
1Scientific Reports |         (2019) 9:16072  | https://doi.org/10.1038/s41598-019-52549-z

www.nature.com/scientificreports

Rectal swabs are a reliable proxy 
for faecal samples in infant gut 
microbiota research based on 
16S-rRNA sequencing
Marta Reyman   1,2, Marlies A. van Houten2, Kayleigh Arp1, Elisabeth A. M. Sanders1,3 & 
Debby Bogaert1,4*

Rectal swabs are potentially a valuable method for monitoring the gut microbiome in research and 
clinical settings, where it is important to adhere to strict timing, or where acute sampling is needed. 
It is currently unknown whether rectal swabs give comparable results to faecal samples regarding 
microbiota community composition in neonates and infants. To study how well the two sampling 
methods correlate in infants, we compared the 16S-rRNA-based sequencing results of 131 paired rectal 
swabs and faecal samples collected from 116 infants at two timepoints in early life. The paired samples 
were highly comparable regarding both diversity and overall community composition, and strongly 
correlated on taxonomical level. We observed no significant nor relevant contribution of sampling 
method to the variation in overall gut microbiota community composition in a multivariable model. 
Our study provides evidence supporting the use of rectal swabs as a reliable proxy for faecal samples in 
infant gut microbiota research.

The interest in studying the gut microbiome in relation to health and disease is rapidly growing1. With continuing 
advances in rapid sequencing technology, monitoring of the gut microbiome in a clinical setting and conducting 
longitudinal microbiota studies into cause-effect relationships are becoming more feasible2. Currently, the rou-
tine sampling method for gut microbiota analysis is the collection of faeces3. However, it can be problematic to 
collect faeces within a narrow timeframe, as stool is not always readily available, especially in early life when the 
frequency of defaecation varies greatly4. Rectal swabs, on the other hand, can be collected easily and at any time, 
allowing flexible and consistent sampling between individuals and in relation to interventions. The collection of 
rectal swabs is already being applied for the screening of specific pathogens and multi-resistant organisms in the 
clinical setting5. Previous studies have shown that faecal samples and rectal swabs show satisfactory concordance 
when studying the gut microbiota in adults6,7. In the paediatric population, rectal swabs have been compared to 
faecal samples with respect to the detection of specific pathogens, such as norovirus8, but not yet on their per-
formance in analysing the overall microbiota composition. The infant gut microbiota is very dynamic in the first 
weeks of life9,10, so it would be valuable to verify whether rectal swabs give a reliable representation of its composi-
tion in this period. If so, rectal swabs could be an ideal sampling method for the monitoring of treatment or study 
interventions on the neonatal ward or paediatric intensive care unit or in (longitudinal) population-based studies.

In our study, we compared the alpha and beta diversity between rectal swabs and faecal samples collected at 
the same time from the same individual at two sampling moments, and studied how well the sampling methods 
correlate on taxonomical level. The objective of our study was to determine whether rectal swabs are a good proxy 
for faecal samples in infant gut microbiota research.
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Results
After quality filtering, there were 131 closely paired faecal and rectal swab samples available from a subset of 116 
neonates with suspected early onset neonatal sepsis participating in the ZEBRA study. A closely paired sample is 
defined as a matched faecal sample and rectal swab collected within a timeframe of 24 hours from an individual 
participant. Paired samples were collected at two timepoints: before start (timepoint 1) and after cessation (time-
point 2) of antibiotic treatment. For ethical reasons the start of antibiotic treatment could not be delayed whilst 
waiting for a faecal sample, so per our study protocol we collected rectal swabs from all neonates before the start 
of antibiotic treatment, and additionally, a faecal sample if the neonate had defecated before start of treatment 
as well, to avoid treatment bias. The number of times that both the faecal sample and rectal swab were collected 
before antibiotic administration had started was therefore restricted to 21/116 infants. At the second timepoint, 
we managed to obtain closely paired faecal samples and rectal swabs in 110/116 infants (median time difference 
between paired samples: 0 hours, range 0–24 hours). In a total of 23 cases the rectal swab was collected before the 
faecal sample (range 5 minutes to 24 hours), in 20 cases the rectal swab was collected after the faecal sample (range 
15 minutes to 22,5 hours) and in 88 cases the rectal swab and faecal sample were collected at almost the same 
time, where in practice a trained physician collected the rectal swab first and a nurse collected the faeces shortly 
hereafter, the rectal swab being a stimulatory trigger for defaecation. The median age at sampling was 1 day for 
timepoint 1 and 6 days for timepoint 2. Further sample characteristics are detailed in Supplementary Table S1. 
Of the 116 infants included in this study, 15 had a paired sample available for both timepoint 1 and 2. Therefore, 
for analyses comparing sampling methods overall, we stratified per timepoint to take repeated measures into 
account. In order to answer our primary research question, namely if a rectal swab reliably reflects the fecal com-
position of an individual, we included all 131 paired samples, regardless of timepoint, for correlation analyses.

Paired faecal samples and rectal swabs are comparable in alpha and beta diversity.  The 262 
samples analysed in this study represented 13,026,207 high quality Illumina Miseq sequences with a median 
Good’s coverage of 99.99% (range 99.72–100%). These sequences were annotated to 372 unique taxa. 270 taxa, 
representing 99.99% of all sequences, were present in both the faecal samples and rectal swabs. The combined 
relative abundance of the 52 taxa found only in faeces, and the 50 taxa found only in rectal swabs, was only 0.01%.

Overall, we found no differences in alpha diversity between the faecal samples and rectal swabs as meas-
ured by using observed species richness and Shannon diversity (Fig. 1a,b). Since we found a correlation between 
alpha diversity and timepoint (Wilcoxon test p = 0.004), we also performed the analyses stratified per timepoint 
(Fig. 1c). At timepoint 1, we did not find a significant difference in observed species richness and Shannon diver-
sity (Fig. 1d) between the sampling methods, though at timepoint 2 species richness was significantly higher in 
the rectal swabs compared to the faecal samples (Wilcoxon test, median 23 [range 7–42] versus 16 [range 4–58] 
Operational Taxonomical Units [OTUs], p < 0.001). When analysing the paired data, however, we found a strong 
correlation between paired faecal samples and rectal swabs for both species richness and Shannon diversity indi-
ces (Fig. 1e,f; Pearson’s r = 0.641, and 0.697, respectively: both p < 0.001).

Regarding overall community composition, the two sampling methods did not differ at either timepoint, 
neither in an overall analysis, nor after stratification per timepoint (permutational multivariate analysis of var-
iance [PERMANOVA]-test, R2 0.006 with p = 0.994 at timepoint 1 and R2 0.002 with p = 0.897 at timepoint 2; 
Supplementary Fig. 1). Furthermore, the composition of paired samples was significantly more similar than that 
of unpaired samples (Fig. 2; median Bray-Curtis [BC] similarity 0.866; versus median inter-individual similarity 
0.007, p < 0.001). Neither the time between the collection of a paired faecal sample and rectal swab, nor the dif-
ference in reads between the sample types, was correlated with community composition similarity as measured 
by BC.

Effect of sampling method compared to other clinical variables on microbial community com-
position.  To evaluate the importance of sampling method for the overall observed variation in microbial 
community composition, we performed a multivariable PERMANOVA-test. First, we tested variables known 
to be associated with microbiota composition (age, delivery mode, feeding type) univariately and only included 
variables that showed a significant association in our study (age, delivery mode) in the multivariable model, along 
with sampling method. The contribution of sampling method to the variation in community composition was 
minimal and not significant (Fig. 3; R2 0.002 p = 0.835), while participant’s age was the most important explana-
tory variable (R2 0.016, p = 0.002).

Paired faecal samples and rectal swabs correlate strongly on taxonomical level.  The paired fae-
cal samples and rectal swabs had a similar taxonomical composition with respect to the most abundant OTUs 
(Fig. 4). We performed Pearson correlation tests between the faecal samples and rectal swabs for all 198 testable 
OTUs, meaning that the 102 OTUs that were uniquely present in either the faecal samples or rectal swabs were 
excluded. The correlations of the top 15 most abundant taxa are shown in Table 1, all showing strong (Pearson’s 
r > 0.60) to very strong (Pearson’s r > 0.80) correlations. A total of 150 out of 198 testable OTUs correlated 
strongly and significantly in relative abundance between the paired samples with a median Pearson’s r of 0.92 
(IQR 0.90–1.00, adjusted p-value < 0.05). Together, these 150 taxa had a combined relative abundance of 98.5% 
of all sequences observed in our dataset. The comprehensive results of the correlations of all OTUs can be found 
in Supplementary Table 2.
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Figure 1.  Alpha diversity measures. Differences are shown in observed species richness and Shannon diversity, 
respectively, between faecal samples and rectal swabs overall (a,b) and stratified per timepoint (c,d), to account 
for repeated measures of 15 participants from whom a paired sample was obtained at both timepoint 1 and 2. At 
timepoint 2 there was a significant difference in observed species richness between the faecal samples and rectal 
swabs (Wilcoxon test, median 16 versus 24, p < 0.001). No significant difference in Shannon diversity was found 
between the sampling methods. Boxplots with medians are shown; the lower and upper hinges correspond to 
the first and third quartiles (the 25th and 75th percentiles); the upper and lower whiskers extend from the hinge 
to the largest and smallest value no further than 1.5*IQR from the hinge; outliers are plotted individually. The 
observed species richness (e) and Shannon diversity (f) of the faecal samples are plotted against the observed 
species richness and Shannon diversity of their paired rectal swabs. A strong and significant correlation was 
found for both alpha diversity measures between the two sampling methods (Pearson’s r 0.641 and 0.697, 
respectively. Both p < 0.001).
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Discussion
Rectal swabs are more flexible to collect than faecal samples for research and clinical purposes, and could there-
fore be a valuable tool in cases where it is important to adhere to strict sampling timeframes, as when sampling 
around time sensitive interventions. In this study, we showed that paired infants’ rectal swabs and faecal samples 
correlate well on alpha diversity, are comparable in overall community composition and correlate strongly on 
taxonomical level.

The observed species richness did not differ significantly between the two sampling methods at the earliest time-
point and correlated strongly between the paired faecal samples and rectal swabs. At the second timepoint, the 
observed species richness differed significantly between faecal samples and rectal swabs, even after filtering our OTU 
table of possible contaminants and also when repeating this analysis with rarefied data. However, this difference in 
diversity was contrary to what we expected: if at all different, we expected the rectal swabs, due to the smaller amount 
of material collected with this method, to pick up fewer species, but the opposite was the case, showing at least no 
taxa were missed with this type of sampling. Importantly, no differences in Shannon diversity were found between 

Figure 2.  Concordance in microbiota community composition of paired rectal swabs and faecal samples. The 
concordance in microbiota community composition of paired faecal samples and rectal swabs was compared 
to the concordance of unpaired samples, using BC similarity (1-BC dissimilarity). A BC similarity index of 1 
indicates an identical composition, while an index of 0 indicates the opposite. A significantly higher similarity 
was observed between paired samples (median BC similarity 0.866) than between unpaired samples (median 
BC similarity 0.007), as calculated by Wilcoxon. Boxplots with medians are shown; the lower and upper hinges 
correspond to the first and third quartiles (the 25th and 75th percentiles); the upper and lower whiskers extend 
from the hinge to the largest and smallest value no further than 1.5 * IQR from the hinge; outliers are plotted 
individually.
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Figure 3.  Variance explained in microbiota community composition by clinical variables. Covariates known to 
be associated with gut microbiota composition (age, delivery mode, feeding type) were first tested univariately 
with permutational multivariate analysis of variance (PERMANOVA)-tests using 1999 permutations, followed 
by a multivariable, temporal PERMANOVA, including sampling method to test what effect sampling method 
has on community composition in a clinical context. All samples were used with 1999 permutations and 
the strata parameter set to individual. The percentage of variance explained (R2 (%)) is plotted on the x-axis. 
Significant associations with microbiota composition (p = 0.002 for age and p = 0.005 for mode of delivery) are 
visualised in order of importance. Sampling method explained only a minor and non-significant component of 
the variance in community composition compared to all other parameters in the model (p = 0.835).
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the sampling methods overall, or at either timepoint, and a clear correlation between paried samples was found. We 
also found an equal number of taxa that were unique to either sampling method (52 in faecal samples and 50 in rec-
tal swabs), though the combined relative abundance of these was extremely low (<0.01%) and therefore less relevant 
for overall community structure. As a result, we found no difference in overall microbial community composition 
between the two sampling methods. Also, the concordance between the microbiota of a paired faecal sample and 
rectal swab collected from the same participant was high, confirming previous findings in adults7.

In a broader clinical context, we found it interesting to establish that sampling method did not significantly 
explain variation in microbiota composition, as opposed to known drivers such as age11, further supporting that 
rectal swabs are an appropriate proxy for faecal samples in infant gut microbiota studies. Unfortunately, we could 
not study the effect of antibiotics on composition in the multivariable model, because antibiotic treatment was 
colinear with timepoint in our study (sampling moments were before the start and after cessation of antibiotic 
treatment), and therefore age.

Figure 4.  Relative abundance of the top 15 most abundant OTUs per timepoint and sampling method. Mean 
relative abundance of the top 15 most abundant Operational Taxonomical Units (OTUs) in this dataset, 
stratified per timepoint and sampling method.

OTU mean RA faeces mean RA rs ∆ mean RA Pearson’s r

Escherichia coli (2) 23.39% 24.19% −0.80% 0.95

Enterococcus faecium (5) 18.46% 15.61% 2.85% 0.96

Staphylococcus epidermidis (3) 13.38% 16.70% −3.32% 0.76

Klebsiella (4) 11.17% 11.82% −0.65% 0.99

Bacteroidales ratAN060301C (7) 3.84% 4.60% −0.76% 0.94

Streptococcus salivarius subsp thermophilus (6) 5.00% 2.45% 2.55% 0.83

Streptococcus (11) 4.52% 2.66% 1.86% 0.68

Bacteroides (14) 2.79% 3.04% −0.24% 0.98

Bifidobacterium (1) 2.79% 2.50% 0.29% 0.97

Streptococcus (30) 2.26% 1.15% 1.11% 0.70

Parabacteroides (37) 1.41% 1.22% 0.19% 0.99

Clostridium butyricum (26) 0.92% 1.71% −0.79% 0.95

Veillonella (9) 0.81% 1.30% −0.49% 0.68

Rothia (43) 0.65% 0.91% −0.26% 0.98

Clostridium sensu stricto 1 (15) 0.67% 0.77% −0.10% 0.90

Table 1.  Correlation of the top 15 most abundant OTUs between the two sampling methods. We studied, 
among others, the correlation of the relative abundance of the 15 most abundant Operational Taxonomical 
Units (OTUs) between the paired faecal samples and rectal swabs, using the Pearson’s correlation coefficient. 
For all 15 OTUs (with a combined relative abundance of 92.5%) we found a strong (Pearson’s r 0.60–0.79) to 
very strong (Pearson’s r 0.80–1) correlation between the paired faecal samples and rectal swabs. RA = relative 
abundance; rs = rectal swabs; ∆ mean RA = difference in mean RA between faecal samples and rectal swabs 
calculated for each OTU. A comprehensive list of results of the correlations of all OTUs can be found in 
Supplementary Table 2.
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With respect to individual taxa, we found a high abundance of facultative anaerobic genera, such as Escherichia 
coli, and Staphylococcus epidermidis in the earliest samples, consistent with the description of normal early life 
gut microbiota development in previous studies,12,13. The paired faecal samples and rectal swabs showed a strong 
correlation for most bacteria abundantly present in the infant microbiota. The combined relative abundance of 
the taxa with a strong to very strong correlation (Pearson’s r > 0.60) between the sampling methods was above 
98%, including predominant and clinically relevant taxa such as Klebsiella and Enterococcus faecium, which are 
known reservoirs for antibiotic resistance genes14–16, as well as taxa like Bifidobacterium which are associated 
with various beneficial functions17. Altogether, this underlines that rectal swabs are a very good proxy for faecal 
samples in microbiota analyses.

Methods
Study population and sample collection.  To study whether rectal swabs are a good proxy for faecal 
samples in infant gut microbiota studies, we used a subset of 131 paired faecal and rectal swab samples from 116 
children participating in the Dutch randomised controlled ZEBRA study. The ZEBRA study aims to evaluate the 
effects of antibiotic treatment indicated for (suspected) neonatal sepsis in the first week of life on the developing 
gut microbiota. Written informed consent was obtained from both parents. Ethical approval was granted by the 
national ethics committee in the Netherlands, METC Noord-Holland (committee on research involving human 
subjects, M014-024, NTR5119). The study was conducted in accordance with the European Statements for Good 
Clinical Practice.

Rectal swabs were collected using FaecalSwab™ kits (Copan Diagnostics, CA, USA) by trained physicians 
or research personnel before the start of antibiotic treatment (timepoint 1) and 24–48 hours after cessation of 
antibiotic therapy (timepoint 2). Faecal samples were obtained at the same timepoints, usually directly after the 
rectal swab, this being a stimulatory trigger for defaecation, and stored in sterile faecal containers by a nurse 
during hospital stay, or by the parents if the participant was already discharged at the later timepoint. All material 
was directly stored at −20 °C before being transferred (<2 weeks) to a −80 °C freezer until further laboratory 
processing. We only analysed paired samples that were obtained within 24 hours of one another, and in the case 
of timepoint 1 were also both obtained strictly before the start of antibiotic treatment.

DNA isolation and sequencing.  Bacterial DNA was isolated from faecal samples as previously described18. 
We used approximately 100 μl of faeces, 300 μl of lysis buffer, 500 μl zirconium beads and 500 μl of phenol, and 
performed an extra phenol/chloroform step. Samples collected on day 1 were presumed to have low bacterial 
abundance. Therefore, further adaptations were applied as described previously19, with the additional changes 
of using 150 μl instead of 100 μl of faeces (or 100 μl of material in the case of rectal swabs) and implementing an 
extra step with wash buffer 1. DNA blanks and a positive control consisting of a mix of up to three random faecal 
samples were used for quality control. The amount of bacterial DNA was determined by quantitative polymerase 
chain reaction (qPCR) as previously described19.

After amplifying the V4 hypervariable region of the 16S rRNA, quantification of the amount of amplified DNA 
per sample was executed with the dsDNA 910 Reagent Kit on the Fragment Analyzer (Advanced Analytical, IA, 
USA). Samples yielding insufficient DNA after amplification, defined as <0.5 ng/μl, were repeated with a higher 
concentration of template DNA. A mock control and three PCR blanks were included in each PCR plate. 16S 
rRNA sequencing was performed on the Illumina MiSeq platform (Illumina, Eindhoven, the Netherlands).

Bioinformatic processing.  The samples and their sequences described in this manuscript are part of a 
larger dataset existing of 2176 samples and controls, and together were processed using our in-house bioinfor-
matics pipeline20. In short, we applied an adaptive, window-based trimming algorithm (Sickle, version 1.33) to 
filter out low quality reads, maintaining a Phred score threshold of 30 and a length threshold of 150 nucleotides21. 
Error correction was performed with BayesHammer (SPAdes genome assembler toolkit, version 3.5.0)22. Each 
set of paired-end sequence reads was assembled using PANDAseq (version 2.10) and demultiplexed (QIIME, 
version 1.9.1)23,24. Singleton and chimeric reads (UCHIME) were removed. OTU picking was conducted with 
VSEARCH abundance-based greedy clustering with a 97% identity threshold25. OTUs were annotated using the 
Naïve Bayesian RDP classifier (version 2.2) and the SILVA reference database26,27. This resulted in an OTU-table 
containing 18,951 taxa in total. We created an abundance-filtered dataset selecting OTUs present at a confident 
level of detection (0.1% relative abundance) in at least two samples28, hereafter referred to as our raw OTU-table. 
The raw OTU-table consisted of in total 730 taxa (0.49% sequences excluded with filtering). Next, we used both 
the prevalence and frequency methods of the decontam package29 to exclude possible contaminants, discarding 
35 taxa, and thus retaining 695 taxa in total. The subset of paired samples studied here contained only 372 of these 
taxa.

Statistical analyses.  All analyses were performed in R version 3.4.330 within RStudio version 1.1.38331 and 
figures were made using packages ggplot232 and ggpubr33. The alpha diversity of the two sampling methods was 
compared using the observed species richness and Shannon diversity. When rarefying to a sequencing depth of 
25,000 reads after filtering and decontamination (lowest quartile), or even 15,000 reads, the differences found 
using the raw data remained, so from here the raw (unrarefied) data was used for the comparisons and correla-
tions in alpha diversity. Group differences were tested for using Wilcoxon tests. The correlation in alpha diversity 
between paired samples was calculated with Pearson.

The effect of sampling method on composition was analysed univariately with PERMANOVA-tests with 1999 
permutations (adonis function; vegan package34) for all samples, and also stratified per timepoint, to prevent 
confounding by repeated measures. To visualise differences in composition we generated non-metric multidi-
mensional scaling plots (nMDS; vegan package34). Ordinations were based on the Bray-Curtis (BC) dissimilarity 
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matrix of relative abundance data with parameter trymax 10,000. To test whether paired faecal samples and rectal 
swabs (within child comparison) were more similar in microbiota composition than unpaired samples (between 
children comparison), we calculated the BC similarities (1 – BC dissimilarity) between all samples and compared 
the level of similarity between the paired and unpaired samples using Wilcoxon. For the paired samples, we also 
tested the correlation between composition and the difference in collection time and reads between the two 
sampling methods.

We performed a temporal, multivariable PERMANOVA-test (adonis2 function, vegan package34, 1999 per-
mutations) to test whether sampling method contributes to the variation in overall gut microbiota community 
composition and how this relates to other known drivers of community composition. First, we tested covariates 
known to be associated with gut microbiota composition (age, delivery mode, feeding type) univariately with 
PERMANOVA-tests as described above. Only covariates that showed a significant association in the univariate 
analysis (age, delivery mode), were included in a multivariable model along with sampling method, whilst setting 
the strata parameter to individual.

Finally, we evaluated whether the sampling methods correlated on taxonomical level by calculating the 
Pearson correlation coefficient for all individual taxa based on their relative abundance. We also calculated the 
delta mean relative abundance between the two sampling methods to show the differences found.

P-values or, where applicable, adjusted p-values calculated using the Benjamini-Hochberg method35, <0.05 
were deemed significant.

Data availability
Sequence data that support the findings of this study have been deposited in the NCBI Sequence Read Archive 
(SRA) database with BioProject ID PRJNA524461. The last 3 digits of the sample.id variable of the attributes are 
unique to a sample pair (with two exceptions: 387.006 is paired with 382.138 and 384.464 is paired with 383.572). 
The time variable refers to timepoint (1 = Timepoint 1, 2 = Timepoint 2). The mat variable refers to sampling 
method (2 = faeces, 5 = rectal swab).
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