problems

when large-scale labeled training samples are not available.

Our learning framework is general and can be easily adapted to

add other features and trained and applied to other species. We have
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provided the training and testing software package and users can

use their own gene boundary datasets to train their own model. In

this work, we only apply RNA-seq because it is the most general

and popular protocol.

A natural extension of our method is to incorporate it into the

complete pipeline of transcript assembly. As a stand-alone software

package, DeepBound can be used to detect transcript boundaries in

the RNA-seq experiments, and the results can be further applied to

correct transcript abundance estimation and to study gene alterna-

tive splicing. For example, recent genomic analyses have indicated

that many eukaryotic genes can have quite complex alternative splic-

ing products, such as transcript embedded within another transcript

(Kumar, 2009), transcripts from reverse strand (Adelman et al.,

1987), intron retention (Ner-Gaon et al., 2004) and polyadenylation

sites (Tian and Manley, 2013). We shall apply our tool to analyze

these cases in future.
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