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Continually emerging resistant strains of malarial parasites to current drugs present challenges.
Understanding the underlying resistance mechanisms, especially those linked to allostery is, thus, highly
crucial for drug design. This forms the main concern of the paper through a case study of falcipain 2 (FP-
2) and its mutations, some of which are linked to artemisinin (ART) drug resistance. Here, we applied a
variety of in silico approaches and tools that we developed recently, together with existing computational
tools. This included novel essential dynamics and dynamic residue network (DRN) analysis algorithms.
We identified six pockets demonstrating dynamic differences in the presence of some mutations. We
observed striking allosteric effects in two mutant proteins. In the presence of M245I, a cryptic pocket
was detected via a unique mechanism in which Pocket 2 fused with Pocket 6. In the presence of the
A353T mutation, which is located at Pocket 2, the pocket became the most rigid among all protein sys-
tems analyzed. Pocket 6 was also highly stable in all cases, except in the presence of M245I mutation. The
effect of ART linked mutations was more subtle, and the changes were at residue level. Importantly, we
identified an allosteric communication path formed by four unique averaged BC hubs going from the
mutated residue to the catalytic site and passing through the interface of three identified pockets.
Collectively, we established and demonstrated that we have robust tools and a pipeline that can be appli-
cable to the analysis of mutations.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Continually emerging resistant strains of pathogens to current
drugs present an immense challenge for the eradication of infec-
tious diseases. Understanding the underlying resistance mecha-
nisms at the molecular level using structure-based computational
methods and applying this knowledge to future drug design to
potentially circumvent the pathogens’ resistance tactics is highly
crucial. Yet, this concept has not been well established in compu-
tational drug discovery and forms the main concern of this paper
through a case study of falcipain 2 (FP-2) protein and its mutations,
some of which are linked to malarial drug resistance.

The recent emergence and spread of P. falciparum (Pf) strains
with reduced sensitivity against artemisinin (ART) and its partner
drugs is a major public health concern threatening ongoing efforts
to eradicate malaria globally [1–4]. Despite being the cornerstone
of the current recommended first-line antimalarial drugs, the exact
biological target and underlying drug mechanisms of ART remain
fairly uncertain [5]. Wang et al., suggested that ART activity is
mediated by free radicals generated from the cleavage of its
endoperoxide bridge, which lead to plasmodial proteopathy [6].
Besides the established role of mutations in the Kelch 13 protein
propeller domain [7] in conferring reduced ART sensitivity and
clearance rate by Pf parasites, recent studies have shown the pos-
sible involvement of additional target loci [8,9]. These include a
nonsense (S69stop) [10] and four missense mutations in the FP-2
protein; K255R, N257E, T343P and D345G [11].

FP-2 is a papain-like cysteine protease expressed by Pf during
the blood-stage parasite development phase within host erythro-
cytes [12]. Synthesized as zymogens, the enzyme is activated by
the lower pH change of the parasite food vacuole [13–15]. During
the activation process, the prodomain promoter region is cleaved
off, exposing the active site. The trench-like binding pocket resi-
dues, including the catalytic triad (Cys285, His417 and Asn447),
are organized into four subsites, namely S1 (Q279, C282, G283,
C323, N324), S2 (L327, I328, S392, L415, N416, A418, D477), S3

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2021.10.011&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.csbj.2021.10.011
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:O.TastanBishop@ru.ac.za
https://doi.org/10.1016/j.csbj.2021.10.011
http://www.elsevier.com/locate/csbj


Nomenclature

Abbreviations
3D Three Dimension
Å Angstrom
ART Artemisinin
BC Betweenness Centrality
C Covariance matrix
CC Closeness Centrality
CHPC Centre for High Performance Computing
COM Center of Mass
DC Degree Centrality
DRN Dynamic Residue Network
EC Eigencentrality
FPs Falcipains
FP-2 Falcipain-2
GROMACS GROningen MAchine for Chemical Simulations
Hb hemoglobin

KC Katz Centrality
MD Molecular Dynamics
ns nanoseconds
NPT constant Number of particles, Pressure and Tempera-

ture
NVT constant Number of particles, Volume and Temperature
PDB Protein Data Bank
PCA Principal Component Analysis
Pf Plasmodium falciparum
RMSD Root Mean Square Deviation
RMSF Root Mean Square Fluctuation
Rg Radius of gyration
VMD Visual Molecular Dynamics
WT Wild-type
DG Gibbs free energy
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(K319, N320, Y321, G325, G326) and S10 (V393, A394, V395, S396,
A400, H417, N447, W449) [16] (Fig. 1A & 1B). The catalytic triad is
essential for peptide cleavage in which the thiol group of Cys285
initiates a nucleophilic attack of the substrate peptide bonds
[16]. FP-2 shares a conserved structural fold with other papain-
like Clan CA family enzymes, including human cathepsins (Cat K,
L, S). However, together with its homologs from other Plasmodium
species, the enzyme possesses unique structural features, viz.,
longer prodomain (inhibitory) segments and two inserts in the cat-
alytic domain (a � 17 aa nose and a � 14 aa arm) [17–20].

FP-2, with other proteases, is responsible for hydrolyzing up to
75% of the host hemoglobin (Hb) as a means of nutrient acquisition
[12,21–25]. As such, the enzyme is a potential antimalarial drug
target [23–27]. Genetic manipulation via knockout and chemical
inhibition of FP-2 resulted in Pf parasites with decreased sensitivity
Fig. 1. Structural representation of the FP-2 protein. A) and B) Subsites are illustrated as
mutations are in grey spheres. The three catalytic residues (C285, H417, N447) are a
interpretation of the references to color in this figure legend, the reader is referred to th
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to ART, an indication that Hb digestion process is linked to ART
activity [11,28]. Additionally, the occurrence of missense and non-
sense (codon 69) mutations in FP-2 also confer parasites with
reduced ART sensitivity, possibly due to altered enzyme efficiency
and transient reduction in Hb degradation [11,29]. Several studies
have suggested the involvement of ferrous iron (Fe2+) from Hb
degradation in the activation process of ART in situ, but the exact
mechanism is still controversial [30–32].

Here, we investigated 11 FP-2 missense mutations retrieved
from the Pf genome resource database (PlasmoDB) [33], four of
which are linked to ART resistance (Fig. 1A & 1B). The interpreta-
tion of structural and dynamic impacts of existing missense muta-
tions in FP-2 may provide significant insight towards
understanding their possible effects on the catalytic efficiency, as
well as in the prediction of probable resistance mechanisms. The
a pale green surface. The ART linked mutations are in firebrick, and the rest of the
lso labelled. C) and D) Identified pockets are shown in surface presentation. (For
e web version of this article.)
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allosteric effect of distant mutations on enzyme function and drug
resistance has previously been discussed [34–37]. Since we pro-
posed the use of dynamic residue network (DRN) in mutation anal-
ysis [38,39] and established the relevant tools [40,41], this
approach has become an integral approach in studying mutation-
induced effects in protein structure and function [34,35,42]. This
article takes advantage of an extended version of DRN to assess
the impact of these mutations.

In our recent study, we established new algorithms to investi-
gate the relationships and effectiveness of five DRN metrics (be-
tweenness centrality (BC), closeness centrality (CC), degree centrality
(DC), eigencentrality (EC) and katz centrality (KC)) in characterizing
allosteric behavior of a protein in the presence of mutations [43]. In
the same recent study, we also introduced the concept of analyzing
globally central nodes and developed an algorithm to pinpoint the
highest centrality nodes for any given averaged centrality metric.
These approaches, together with some other MDM-TASK-web
tools, traditional post-MD trajectory analysis, pocket analysis, as
well as an energy-based approach, formed the basis of the current
study. Starting from global analysis, we gradually zoomed into
residue level effects of the mutations. These steps included the
analysis of mutation effects on the entire protein structure; the
identification of changes in the substrate binding pocket and
potential allosteric pockets; the description of functionally impor-
tant persistent hubs; the observation of newly formed communica-
tion hubs in the presence of certain mutations travelling to the
catalytic triad; the inspection of newly formed or lost residue
interactions in the functionally important parts of the protein;
and different energy distributions due to distal mutations.

Overall, our results provided novel insights on the possible
allosteric mechanisms through which missense mutations may
impact the Hb degradation function of FP-2, leading to the devel-
opment of ART resistance. Further, our results demonstrated the
importance of DRN and related approaches that we established
previously and extended here to identify subtle communication
changes within the protein, which may be more difficult to detect
via conventional methods.
2. Methodology

2.1. Data retrieval

The 3D structure of FP-2 [PDB ID: 2OUL] [44] was retrieved
from the RCSB Protein Data Bank (PDB) [45,46]. All crystallographic
waters and bound the ligand (chagasin) were removed in PyMOL
[47]. Despite the structural annotation of FP-2 indicating that it
lacked mutations, available UniProt data (UniProt ID: Q8I6U4)
[48] revealed the existence of four missense mutations viz.
K255R, N257E, T343P and D345G in the crystal structure. From
PlasmoDB 9.3 [49] (release 37, accessed 21-Aug-2018), FP-2 cat-
alytic domain missense mutations (including those linked to ART
resistance) were also identified. These comprised M245I, E248D,
E249A, K255R, N257E, T343P, D345G, A353T, V393I, A400P,
Q414E; mutation numbering is based on the whole protein
sequence.
2.2. Wild type and mutant FP-2 3D structures via homology modeling

Due to the mutations present in the retrieved FP-2 crystal struc-
ture (PDB ID: 2OUL), a wild-type (WT) catalytic domain 3D struc-
ture was predicted in MODELLER version 9.19 [50] using the
retrieved structure as a template and a very slow refinement. From
the 100 models generated, the structure with the lowest normal-
ized discrete protein energy (z-DOPE) score [51] was selected.
Mutant structures were predicted using the modelledWT as a tem-
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plate. The quality of the modeled structures was evaluated by z-
DOPE score, Verify3D [52], ProSA [53] and PROHECK [54], and all
models showed high quality (Table S1). The characteristic pres-
ence of four disulphide bonds involved in the maintenance of
structural integrity in the modeled structures was assessed using
the protein interaction calculator (PIC) web server [55]. The protein
structures were protonated using the PROPKA tool from PDB2PQR
(version 2.1.1) [56,57] to a pH 5.5 to match the acidic environment
in the food vacuole before further analysis.
2.3. Identification of potential allosteric pockets

A combination of structure-based approaches was utilized to
identify topologically distinct pockets on the FP-2 surface. The
FTMAP [58], FTSite [59], Allosite [60] and the Protein Allosteric
and Regulatory sites (PARS) [61] web servers were used with
default parameters to scan for potential binding pockets with a
minimum volume of 100 Å3. Additionally, SiteMap [62] and Auto-
Ligand [63] stand-alone packages from Schrödinger and AutoDock,
respectively, were also used to determine the druggability poten-
tial of the identified sites based on their physicochemical (D-
score) and geometric properties (size and volume).
2.4. Determination of global conformational variability in WT FP-2 and
its mutants using molecular dynamics simulations

To determine the effect of the mutations on the structure and
dynamics of the catalytic domains of FP-2, MD simulations of up
to 500 ns (ns) were performed using the GROMACS 5.1.2 package
[64]. At first, test MD runs were performed to determine the most
suitable force field parameters. Subsequently, using the
AMBER99SB-ILDN [65], the force field of choice, gro and top GRO-
MACS input files for the WT and corresponding mutant FP-2 pro-
teins were prepared. MD simulations were carried out under
periodic boundary conditions (PBC) using a triclinic box, with a dis-
tance of 1.75 nm placed between the protein and the edge of the
box). The simulated boxes were solvated using TIP3P water mole-
cules, and 0.15 M NaCl was added to neutralize the system charges.
Energy minimization of the systemwas performed using the steep-
est descent algorithm with an initial step of 0.01 nm without con-
straints until a maximum force of<1000.0 kJ mol�1 nm�1 was
achieved. Once the system converged, a two-step equilibration
(each 100 ps) was applied to ensure the correct temperature and
pressure of the solvated system was attained. The temperature
was set at 300 K (NVT – constant number of particles, volume
and temperature) using the Berendsen thermostat. Subsequently,
pressure equilibration at 1 atm (NPT – constant number of parti-
cles, pressure and temperature) was performed using the
Parrinello-Rahman barostat [66]. The equilibrated systems were
subjected to production MD for 500 ns, with an integration step
of 2 fs (femtoseconds) and an average CPU time of � 18,000 h. Dur-
ing the equilibration process and production phase, all bonds were
constrained using the LINCS algorithm [67]. Long-range electro-
statics were calculated using the Particle-mesh Ewald (PME) algo-
rithm [68] with a Fourier grid spacing of 0.16 nm. A non-bonded
cut-off distance of 1.4 nm was used for the Coulomb and van der
Waals interactions. After the production phase, the trajectory for
each system was stripped of periodic boundary conditions and fit-
ted to the starting frame using the gmx trjconv command. Global
and local conformational changes of each system were determined
using gmx rms, gmx rmsf, gmx gyrate and analysed in RStudio [69]
and using Python libraries including matplotlib [70], NGLview
[71], Numpy [72], Pandas [73], and Seaborn [74]. To compare the
conformational variability during the course of the simulation,
pairwise RMSD calculations were done.
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2.5. Comparative essential dynamics of the active site and predicted
pockets

Comparative essential dynamics, as implemented by the MDM-
TASK-web ‘‘compare_essential_dynamics.py” tool [41], was run on
a local Linux cluster to assess the distribution of pocket conforma-
tional sampling across MD simulations for the WT and 11 mutant
FP-2 proteins in the same eigen subspace. In essence, the compar-
ative essential dynamics approach involves data filtering and align-
ment of all MD frames to a common reference (using Ca atoms)
before proceeding to a single decomposition. In this case, frames
for the WT and 11 mutant FP-2 protein were aligned to a single
frame from the WT simulation before specifying the region of
interest, which is used to compute and decompose the covariance
matrix. By default, three C-terminal residues are excluded prior to
structural alignment. The method was independently applied to
FP-2 active site residues and to each of the predicted pockets
(shown in Fig. 1). The distributions of active site or predicted
pocket conformations were then represented as scatter plots from
the first (PC1) and second principal component (PC2) axes. The
percentages of total variance explained by each PC are also shown
along the axes. Additionally, the lowest energy conformation for
the whole proteins obtained from the maxima of the 2D kernel
density estimates produced from the two principal components
were visualized to detect any significant conformational change.

2.6. Identification of dynamic residue network changes as a result of
mutations in FP-2 using centrality analysis

To determine the effect of the missense mutations on the flow
of information within the protein residue network, DRN analysis
was performed using the newly established MDM-TASK-web ser-
ver [41]. In this approach, each residue Cb (Ca for Gly) is treated
as a node, while the inter-node proximity is used to define the
edges that compose a network graph. NetworkX [75] is used to
compute the following metrics at each time frame: betweenness
centrality (BC), closeness centrality (CC), degree centrality (DC), eigen-
vector centrality (EC) and Katz centrality (KC), before averaging the
values across each residue. A cut-off distance of 6.7 Å and a step
size of 50 frames were used for DRN computation over the entire
trajectory for each system. BC is a measure of the usage (hence
importance) of a residue for protein communication and repre-
sents the number of shortest paths between all other node pairs
passing through a given node of interest [40]. CC determines how
fast information flows through a node by measuring how close it
is to all other nodes in a network [76,77]. DC is defined as the total
number of immediate connections around a node [78]. The higher
the number of edges around a node, the more central it is locally.
EC measures the level of influence of a node within a network by
recursively considering the importance of node neighbors. This is
done by solving for the eigenvector, which explains the most vari-
ation present in the adjacency matrix, using the power iteration
method [75]. Similar to EC, KC determines the relative influence
of a node within a network by recursively estimating node central-
ity based on the centrality of neighboring nodes. The centrality is,
however, controlled by two parameters (a dampening coefficient a
and a constant b). Table 1 shows the mathematical formulae corre-
sponding to the various centrality metrics used.

2.7. Determination of centrality hubs

Averaged centrality values produced by MDM-TASK-web [41]
for related proteins were pooled before extracting the global top
5% central nodes, separately for each metric as recently reported
by Sheik Amamuddy et al. [43]. To do so, the centrality values from
each protein were concatenated as a vector and sorted in descend-
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ing order to determine a global cut-off value. This threshold was
then used to obtain a binary matrix of the same dimension as
the original dataset that contained all the samples. Finally, any
residue position that contained a hub was similarly shortlisted
from the other samples. The same approach was used for each
DRN metric.

2.8. Residue contact map analysis

Residue contact map analysis was performed to estimate how
often a residue of interest interacts with its neighboring residues
throughout the entire MD trajectory, using the contact_map.py
and the contact_heatmap.py scripts from MDM-TASK-web [40,41].
A cut-off distance of 6.7 Å and a step size of 50 frames were used
as parameters for the weighted contact maps, which were then
aggregated into a heat map using the contact_heatmap.py.
‘‘Weighted” in this context means contact maps over the MD sim-
ulations, indicating the frequency.

2.9. Evaluation of distal effects associated with mutations via an
energy-based approach

To determine the presence of distal energetic changes in FP-2
catalytic domain due to the mutations, the AlloSigma web server
[79–81] was used under default settings. The server adopts a
structure-based statistical mechanical model of allostery
(SBSMMA) to determine the Gibbs free energy change per residue
as a result of perturbation events from ligand binding and/or muta-
tions. The type of perturbation is determined by the size of
mutated residue, with changes to larger residues being considered
as ‘‘Up-Mutation” whereas those leading to smaller as ‘‘Down-
Mutation”. From the webserver, the allosteric free energy change
(Dgresidue) upon perturbations involving either ‘‘Up-Mutation” or
‘‘Down-Mutation” was evaluated for each mutant system.
3. Results and discussion

3.1. Revisiting FP-2 structure for the identification of potential
allosteric pockets and missense mutations

In the most general definition, allostery is the occurrence of
changes in the active site (in the case of enzyme) or binding site
(in the case of receptors) due to perturbations in a topologically
distal part of the protein, which is called allosteric site; and the
perturbations can be due to ligands, ions or DNA/RNA binding, resi-
due mutations or post-translational modifications [82–85]. Allos-
teric effects of distal mutations were reviewed [36,86] and
studied in a number of research articles [34,35]. Further, a relation-
ship between allosteric pockets and the mutations was reported
[87].

Recent work by Siddiqui and co-workers identified four FP-2
mutations, K255R, N257E, T343P and D345G, that were linked to
K13 protein mutations (F446I and P574L) known to confer para-
sites with reduced artemisinin sensitivity [11]. Here, as a first step
to understand if these mutations, and the seven other mutations of
this study, are allosteric and linked to drug resistance, we searched
for potential allosteric pockets with an intention to see if any of the
missense mutations are located in or around these pockets.

Apart from the trench-like active site pocket located between
the left and right domains of FP-2, whose floor is formed by the
central helix, no additional groove was consistently detected by
the various approaches used for pocket identification. Neverthe-
less, an integration of results from these different tools gave a total
of six potential topological pockets (named as Pocket 1–6) (Fig. 1C
& 1D). Pocket 1 (Y247, E248, I251, K252, K255, G256, N257, E258,



Table 1
Dynamic residue network centrality metrics used to identify residues crucial for communication in FP-2 systems.

Centrality
metric

Formula Note

Averaged
BC

BC vð Þ ¼ 1
m

Pm
i¼1

Pn�1
u¼1

d si ;ti jv ið Þ
d si ;tið Þ V is the complete set of nodes; m is the number of frames; d s; tð Þ is the number of shortest paths

connecting nodes s and t; d s; tjvð Þ is the number of these paths passing through another node v; and i is
the frame number.

Averaged
CC

CC vð Þ ¼ n�1
m

Pm
i¼1

Pn�1
u¼1d v ;uð Þ d(v, u) is the shortest-path distance between v and u, and n is the number of nodes in the graph.

Averaged
DC

DC kð Þ ¼ 1
m n�1ð Þ

Pm
i¼1

Pn
j¼1;j–iAijk n is the number of nodes; Aijk is the jkth adjacency for the ith frame.

Averaged
EC

A � EC�! ¼ k � EC�!(a)EC ið Þ ¼ 1
m

Pm
k¼1ECik(b) (a) EC is the eigenvector, and lambda is the eigenvalue for the eigen decomposition of adjacency matrix

A. In NetworkX, this is obtained by power iteration. (b) Averaged EC is computed for ith residue by
computing the vector for each MD frame and averaging.

Averaged
KC

KC ið Þ ¼ a
Pn

j¼1AijKCj þ b(a)KC ið Þ ¼ 1
m

Pm
k¼1KCik

(b)

KC is a modification of EC that employs a dampening coefficient and a constant in order to influence
adjacency values.
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N259, F260, H262, D376, N377, K378, L379, K380, E381, A382,
Y443, E465, S466, G467 and L468) is located around the nose
region loop, a structural feature that is exclusive to FP-2 and
related homologs from other Plasmodium parasite species. Interest-
ingly, two of the ART resistant linked missense mutations, K255
and N257, are located in this pocket, and the other three missense
mutations of this study (M245I, E248D, E249A) are near the pocket.
Pocket 2 (Q311, L313, V314, D315, C316, S317, F318, K319, N320,
Y321, GLY322, C323, N324, D334, V350, S351, D352, A353, P354,
N355, L356, C357, N358, I359) and Pocket 4 (D398, F401, Y402,
K403, E404, G405, I406, F407, D408, G409 and E410) are formed
by residues located in highly dynamic loops which are adjacent
to the S1 and S10 subsites respectively. Pocket 2 contained the mis-
sense mutation A535T, while A400P was on the border of Pocket 4.
Pocket 3 is located at the bottom of the L-domain and consists of
residues Y298, K302, N303, K304, I306, D334, M335, I336, E337,
LEU338, G339, G340, I341, T343, T363, E364, K365, Y366, G367,
I368, K369, N370, L482, I483, and E484. Pocket 5 (S271, G272,
V273, T274, A299, N303 and L305) and Pocket 6 (P275, V276,
K277, D278, K280, T307, S309, E310, D344, D345, P348, Y349,
G450 and Q451) were only identified by AutoLigand [63] as one
pocket, which we separated into two. They consisted of two small
grooves. The interface of Pocket 3 and 6 shared the other two ART
resistance-linked mutations (T343P and D345G). From the drugga-
bility analysis using SiteMap and AutoLigand (Table S2), all the
pockets, with the exception of Pocket 1, were considered to be less
likely to bind small molecules (D-score < 0.6).

We further looked at the distances of mutant residues from the
active site area. For that, we used three different center of mass
(COM) measures: Inter-COM distances between the mutation and
(1) the catalytic thiol, (2) substrate binding pocket and (3) the cat-
alytic triad (Table S3). V393I was the nearest mutation to the bind-
ing pocket environment. All four mutations that are linked to ART
resistance were located more than 20 Å away from the catalytic
pocket environment. All the identified mutations are located in
loop regions. Even though V393I and A400P of FP-2 were the only
mutations of the active site binding pocket environment (S10sub-
site), which may cause disruption of important native contacts
with the Hb substrate, it is yet to be established if they confer
ART resistance.

3.2. Global analysis: Mutation-induced structural changes via MD
simulations

To accurately analyze the properties of biomolecular systems
using MD simulations, it is critical to determine the most suitable
force field parameters. Further, it is important to have long enough
simulations to ensure that the systems converge to their most
stable configuration. Thus, as a preliminary step, we evaluated
three force fields viz. AMBER96 [88], AMBER99SB-ILDN [65] and
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CHARMM36 [89] in triplicate run per force field, over 500 ns, for
the WT FP-2. From the Ca RMSD analysis, AMBER99SB-ILDN was
the most appropriate in describing the properties of FP, which
are composed of � 50% loop regions (Figure S1).

Subsequently, the dynamic changes of WT FP-2 and 11 mutant
proteins were assessed over 500 ns MD simulations. The cleaned
MDtrajectories for all systems (withoutPBC, solvent and ions aswell
as fitted to the respective first frame of each system)were visualized
using VMD to observe any obvious structural conformational
changes. Post-MD global analysis was done by RMSD (whole pro-
tein); Rg (whole protein, central core and the different pocket resi-
dues including those forming the active site) to determine protein
stability, conformational changes in mutant proteins with respect
to WT. The outcome of the calculations is discussed as follows.

3.2.1. Protein conformational changes due to mutations were analyzed
via RMSD

The global conformational variability of the mutant systems
was assessed using Ca RMSD, and a comparison was done against
WT structure. For that, we utilized different types of RMSD analy-
sis. At first, the most commonly used RMSD vs timeline plots were
calculated to evaluate the divergence of a structure compared to
the starting conformation over the course of the simulation (Fig-
ure S2). Nearly all systems displayed convergence after the first
few equilibration nanoseconds. Next, to determine the conforma-
tional variability over the simulations, RMSD distribution violin
plots for the whole protein, central invariant core and the binding
pocket residues were calculated, excluding the first 20 ns of the
equilibration time. As seen in the RMSD plots (Fig. 2A-C), majority
of the protein systems displayed a unimodal distribution, indicat-
ing a single conformational equilibrium during the simulation.
Exceptions to this were M245I, E248D, V393I and A400P. M245I
and A400P, which demonstrated bimodal distribution for the
whole protein systems, and E248D and V393I for the active site
RMSDs. Even though the central core of FP-2 has a very rigid struc-
ture, A400P mutant protein showed bimodal behavior.

Further analysis to compare how starting conformation differed
as compared to that of each frame, all vs all frame RMSD plots were
calculated using pytraj [90]. As with the classical RMSD vs time
plots, the starting structures in majority of the systems showed a
significant variation as compared to other frames along the simu-
lation (Fig. 2D). Again, M245I and A400P demonstrated strong
bimodal behaviour. We later identified that the bimodal distribu-
tion of M245I is due to a cryptic allosteric pocket (see
Section 3.3.3).

3.2.2. Mutation linked changes in the putative allosteric pockets were
identified via Rg and RMSF

We investigated the effects of mutations on the compactness of
the whole protein, the central invariant core, the binding pocket



Fig. 2. Ca backbone stability analysis. A) RMSD violin distribution plots of the A) whole protein, B) central invariant core, and C) binding active site residues of WT and mutant
FP-2 proteins. Shown in purple are the WT ensemble plots. D) All vs all Ca RMSD of FP-2 catalytic systems. The � and y-axes denote time (ns). Color scale shows the degree of
conformational variability between frames (most similar = white, distinct = dark). (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Chiamaka Jessica Okeke, Thommas Mutemi Musyoka, O. Sheik Amamuddy et al. Computational and Structural Biotechnology Journal 19 (2021) 5647–5666
(active site) and the identified pockets (Pocket 1 – Pocket 6) using
Rg calculations. Distribution of Rg values for the whole protein, the
central invariant core, as well, as the binding pocket residues
revealed insignificant changes in compactness (Figure S3). All
the systems had a unimodal Rg density distribution, which signi-
fied the absence of major conformational changes associated with
the selected mutations. Despite the extent of loopy regions within
the protein, the globular nature and the presence of two pairs of
disulphide bonds may be the reason for the perceived compact-
ness. Mutants E248D, N257E, V393I and A400P displayed higher
active site pocket Rg values compared to the WT. This might be
linked to an increased loop flexibility from residue RMSF measure-
ments (Figure S4). In both V393I and A400P, a considerable loss of
stabilizing contact with the neighboring loop residue V395 was
observed.

We further analysed the pockets via Rg and RMSF (Fig. 3) to
understand if there are any links between mutations and changes
in pockets. In general, pockets showed more variability in Rg
results compared to Figure S3. In the case of Pocket 1, WT,
M245I and N257E demonstrated bimodal behaviour (Fig. 3A).
A353T seemed to sample a much wider range of conformations
for Pocket 1, with a flatter distribution. A353T mutant protein
had the highest RMSF for the residues E258-F260. Pocket 2 pre-
sented the most diverse Rg distributions among all pockets com-
pared (Fig. 3B). M245I, E249A, N257E and V393I sampled two
major conformations. Residues S351-N355 showed high flexibility
for M245I, though we have not seen similar residue flexibility in
the other three mutant proteins. Interestingly, in the presence of
A353T mutation, which is located at Pocket 2, the pocket became
the most rigid one among all protein cases according to RMSF data.
In Pocket 3, most of the mutant systems displayed similar Rg dis-
tributions as that of the WT, with the exception of A353T, where
a significantly higher mode was observed. This observation in
A353T can be linked to the comparatively higher flexibility of loop
residues K302-K304, which led to it being farther from the central
core helix (Fig. 3C). In the case of Pocket 4, the majority of mutant
systems sampled a single conformation as opposed to the WT and
A353T mutant, and generally, the pocket residues showed similar
flexibility except WT and A353T (Fig. 3D). In Pocket 5, only
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A353T had notable differences in conformational distribution, pro-
ducing two modes distinct from all cases, one being the lowest and
the other being the highest (Fig. 3E). Lastly, in the case of Pocket 6,
M245I showed a distinct Rg distribution compared to all the other
systems (Fig. 3F). This is linked to the observation described for
Pocket 2, where a section of its residues was pulled into Pocket 6.

This unique mechanism is detailed in the next section on essen-
tial dynamics calculations. Interestingly, A353T seems completely
opposite –a stabilizing effect on these two back to back pockets,
Pockets 2 and 6, was observed. In conclusion, we observed changes
in some of the pockets due to mutations, with the most distinct
observations came from M245I and A353T mutations. ART linked
mutations did not have obvious effects on the pocket dynamics,
except in the presence of N257E mutation, Pocket 1 and 2 showed
bimodal behavior.

3.2.3. Essential dynamics revealed diverse conformational changes in
the active site region and the identified putative allosteric pockets

As a next step, we used one of our newly developed tools from
the MDM-TASK-web, comparative essential dynamics, to investi-
gate the behaviour of the active site and the pockets in the pres-
ence and absence of FP-2 mutations. The lowest energy
equilibrium conformations for the catalytic site were very similar
irrespective of mutation or lack thereof, indicating a common
stable conformation in each case. Fig. 4, which shows the confor-
mational distributions of the active site, also revealed that they
were very similar, along the axis corresponding to the largest per-
centage of explained variance (71.09% along PC1), even though
minute differences were also observed along PC2, which explained
a much lower proportion of the total variance (4.06%). Despite the
similarities, the most differential distribution along PC1 was
observed in the case of E248D, whereby the conformation distribu-
tion slightly shifted to the left, where the pose extracted at
227,716 ps was the closest energy minimum in that region. Upon
examination of the pose, we found that the major contributor of
variation comprised residues from subsite S1. This correlates with
the high RMSF recorded from the residues of the same site (Fig-
ure S4). This variation occurred in most of the systems as well.
Fig. 5.



Fig. 3. Rg and RMSF values for Pocket 1 – Pocket 6 (A – F) presented as violin distribution plots and heat maps respectively. In the violin plots, the purple indicates WT FP-2.
Pocket residues are presented on the x-axis, and WT and mutant proteins on the y-axis of the heat maps. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 4. Comparative essential dynamic analysis of the active site pocket residues along PC1 and PC2. Colour code (dark = start, yellow = end) represents the simulation time
(ns). Indicated in blue on each PCA plots is the timestamp when the structure was most stable. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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In the case of the putative allosteric pockets, the essential
dynamics showed relatively more variability compared to the
active site. For Pocket 1, the mutant A353T showed the highest
divergence in conformational sampling, while A400P diverged
the least, as observed along PC1 that accounted for 53.42% of the
total variance. In the WT, the same pocket had a distribution inter-
mediate to those of these two mutants along the same axis. While
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some changes were observed along PC2, the axis only accounted
for 9.6% of the variance. The divergence between these mutants
agreed with the observed differences in compactness inferred from
Rg distributions and RMSF values (Fig. 3). Structural examination
of the lowest energy conformations revealed contrasting surface
topologies of the pocket in A353T and A400P. The irregularity of
the pocket surfaces, however, made direct comparison difficult.



Fig. 5. Comparative essential dynamic analysis of the different putative allosteric pockets along PC1 and PC2. Colour code (dark = start, yellow = end) represents the
simulation time (ns). Indicated in blue on each PCA plots is the timestamp when the structure was most stable. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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In Pocket 2, PCs 1 and 2, respectively, accounted for 38.29% and
16.56% of the total variance. Together, the axes showed a more
spread out conformational distribution in the case of M245I and
more compact distributions in the case of K255R, T343P and
A400P. Appreciable shifts in distribution from the WT were noted
for M245I, E249A and D345G. While the compact distributions
point to less diverse pocket conformations, shifts in the distribu-
tions point to the favoring of other states. More importantly, exam-
ination of the pose extracted by the k-means algorithm at
448,180 ps of the M254I mutant protein MD simulation revealed
a unique opening of Pocket 2. As it is not seen in the WT and the
other mutants, this suggests that it is a cryptic pocket. Coinciden-
tally, a pairwise Pearson correlation (r) of all pocket Rg values
revealed a possible cross-talking mechanism between Pocket 2
and Pocket 6, with an R-value of 0.81 (Figure S5). Visualization
of the trajectory revealed that some residues in Pocket 2 moved
into Pocket 6, resulting in their fusion into a single groove linking
the two (Movie S1).

In Pocket 3, PC1 and PC2 accounted for 75.32% and 4.19%,
respectively, of the total variance. The distribution of pocket con-
formations was generally similar in all cases along both PC axes.
However, a wider distribution along PC1 was observed in E249A
and A353T when compared to the same pocket in the WT FP-2.
An upper shift in the distribution of E248D (from the WT) was
observed along PC2. Although M245I and D345G also showed vari-
ations from the WT along the same axis, these were supported by a
much lower percentage of explained variance. Overall, from the
visualization, minimal conformational changes were observed for
this pocket.

In Pocket 4, both axes were comparable in terms of percentage
of variance explained, with a total variance of 56.4%. We observed a
general tendency of the pockets to sample a wide range of confor-
mations. However, when compared to the WT, slightly reduced
ranges were obtained in mutants M245I, E248D, K255R, N257E
and A400P when measured along PC1, PC2 or along both axes.
Structural visualization revealed minimal changes to this pocket,
other than those resulting from side chain movements.
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For Pocket 5, PC1 explained a large percentage (83.12%) of the
total variance, while PC2 only explained 3.57% of the variance.
Mutants N257E and A353T displayed the highest range of confor-
mation sampling along PC1, whereas the other samples were closer
to the WT. Nevertheless, examination of the maximum probability
density pocket poses did not show any significant changes.

For Pocket 6, PC1 and PC2 both explain significant amounts of
the total variance (74.14%) despite contributing to dissimilar
amounts of variation. Mutants M245I displayed the highest range
of conformation sampling along PC 2, followed by N257E, whereas
E249A displayed a right shift along PC1, when compared to theWT.
Visualization showed that Pocket 6 formed grooves of various
depths, and agreed with the previous observation made from
Pocket 2, whereby the two fused to form a wider trench in M245I.

Overall, our findings in this section agreed with the Rg and
RMSF analyses of the previous section.

3.3. Identification of hubs for each of the five dynamic residue network
metrics with specific attention to persistent hubs

Protein systems exist as a network of residues commonly
referred to as nodes and non-covalent interactions of nodes as
edges [91]. Even though most of these nodes lack a direct func-
tional role, they are key in mediating a flexibility pattern needed
for protein function [92]. The importance of a node in communica-
tion (centrality) can be determined from a given network topology.
Besides altering the structure of a protein system, mutations can
induce significant inter-residue contact changes depending on
the biophysical characteristics of side chains [93]. The resulting
perturbation not only affects the immediate community of resi-
dues but also distal residues depending on how the affected region
is linked with the rest of the network. A key method in the deter-
mination of how mutations affect communication in a protein
ensemble is DRN analysis [39,40]. This method uses graph theory
techniques to predict signalling effects associated with perturba-
tions on residue backbone connectivity arising from mutations
and ligand binding [38,94,95]. Herein, we performed network anal-
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ysis using five different centrality metrics (BC, CC, DC, EC and KC)
implemented in the MDM-TASK-web server [41] to identify hubs
in FP-2 and the effects of mutations on their communication
profiles.

In our previous study, we defined a ‘‘hub” as any node that
formed part of the set of highest centrality nodes and identified
these hubs with a new approach, as also explained in the method-
ology section here [43]. We specified these hubs as the global top
5% centrality nodes measured across all related samples for any
given averaged centrality metric and analyzed the communication
paths. Fig. 6 shows the heat maps of the five DRN metrics for the
WT and mutant FP-2 proteins. Overall examination of the figure
demonstrated that there are some residues that preserve their
hub statuses. Previously, we introduced the term ‘‘persistent hub”
[43]; meaning if hub remains across all systems compared, then
the hub is called persistent. In this study ‘‘all systems” would be
the WT and mutant FP-2 proteins. As shown previously, most of
the persistent hubs are metric-specific, giving a different perspec-
tives of the network, as each metric refers to different measures
of importance within a network; hence persistent hubs may not
be shared between different DRN metrics.

According to Fig. 6, persistent hubs for the averaged BC were
F288, I389, M420, Y441 and I445. Persistent hubs for the averaged
CC consisted of residues S289, S290, G292, S293, P388, S390,
I391, V419, M420 and L421. DC persistent hubs were S284, W286,
S296, I328 and I389. EC persistent hubs were W286, S289, S290,
S293, I328 and I389; and residues W286, S289, S293, I328 and
I389 were for KC. The persistent hubs S284, W286 and S289 form
the peptidase_C1 functional site (PS00139) motif, which is a char-
acteristic of the papain-like family cysteine proteases [96].

Visual inspection of these hubs via mapping to the structure
showed that all the identified persistent hubs were located in the
central invariant core of FP-2, where the main binding pocket is
located (Fig. 7). In our previous study [43], where these metrics
were compared for the first time, the distribution and location of
persistent hubs were more diverse, unlike the observation that we
have here for FP-2. This difference between the current and previ-
ous studies can be attributed to the different sizes and organization
of the proteins. In the previous study, Mpro was analysed, and this
homodimeric protein has three domains per protomer with very
well-defined secondary structure elements. On the other hand,
FP-2 is a relatively small monomeric protein, and �50% of it con-
tains flexible loops; hence the accumulation of hubs in the core
area. In fact, from all metrics used, as in the previous study, we
observed that residues within the a-helices and b-sheets had high
values, indicating the presence of increased interactions with other
residues in the network; and majority of the residues within the
loop regions, including those in the nose region and the b-hairpin
(in both the mutants and corresponding WT) exhibited the lowest
centrality values. From PIC (Protein Interaction Calculator) [55], a
dense bonding network between the identified hubs was observed.
S289 of the central core helix formed H-bonds with C285, S293,
S390 and V419 (central b-sheet), whereas S390 interacted with
S293. I328, located at the a-helix at the interface of Pocket 2 and
3, formed hydrophobic interaction with W286 (central core a-
helix) as well as A418 (subsite S2). This bonding network most
likely functions in stabilizing the central core while maintaining
the integrity of the main binding pocket.

Overall, the heat map representation of the identified hubs
according to the global top 5% for each of the five DRN metrics
(Fig. 6) allowed us to identify persistent hubs, which indicate the
key residues that are not affected in the presence of mutations.
We believe that these residues are functionally highly important.
Previously, we made a correlation between persistent hubs and cold
spot residues [43]; and here, we reiterate that the persistent hubs of
a system should be considered in inhibitor design studies.
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3.4. Averaged DRN metric hub changes due to mutations were
investigated

To gain insights on changes in hubs due to mutations, we fur-
ther analysed the data presented in Fig. 6. For that, we mapped
(1) the uniquely observed hubs of each mutant protein with
respect to the WT hubs as well as (2) the rest of the hubs com-
monly shared (intersected) with the WT for each metric.

3.4.1. Betweenness centrality (BC)
BC is defined as the number of shortest paths going through a

node/residue for a given residue interaction network, and provides
a measure of usage frequency of each node within the network. BC
analysis is a measure for identifying hubs responsible for both
inter- and intra-protein communication. These sites were found
to correlate closely with known functional sites, demonstrating
how BC analysis may be utilized to identify functional sites on a
protein [97]. In a previous study, BC was successfully used to iden-
tify key residues in FPs and how ligand binding on the orthosteric
site affected the communication network around the active site, as
well as distal sites [98]. Similar studies have also applied BC to
identify potential allosteric sites and mutation-induced changes
in a range of protein systems [38,95,97,99].

With this in mind, we further analyzed the global top 5% aver-
aged BC hubs for WT and 11 FP-2 mutant proteins (Fig. 8 and Fig-
ure S6). Hubs are colored according to their unique occurrence in
only mutant proteins with respect to the WT or commonly shared
with the WT protein (Figure S6). One striking observation (Fig. 6
and Fig. 8) is the appearance of the catalytic thiol (C285) as a
new hub in all mutant cases except in the WT protein and in
E249A. This is also seen with S289 as a mutant-specific averaged
BC hub, located at the central a-helix, in all cases except in
E248D and A400P (Fig. 8). To a lesser extent, we also identified
I291 as a new common hub. I291 was identified in six mutant pro-
teins (M245I, E249A, K255R, T343P, A353T and V393).

Interestingly, these three hubs are connected to each other and
form a short communication path. Few of the mutant proteins pos-
sessed this short communication path. These are M245I, K255R,
T343P, A353T and V393I, two of which are linked to ART resis-
tance. More interestingly, we observed a full allosteric residue
communication path (L308-I291-S289-C285), which was estab-
lished from the T343P-specific averaged BC hubs (Fig. 8 and
Fig. 9). The path originates from residue L308, which is in contact
with the mutant residue (T343P) and ends at the catalytic site,
including C285. Closer 3D visual inspection of the protein and
these hubs showed that while T343P is located between Pockets
3 and 6, L308-I291 are positioned between Pockets 2, 3 and 6
(Fig. 7C and D). T343P is one of the mutations linked to ART resis-
tance, hence we speculate that the resistance is probably due to
this strong allosteric communication path formed by four unique
averaged BC hubs travelling from the mutation to the catalytic
thiol.

The WT hubs, L421 (located in the antiparallel b-sheet) and
N447 (subsite S10), on the other hand, were lost in the other FP-2
mutations studied.

3.4.2. Closeness centrality (CC)
CC identifies the central nodes which are closer to most of the

other nodes, as it is calculated as the inverse of the average of
the shortest path length from one node to every other node. Previ-
ously we showed that large CC values occur within the protein core
[43]. Here, we did not observe any drastic changes between WT
and mutant proteins, and all global top 5% averaged CC hubs were
primarily located in the center of the protein. Fig. 7B outlines the
locations of the persistent CC hubs, which constitute most of the
global top 5% averaged CC hubs. Exceptions to these are hub



Fig. 6. Heat maps for the potential hub residues (x-axis) according to the global top 5% for each of the five DRN metrics, for the WT and 11 mutant FP-2 proteins (y-axis).
Detected hubs are annotated by their centrality values, while their homologous residues in alternate samples are not, but are only shown for the sake of comparison. For each
metric, low tohigh centrality values are colored white, through yellow, orange and red to black. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 7. Cartoon representation of FP-2 with the distribution of the persistent hubs (in spheres) as per five metrics of DRN. (A) Averaged BC (orange), (B) Averaged CC (skyblue),
(C) Averaged DC (aquamarine), (D) Averaged EC (chartreuse), (E) Averaged KC (yellow), (F) Collective presentation of persistent hubs in purple spheres. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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residues A418 (only in A353T), V422 (in M245I, N257E and D345G)
and I445 (exists in all except in the WT, E249A and A400P). A418 is
one of the subsite 2 residues; and I445 is also identified as a persis-
tent averaged BC hub.
3.4.3. Degree centrality (DC)
DC is defined as the number of neighboring nodes around a

given node. Even though DC nodes do not inform us about how
central they are in the entire network, they provide information
on how well they are connected locally. Hence DC hubs can be
regarded as functionally important at a local level.

Upon visual inspection, it was obvious that the number of aver-
aged DC hubs increased in all mutant proteins (Figure S7). While
the WT has seven DC hubs, those of the ART resistance-linked
mutant proteins are roughly doubled: K255R (12 hubs), N257E
(16 hubs), T343P (16 hubs) and D345G (15 hubs). This increase,
of course, can also be extrapolated to unique hubs with respect
to the WT protein (Fig. 10). The highest numbers of unique hubs
are observed in the three ART resistance-linked mutant proteins:
N257E contained 10 unique hubs, and this was followed by
T343P (9 hubs) and D345G (8 hubs). K255R, A353T, A400P and
Q414E had six unique averaged DC hubs compared to the WT.
Overall, residue-residue contact rearrangements due to some of
the mutations were evident. The large number of unique hubs indi-
cate that a significant shift in the communication occurred. The
significantly larger number of hubs, especially, in the presence of
ART-linked mutations, also suggest that the mutant proteins are
more compact locally than the WT. We have not observed the glo-
bal compactness of the protein in Rg calculations (Figure S3). This
5657
shows us the sensitivity of DC calculations compared to Rg
calculations.

We also observed that the averaged DC hub S289, which inter-
acts with the catalytic thiol of C285, appeared in all mutant pro-
teins, except in M245I and E248D. Interestingly, hub residue
L308, which interacts with T343P again featured among the aver-
aged DC hubs of this mutant protein. Further, nine mutant proteins
(M245I, E248D, E249A, T343P, D345G, A353T, V393I, A400P and
Q414E) commonly have hub residue 420, which interacts with
S293 and S296. On the other hand, two WT hubs, S293 and I391,
are lost in some mutant proteins. N257E and A400P lost hub
S293; and mutants E249A, K255R, D345G, V393I and A400P lost
hub I391.
3.4.4. Eigencentrality (EC)
Initial centrality calculation of EC is based on DC, and it builds

further on a recursive allocation of centrality on the basis of nodes
that draw importance from that of their successive connections.
High connectivity nodes also tend to have a high EC, especially
when surrounded by other high connectivity nodes, due to their
dependence on the residue neighborhood. From our experience
in applying these metrics to analyze protein dynamics, averaged
EC has always been more stringent in assigning centrality com-
pared to averaged DC, while KC has typically been in-between.
Visual inspection of the EC hubs, again gave the same observation
(Fig. 11 and Figure S8). In contrast to DC hubs, we have not seen
any drastic increase in the number of unique EC hubs in mutant
proteins with respect to hubs of the WT. Residue P388, which
was identified as averaged a CC persistent hub, appeared in 9



Fig. 8. Cartoon representation of (A) WT and (B-L) mutant FP-2 with the distribution of the averaged BC hubs unique to each mutant protein with respect to WT (skyblue
spheres). WT averaged BC hubs are in salmon color. Catalytic thiol (of C285) is marked with a black stick if it is identified as a new averaged BC hub; otherwise is red. The other
common hub, residue S289, is also labelled. ART-linked mutations are represented as firebrick spheres and the rest of the mutations are in grey spheres. Catalytic residues are
shown in orange if they are not hubs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Cartoon representation of WT and T343P mutant proteins with their averaged BC hubs. (A) WT with the distribution of the averaged BC hubs depicted as salmon
colored spheres. (B) T343P with its unique hubs (skyblue) and the ones common to theWT hubs (salmon). (C) and (D) show the allosteric communication path formed by four
unique hubs originating from T343P and going to the catalytic site, passing through the interface of three pockets.
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Fig. 10. Cartoon representation of (A) WT and (B-L) mutant FP-2, with the distribution of the averaged DC hubs unique to each mutant protein with respect to WT (skyblue
spheres). WT averaged DC hubs are in salmon color. ART resistance-linked mutations are depicted as firebrick spheres and the rest of the mutations are in grey spheres.
Catalytic residues are shown in orange if they are not hubs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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mutant systems as a unique EC hub, except in the N257E and
A353T mutant proteins. Residues S284 and F288 in N257E, and
residue A418 in A353T were the unique hubs for these two pro-
teins compared to the WT FP-2 hubs. The other commonly
observed unique hub for many mutant proteins was L421, which
was again a persistent hub of CC. Again, as observed with DC hubs,
the T343P mutant protein had a high number of unique hubs; resi-
dues S296, P388, V419, L421 and V422. Interestingly, these hubs
were forming another alternative allosteric communication path
(S296-P388-V222-L421-V419), originating from S296, which is
located within Pocket 5, and going towards the catalytic site, con-
tacting H417 via V419 (Fig. 12). The route was almost in the oppo-
site side of the allosteric communication path that we observed,
which was formed via averaged BC hubs. The gap between L421
and V419 was filled with the existing EC hubs (I391 and M420)
that are inherited from the WT. In this path though, we have not
observed a direct contact to the mutant residue.

3.4.5. Katz centrality
Visualization of the averaged KC metric (Figure S9) for the

unique hubs specific to the mutant proteins gave us relatively sim-
ilar results to EC.

3.5. Residue interaction changes due to mutations identified using
contact map analysis

In the previous two sections (Section 3.4 and 3.5), we analyzed
the effects of mutations on the FP-2 structure by identifying DRN
hubs from five network metrics. This gave us information of cen-
trality hubs and how they change in the different mutant protein
systems. Here, we further zoom into the residue-residue interac-
5659
tions to determine the possible effects of mutations on the native
inter-residue networks.

In recent years, the considerable interest in evaluating changes
in residue networks to understand protein function has led to the
development of various tools that provide a reduced matrix repre-
sentation of the structure [100–103]. To account for the inherent
dynamic properties of proteins which was lacking in the existing
approaches, a contact map tool to determine residue contact fre-
quencies around a single residue across MD trajectories was imple-
mented in MD-TASK [40]. Contacts are inferred from interactions
such as van der Waals, hydrogen bonds and electrostatic bonds
[40]. By assigning values in the range of 0 (absence) to 1 (presence),
residues with loss, gain, and reduced interactions can be identified.
Contact maps have previously been applied to identify important
interaction changes associated with ligand binding and mutations
on different proteins [38,94,104]. A recent improvement of the
contact map functionality in MD-TASK as implemented in MDM-
TASK-web allows users to determine contact frequencies for mul-
tiple residues of interest [41]. This was recently used in character-
izing atovaquone drug resistance in Pf cytochrome b protein [105].

Using equilibrated trajectory regions of theWT and mutant pro-
teins, we calculated the local contact frequencies 1) around the
mutated residues, 2) on the catalytic triad, and 3) around the per-
sistent hubs. In terms of local perturbation around the mutations,
notable changes were observed in the four ART resistance-
conferring mutations as well as in V393I and A400P (Fig. 13A).

As compared to the WT, the cation-Pi interaction between K255
and F385 was reduced four-fold in K255R mutant protein. Addi-
tionally, a compensatory gain and loss of interactions between
N257 and N259 with position 255 was also observed. In N257E, a
non-existent interaction in the WT was formed with Y254. In



Fig. 11. Cartoon representation of (A) WT and (B-L) mutant FP-2, with the distribution of the averaged EC hubs unique to each mutant protein with respect to WT (skyblue
spheres). WT averaged EC hubs are in salmon color. ART resistance-linked mutations are depicted as firebrick spheres and the rest of the mutations are in grey spheres.
Catalytic residues are shown in orange if they are not identified as new hubs. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 12. Cartoon representation of T343P mutant protein with its averaged EC hubs. Unique hubs of T343P mutant protein are in skyblue, and the ones common with the WT
hubs are in salmon. The allosteric communication path is formed by five unique EC hubs originating from Pocket 5 (green) and going to the catalytic site, interacting with
H417. Catalytic triad residues are depicted in orange. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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T343P, a two-fold reduction of the native interaction between T343
and I306 was observed. Additional new bonds in the mutant
between P343 and each of C362 and Y366 were also formed. In
D345G, a four-fold strengthening of the contact between position
345 and P348 was observed. In A353T, the native hydrophobic
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interaction with V350 was completely lost. Additionally, the main
chain hydrogen bond between A353 and N355 had a three-fold
reduction in the case of the mutation. However, a new bond
between T353 and C323 was formed. A three-fold reduction of
the hydrophobic interaction between V393 and V395, as well as



Fig. 13. Residue contact analysis heatmaps showing the interaction changes around (A) the mutations and (B) catalytic triad residues (C285, H417 and N447). Dashed boxes
in panel A showmutations causing significant interaction changes between the mutated residue and its surrounding contacting residues with respect to the native network in
WT. Color code represents the contact frequency where 0 = no contact and 1.0 = strong contact between target and contacting residues.

Table 2
Dynamic inter-residue contact analysis around persistent hubs showed significant
changes (new/enhanced or lost/reduced) in interactions with respect to the WT.
Neighbor residues are indicated in bold and are underlined.

Protein New/Increased Lost/Reduced

M245I I389-S293, I391-M420, S293-I389,

S390-A418, Y441-K439
I389-L379, F288-G292, S289-

A287, S293-Q297
E248D I389-S293, I391-M420, S293-I389,

S296-G387, S390-A418, Y441-

K439

I389-L379, F288-G292, S289-

A287

E249A I389-S293, I391-M420, I445-V422,

S289-S448, S296-G387
K255R I389-S293, S289-S448, I445-M420 F288-G292, S284-C323,

W286-C325
N257E I389-S293, I391-S289, S284-S351,

S290-M335, I445-M420, Y441-

K439

I389-L379, M420-S293, S296-

V273, S390-M420, W286-
S284

T343P I389-S293, I445-M420, S289-S293,

S296-W267, Y441-K439
I389-L379, S284-W286,

W286-C325
D345G I389-S293, I445-M420, S296-

G387, Y441-K439
L421-L383, P388-V273

A353T I389-S293, I445-M420, S289-S448,

Y441-K439, W286-S284

F288-G292, P388-V273

V393I I389-S293, I445-M420, S289-S448,

S296-W267, Y441-K439

L421-L383, W286-C325

A400P I389-S293, I391-M420, S289-S448,

S293-S289, Y441-K439
Q414E I389-S293, I391-M420, I445-

M420, S296-W267, Y441-K439
W286-C325, S296-G387
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A418 was observed with mutation V393I. In A400P, a nearly com-
plete loss of the main chain interaction with D397 was experi-
enced, as well as that of a hydrophobic interaction with V395.

To determine the effect of mutations on the catalytic triad resi-
due interactions, contact maps on C285, H417 and N447 were also
evaluated (Fig. 13B). Nearly all the mutant proteins maintained the
native residue interactions around the catalytic triad residues,
except with the increased contact of H417 with A394 in both
N57E and T343P. Additionally, a reduction of the contact between
residues N447 and F458 in mutants M245I, E248D, N257E, A353T,
A400P and Q414E was observed. The native main chain hydrogen
bond contact between H417 and V393 was equally maintained in
the case of V393I.

In the case of the persistent hubs, notable changes in the mutant
systems were observed in comparison to the WT (Table 2). We
identified newly formed interactions between a number of persis-
tent hubs or between persistent hubs and other residues that we will
call ‘‘neighbor residues”. Neighbor residues forming new interac-
tions, included W267, M335, S351, G387, A418, V422 and K439.
Among them, S351 is a Pocket 2 residue, and we identified that it
shows high flexibility in the M245I protein (see Section 3.3.2).
A418 is a subsite S2 residue, and it was also detected as a CC and
an EC hub specific to the A353T mutant protein. V422 is one of
the unique CC hubs for M245I, N257E and D345G. It is also part
of the allosteric communication path formed by EC hubs in
T343P (see Sections 3.5.4). Our analysis showed that in all mutant
systems, a new interaction between I389 and S293 was estab-
lished. I389 was identified as averaged BC, DC, EC and KC persistent
hub. S293 is the persistent hub of averaged CC, EC and KC. This,
most likely, further stabilized the central core. An increased con-
tact frequency between I445 (BC persistent hub) and M420 (persis-
tent hub of BC and CC) was observed in all the four ART resistance-
linked mutations as well as A353T and V393I mutant proteins.

Neighbor residues with lost/reduced interactions with persistent
hubs included V273, L379, A287, Q297, C323 and C325. Residue
V273 is part of Pocket 5. C323 is a Subsite 1 residue, while C325
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is part of Subsite 3. L379 is a Pocket 1 residue. In M245I, E248D,
N257E and T343P, the hydrophobic interaction between I389 and
Pocket 1 residue L379 was reduced.

Overall, from these results, it can be concluded that mutations
impose changes in the existing WT residue interactions. Gained



Fig. 14. Allosteric per-residue free energy changes associated with the missense mutations occurring on the catalytic domains of FP-2. The resulting destabilization
(DG greater than 0 kcal/mol) and stabilization (DG < 0 kcal/mol) effects on the proteins are shown in blue and red. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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interactions are mainly to make interactions with the other identi-
fied persistent hubs and neighbor residues, while the lost/weakened
interactions are mainly with neighbor pocket and subsite residues.

3.6. Distal effects of mutations were observed using energy-based
approaches

We also looked at the effects of mutations using an energy-
based approach and applied the SBSMMA model in AlloSigMA
web server [79–81]. As shown in Fig. 14, diverse distal energy
modulation effects were observed in the protein as a result of the
mutations. M245I, E248D, E249A mutations, located around the
nose region, and D345G caused local destabilization effects in their
vicinity, while a stabilization effect was observed in the other parts
of the proteins. K255R and N257E mutations from the same area,
on the other hand, caused a local stabilization effect around the
nose region while destabilizing the other areas of the protein.
The third group of mutations, if we categorize them according to
our AlloSigMA results, were T343P, A353T, V393I, A400P and
Q414E. This group of mutations leads to strong stability in their
vicinity and only slight destabilization in the regions far from the
mutation point. One interesting observation can be made on Allo-
Sigma results for the stability of A353T mutation, which leads to
rigidity of Pocket 2, in agreement with the result reported in
Section 3.3.2.

From these results, perturbations exerted by the different muta-
tions appear to cause subtle energy changes to distal protein sites,
including the active pocket environment of these proteins. This
altered energetic landscape may influence the catalytic efficiency
and function of the protease.

4. Conclusion

Mutations of key plasmodial enzymes, which act as pharmaco-
logical targets, continue to present the greatest challenge towards
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successful global control of malaria due to drug resistance [106].
Thus, a better understanding of how mutations confer resistance,
especially those involving ART based drugs, is of uttermost impor-
tance. Besides ensuring the efficacy of ART therapies, this would
also guide the design of new drugs aimed at potentially circum-
venting the complex drug resistance mechanisms employed by
Plasmodium parasites. Recently, the possible association of the
observed mutations in FP-2 and reduced ART sensitivity was iden-
tified [11], hence the main concern of this study. FP-2 and other
hemoglobinases play an important role in the development cycle
of P. falciparum during the blood stage in host erythrocytes.

Here, we utilized a range of computational approaches that we
recently developed [40,41,43] together with existing methods to
investigate the structural and dynamic effects of a collection of
11 missense mutations of FP-2. We started with general global
analysis of the mutations, which are distributed within the cat-
alytic domain of the protease. With the exception of mutations
V393I and A400P (FP-2 S10 mutations), all other mutations, includ-
ing those that confer ART resistance (K255R, N257E, T343P and
D345G) in FP-2, are distally located from the main orthosteric site.
We identified six putative allosteric pockets and noted that some
of the mutations are in or around these pockets. Two of the ART
resistant linked missense mutations, K255 and N257, were located
in Pocket 1, and the other three missense mutations of this study
(M245I, E248D, E249A) were near this pocket. Pocket 2 contained
the missense mutation A535T, while A400P was on the border of
Pocket 4. The interface of Pockets 3 and 6 shared the other two
ART resistance-linked mutations (T343P and D345G).

As a next step, we applied MD simulations followed by post-MD
analysis approaches. At a global level, the proteins were analyzed
using RMSD, Rg and RMSF. These analyses were applied both to
whole WT and mutant proteins, as well as to the binding pocket
and potential allosteric pockets, with the intention of identifying
mutation related differences. We also combined the pocket analy-
sis with the outcomes of one of the new tools that we developed,
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comparative essential dynamics tool [41]. Traditional PCA calcula-
tions provide results with different axis scales due to different
covariance matrices obtained from trajectories. Our tool aligns
one trajectory to a reference trajectory before performing a single
decomposition to lay out all conformations on a common set of
principal axes, such that the percentage of explained variance is
the one shared by both trajectories. This functionality enabled us
to accurately compare the pockets in the presence of different mis-
sense mutations. Collectively, we had a number of important
observations: 1) In the presence of M245I, a cryptic pocket was
detected via a unique mechanism in which some residues in Pocket
2 moved into Pocket 6. 2) In the presence of A353T mutation,
which is located at Pocket 2, the pocket became the most rigid
among all protein systems analyzed. Pocket 6 was also highly
stable, seemingly an opposite effect of M245I mutation. 3) The
effect of ART linked mutations was subtler.

From there, we gradually started to zoom into residue level
analysis to understand the structural differences (if any) caused
by these mutations. We previously proposed DRN analysis to probe
the impact of mutations and their allosteric effects [39,40]. In this
study, we applied five DRN metrics (BC, CC, DC, EC and KC) in char-
acterizing key communication residues of FP-2 and its allosteric
behavior in the presence of mutations. This concept was first intro-
duced in our previous study [43], and here, for the second time, we
showed the effectiveness of looking at these metrics in a combined
manner. Further, we used the global top 5% algorithm that we
introduced in our previous study to pinpoint key hub residues
[43]. We defined a hub as any node that forms part of the set of
highest centrality nodes for any given averaged centrality metric.
Again, with this approach, we obtained a number of striking
results: 1) The heat map representation of the identified hubs
according to the global top 5% for each of the five DRN metrics
allowed us to identify persistent hubs, which indicate the key resi-
dues that are not affected in the presence of mutations. We believe
that these residues are functionally highly important. Previously,
we made a correlation between persistent hubs and cold spot resi-
dues [43]; 2) Averaged BC calculations revealed an interesting
observation: the appearance of the catalytic thiol (C285) as a
new hub in all mutant cases except WT and E249A mutant protein.
This is also seen with S289 as mutant specific averaged BC hub,
located at the central a-helix, in all except E248D and A400P. 3)
We identified a number of short allosteric communication paths
formed by the averaged BC and DC hubs in the presence of muta-
tions. The most compelling one was in the presence of ART resis-
tant linked T343P mutation. The allosteric communication path
originated from residue L308 which is in contact with the mutant
residue (T343P) and ended at the catalytic site, including C285.
While T343P mutation is located between Pockets 3 and 6; a part
of the continuation of the communication path, L308-I291, is posi-
tioned between Pockets 2, 3 and 6. 4) Global top 5% analysis for
averaged DC hub analysis was also highly informative, indicating
a drastic increase of hub numbers (hence communication network)
in the central core of FP-2 in a number of mutant systems including
some of those linked to ART resistance.

After DRN analysis, we further zoomed into the residue-residue
interactions to determine the possible effect of mutations on the
native inter-residue networks. Collectively, weighted network
analysis results indicated that mutations imposed changes in the
existing WT residue interactions. Gained interactions were mainly
to make interactions with the other identified hubs, while the lost/
weakened interactions were mainly with pocket and subsite resi-
dues. This may be the basis of altered binding pocket dynamics
and stability, which may ultimately affect the catalytic efficiency
of proteases. This alteration in residue interactions and dynamics
may impact the nucleophile mediated cleavage reaction of sub-
strate peptide bonds. Based on these observations, we hypothesize
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the existence of subtle dynamic residue interaction changes which
could affect the Hb degradation process.
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